1
|
The association between maternal occupation and down syndrome: A report from the national Down syndrome project. Int J Hyg Environ Health 2020; 223:207-213. [DOI: 10.1016/j.ijheh.2019.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
|
2
|
Hekim N, Gure MA, Metin Mahmutoglu A, Gunes S, Asci R, Henkel R. SNP's in xenobiotic metabolism and male infertility. Xenobiotica 2019; 50:363-370. [PMID: 31070506 DOI: 10.1080/00498254.2019.1616850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Glutathione S-transferases (GST) and cytochrome P450s (CYPs) are xenobiotic metabolizing enzymes participating in the protection of cell. The present study aimed to investigate the relationship between polymorphisms of glutathione S-transferase M1 (GSTM1) null, glutathione S-transferase T1 (GSTT1) null, glutathione S-transferase P1 (GSTP1) Ile105Val, cytochrome P450 1A2 (CYP1A2) 734 C→A, cytochrome P450 2D6 (CYP2D6) 1934 G→A and male infertility.2. A total of 306 azoospermic or oligozoospermic infertile men and 129 normozoospermic or fertile controls were enrolled in the study. Multiplex polymerase chain reaction (PCR) or PCR-restriction fragment length polymorphism methods were used for genotyping. There was a significant relationship between male infertility and CYP2D6 GG genotype (p < 0.001). CYP1A2 AA genotype was slightly higher in the infertile group (p = 0.056).3. There was no association between GSTT1 null polymorphisms and male infertility (p = 0.068), GSTM1 null (p = 0.843) and GSTP1 Ile105Val (p = 0.192) genes. GSTM1 null genotype frequency was higher in azoospermic men (p = 0.009). Men carrying CYP1A2 AA genotype had higher risk of infertility risk (OR = 3.14; %95 CI = 1.16-8.54) in the smoker group.4. Our results demonstrated that polymorphisms of CYP2D6 and CYP1A2 may play a role in idiopathic male infertility in our sample population.
Collapse
Affiliation(s)
- Neslihan Hekim
- Medical Faculty, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Mohamed Ali Gure
- Medical Faculty, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Asli Metin Mahmutoglu
- Medical Faculty, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Medical Faculty, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.,Medical Faculty, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
3
|
Kirsch-Volders M, Pacchierotti F, Parry EM, Russo A, Eichenlaub-Ritter U, Adler ID. Risks of aneuploidy induction from chemical exposure: Twenty years of collaborative research in Europe from basic science to regulatory implications. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:126-147. [PMID: 31097149 DOI: 10.1016/j.mrrev.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/13/2022]
Abstract
Although Theodor Boveri linked abnormal chromosome numbers and disease more than a century ago, an in-depth understanding of the impact of mitotic and meiotic chromosome segregation errors on cell proliferation and diseases is still lacking. This review reflects on the efforts and results of a large European research network that, from the 1980's until 2004, focused on protection against aneuploidy-inducing factors and tackled the following problems: 1) the origin and consequences of chromosome imbalance in somatic and germ cells; 2) aneuploidy as a result of environmental factors; 3) dose-effect relationships; 4) the need for validated assays to identify aneugenic factors and classify them according to their modes of action; 5) the need for reliable, quantitative data suitable for regulating exposure and preventing aneuploidy induction; 6) the need for mechanistic insight into the consequences of aneuploidy for human health. This activity brought together a consortium of experts from basic science and applied genetic toxicology to prepare the basis for defining guidelines and to encourage regulatory activities for the prevention of induced aneuploidy. Major strengths of the EU research programmes on aneuploidy were having a valuable scientific approach based on well-selected compounds and accurate methods that allow the determination of precise dose-effect relationships, reproducibility and inter-laboratory comparisons. The work was conducted by experienced scientists stimulated by a fascination with the complex scientific issues surrounding aneuploidy; a key strength was asking the right questions at the right time. The strength of the data permitted evaluation at the regulatory level. Finally, the entire enterprise benefited from a solid partnership under the lead of an inspired and stimulating coordinator. The research programme elucidated the major modes of action of aneugens, developed scientifically sound assays to assess aneugens in different tissues, and achieved the international validation of relevant assays with the goal of protecting human populations from aneugenic chemicals. The role of aneuploidy in tumorigenesis will require additional research, and the study of effects of exposure to multiple agents should become a priority. It is hoped that these reflections will stimulate the implementation of aneuploidy testing in national and OECD guidelines.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | - Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Ursula Eichenlaub-Ritter
- Institute of Gene Technology/Microbiology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
4
|
Mandrioli D, Belpoggi F, Silbergeld EK, Perry MJ. Aneuploidy: a common and early evidence-based biomarker for carcinogens and reproductive toxicants. Environ Health 2016; 15:97. [PMID: 27729050 PMCID: PMC5059969 DOI: 10.1186/s12940-016-0180-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/28/2016] [Indexed: 05/29/2023]
Abstract
Aneuploidy, defined as structural and numerical aberrations of chromosomes, continues to draw attention as an informative effect biomarker for carcinogens and male reproductive toxicants. It has been well documented that aneuploidy is a hallmark of cancer. Aneuploidies in oocytes and spermatozoa contribute to infertility, pregnancy loss and a number of congenital abnormalities, and sperm aneuploidy is associated with testicular cancer. It is striking that several carcinogens induce aneuploidy in somatic cells, and also adversely affect the chromosome compliment of germ cells. In this paper we review 1) the contributions of aneuploidy to cancer, infertility, and developmental abnormalities; 2) techniques for assessing aneuploidy in precancerous and malignant lesions and in sperm; and 3) the utility of aneuploidy as a biomarker for integrated chemical assessments of carcinogenicity, and reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, 40010 Bentivoglio, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, 40010 Bentivoglio, Bologna, Italy
| | - Ellen K. Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 21205 Baltimore, MD USA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave. NW, 4th Floor, Washington, DC 20052 USA
| |
Collapse
|
5
|
Perry MJ, Young HA, Grandjean P, Halling J, Petersen MS, Martenies SE, Karimi P, Weihe P. Sperm Aneuploidy in Faroese Men with Lifetime Exposure to Dichlorodiphenyldichloroethylene (p,p´-DDE) and Polychlorinated Biphenyl (PCB) Pollutants. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:951-956. [PMID: 26535963 PMCID: PMC4937854 DOI: 10.1289/ehp.1509779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/09/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Although it is known that sperm aneuploidy contributes to early pregnancy losses and congenital abnormalities, the causes are unknown and environmental contaminants are suspected. OBJECTIVES Our goal was to evaluate associations between lifetime exposure to organochlorines, specifically dichlorodiphenyldicholorethylene (p,p´-DDE) and polychlorinated biphenyls (PCBs), and sperm aneuploidy in men from the general population of the Faroe Islands, a population with a known history of organochlorine exposures. METHODS Serum and semen samples from men (n = 90) 22-44 years old who participated in Faroe Islands health studies were analyzed for p,p´-DDE and PCBs 118, 138, 153, and 180 and adjusted for total lipids. Cord blood and age-14 serum were available for a subgroup (n = 40) and were also analyzed for p,p´-DDE and PCBs. Sperm fluorescence in situ hybridization (FISH) for chromosomes X, Y, and 18 was used to determine rates of XX18, XY18, YY18, and total disomy. Multivariable adjusted Poisson models were used to estimate the relationship between organochlorine exposure and sperm disomy outcomes. RESULTS Adult p,p´-DDE and total PCB serum concentrations were both associated with significantly increased rates of XX18, XY18, and total disomy. Age-14 p,p´-DDE and PCB concentrations were both associated with significantly increased rates of XX, XY, and total disomy in adulthood. Associations between cord blood concentrations of p,p´-DDE and PCBs and sperm disomy in adulthood were not consistently significant. CONCLUSIONS Organochlorine exposures measured at age 14 and in adulthood were associated with sperm disomy in this sample of high-exposure men, suggesting that the impacts of persistent pollutants on testicular maturation and function require further investigation. CITATION Perry MJ, Young HA, Grandjean P, Halling J, Petersen MS, Martenies SE, Karimi P, Weihe P. 2016. Sperm aneuploidy in Faroese men with lifetime exposure to dichlorodiphenyldichloroethylene (p,p´-DDE) and polychlorinated biphenyl (PCB) pollutants. Environ Health Perspect 124:951-956; http://dx.doi.org/10.1289/ehp.1509779.
Collapse
Affiliation(s)
| | - Heather A. Young
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Philippe Grandjean
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jónrit Halling
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| | | | - Parisa Karimi
- Department of Environmental and Occupational Health, and
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| |
Collapse
|
6
|
Marchetti F, Massarotti A, Yauk CL, Pacchierotti F, Russo A. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:87-113. [PMID: 26581746 DOI: 10.1002/em.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alberto Massarotti
- Dipartimento Di Scienze Del Farmaco, Università Degli Studi Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | | |
Collapse
|
7
|
Tarín JJ, García-Pérez MA, Cano A. Assisted reproductive technology results: Why are live-birth percentages so low? Mol Reprod Dev 2014; 81:568-83. [DOI: 10.1002/mrd.22340] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/03/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Juan J. Tarín
- Department of Functional Biology and Physical Anthropology; Faculty of Biological Sciences; University of Valencia; Burjassot Valencia Spain
| | - Miguel A. García-Pérez
- Research Unit-INCLIVA; Hospital Clínico de Valencia; Burjassot Valencia Spain
- Department of Genetics; Faculty of Biological Sciences; University of Valencia; Burjassot Valencia Spain
| | - Antonio Cano
- Department of Pediatrics; Obstetrics and Gynecology; Faculty of Medicine; University of Valencia; Valencia Spain
- Service of Obstetrics and Gynecology; University Hospital Dr. Peset; Valencia Spain
| |
Collapse
|
8
|
Hunter JE, Allen EG, Shin M, Bean LJH, Correa A, Druschel C, Hobbs CA, O'Leary LA, Romitti PA, Royle MH, Torfs CP, Freeman SB, Sherman SL. The association of low socioeconomic status and the risk of having a child with Down syndrome: a report from the National Down Syndrome Project. Genet Med 2013; 15:698-705. [PMID: 23558253 DOI: 10.1038/gim.2013.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/19/2013] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Advanced maternal age and altered recombination are known risk factors for Down syndrome cases due to maternal nondisjunction of chromosome 21, whereas the impact of other environmental and genetic factors is unclear. The aim of this study was to investigate an association between low maternal socioeconomic status and chromosome 21 nondisjunction. METHODS Data from 714 case and 977 control families were used to assess chromosome 21 meiosis I and meiosis II nondisjunction errors in the presence of three low socioeconomic status factors: (i) both parents had not completed high school, (ii) both maternal grandparents had not completed high school, and (iii) an annual household income of <$25,000. We applied logistic regression models and adjusted for covariates, including maternal age and race/ethnicity. RESULTS As compared with mothers of controls (n = 977), mothers with meiosis II chromosome 21 nondisjunction (n = 182) were more likely to have a history of one low socioeconomic status factor (odds ratio = 1.81; 95% confidence interval = 1.07-3.05) and ≥2 low socioeconomic status factors (odds ratio = 2.17; 95% confidence interval = 1.02-4.63). This association was driven primarily by having a low household income (odds ratio = 1.79; 95% confidence interval = 1.14-2.73). The same statistically significant association was not detected among maternal meiosis I errors (odds ratio = 1.31; 95% confidence interval = 0.81-2.10), in spite of having a larger sample size (n = 532). CONCLUSION We detected a significant association between low maternal socioeconomic status and meiosis II chromosome 21 nondisjunction. Further studies are warranted to explore which aspects of low maternal socioeconomic status, such as environmental exposures or poor nutrition, may account for these results.
Collapse
Affiliation(s)
- Jessica Ezzell Hunter
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.
Collapse
Affiliation(s)
- Colleen Jackson-Cook
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Bae JE, Huh MI, Ryu BK, Do JY, Jin SU, Moon MJ, Jung JC, Chang Y, Kim E, Chi SG, Lee GH, Chae KS. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles. Biomaterials 2011; 32:9401-14. [DOI: 10.1016/j.biomaterials.2011.08.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/24/2011] [Indexed: 11/28/2022]
|