1
|
Manna M, Rengasamy B, Ambasht NK, Sinha AK. Characterization and expression profiling of PIN auxin efflux transporters reveal their role in developmental and abiotic stress conditions in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1059559. [PMID: 36531415 PMCID: PMC9751476 DOI: 10.3389/fpls.2022.1059559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transporter proteins called PINs ferry auxin from its source to sinks in particular directions depending on their polar localizations in the plasma membrane, thus facilitating the development of the entire plant architecture. The rice genome has 12 PIN genes distributed over eight chromosomes. To study their roles in plant development, abiotic stress responsiveness, and shaping an auxin-dependent root architecture, a genome-wide analysis was carried out. Based on phylogeny, cellular localization, and hydrophilic loop domain size, the PINs were categorized into canonical and noncanonical PINs. PINs were found expressed in all of the organs of plants that emphasized their indispensable role throughout the plant's life cycle. We discovered that PIN5C and PIN9 were upregulated during salt and drought stress. We also found that regardless of its cellular level, auxin functioned as a molecular switch to turn on auxin biosynthesis genes. On the contrary, although PIN expression was upregulated upon initial treatment with auxin, prolonged auxin treatment not only led to their downregulation but also led to the development of auxin-dependent altered root formation in rice. Our study paves the way for developing stress-tolerant rice and plants with a desirable root architecture by genetic engineering.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
2
|
Bernardazzi C, Sheikh IA, Xu H, Ghishan FK. The Physiological Function and Potential Role of the Ubiquitous Na +/H + Exchanger Isoform 8 (NHE8): An Overview Data. Int J Mol Sci 2022; 23:ijms231810857. [PMID: 36142772 PMCID: PMC9501935 DOI: 10.3390/ijms231810857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.
Collapse
|
3
|
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, Dedic E, Stokes DL, Hammes UZ, Pedersen BP. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 2022; 609:605-610. [PMID: 35768502 PMCID: PMC9477730 DOI: 10.1038/s41586-022-04883-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1–3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4–9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline–proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development. Structural and biophysical analysis of the Arabidopsis thaliana auxin transporter PIN8 reveal that PIN transporters export auxin using an elevator mechanism.
Collapse
Affiliation(s)
- Kien Lam Ung
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mikael Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lukas Schulz
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Martina Kolb
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dorina P Janacek
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
| | | |
Collapse
|
4
|
Sauer DB, Wang B, Sudar JC, Song J, Marden J, Rice WJ, Wang DN. The ups and downs of elevator-type di-/tricarboxylate membrane transporters. FEBS J 2022; 289:1515-1523. [PMID: 34403567 PMCID: PMC9832446 DOI: 10.1111/febs.16158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023]
Abstract
The divalent anion sodium symporter (DASS) family contains both sodium-driven anion cotransporters and anion/anion exchangers. The family belongs to a broader ion transporter superfamily (ITS), which comprises 24 families of transporters, including those of AbgT antibiotic efflux transporters. The human proteins in the DASS family play major physiological roles and are drug targets. We recently determined multiple structures of the human sodium-dependent citrate transporter (NaCT) and the succinate/dicarboxylate transporter from Lactobacillus acidophilus (LaINDY). Structures of both proteins show high degrees of structural similarity to the previously determined VcINDY fold. Conservation between these DASS protein structures and those from the AbgT family indicates that the VcINDY fold represents the overall protein structure for the entire ITS. The new structures of NaCT and LaINDY are captured in the inward- or outward-facing conformations, respectively. The domain arrangements in these structures agree with a rigid body elevator-type transport mechanism for substrate translocation across the membrane. Two separate NaCT structures in complex with a substrate or an inhibitor allowed us to explain the inhibition mechanism and propose a detailed classification scheme for grouping disease-causing mutations in the human protein. Structural understanding of multiple kinetic states of DASS proteins is a first step toward the detailed characterization of their entire transport cycle.
Collapse
Affiliation(s)
- David B. Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph C. Sudar
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jennifer Marden
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - William J. Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Sengupta K, Hivarkar SS, Palevich N, Chaudhary PP, Dhakephalkar PK, Dagar SS. Genomic architecture of three newly isolated unclassified Butyrivibrio species elucidate their potential role in the rumen ecosystem. Genomics 2022; 114:110281. [DOI: 10.1016/j.ygeno.2022.110281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
|
6
|
Sudha G, Bassot C, Lamb J, Shu N, Huang Y, Elofsson A. The evolutionary history of topological variations in the CPA/AT transporters. PLoS Comput Biol 2021; 17:e1009278. [PMID: 34403419 PMCID: PMC8396727 DOI: 10.1371/journal.pcbi.1009278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
CPA/AT transporters are made up of scaffold and a core domain. The core domain contains two non-canonical helices (broken or reentrant) that mediate the transport of ions, amino acids or other charged compounds. During evolution, these transporters have undergone substantial changes in structure, topology and function. To shed light on these structural transitions, we create models for all families using an integrated topology annotation method. We find that the CPA/AT transporters can be classified into four fold-types based on their structure; (1) the CPA-broken fold-type, (2) the CPA-reentrant fold-type, (3) the BART fold-type, and (4) a previously not described fold-type, the Reentrant-Helix-Reentrant fold-type. Several topological transitions are identified, including the transition between a broken and reentrant helix, one transition between a loop and a reentrant helix, complete changes of orientation, and changes in the number of scaffold helices. These transitions are mainly caused by gene duplication and shuffling events. Structural models, topology information and other details are presented in a searchable database, CPAfold (cpafold.bioinfo.se).
Collapse
Affiliation(s)
- Govindarajan Sudha
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Claudio Bassot
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - John Lamb
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Nanjiang Shu
- Bioinformatics Short-term Support and Infrastructure (BILS), Science for Life Laboratory, Sweden
| | - Yan Huang
- Science for Life Laboratory, Karolinska Institutet, Stockholm University, Solna, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| |
Collapse
|
7
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Vosolsobě S, Skokan R, Petrášek J. The evolutionary origins of auxin transport: what we know and what we need to know. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3287-3295. [PMID: 32246155 DOI: 10.1093/jxb/eraa169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
Auxin, represented by indole-3-acetic acid (IAA), has for a long time been studied mainly with respect to the development of land plants, and recent evidence confirms that canonical nuclear auxin signaling is a land plant apomorphy. Increasing sequential and physiological data show that the presence of auxin transport machinery pre-dates the emergence of canonical signaling. In this review, we summarize the present state of knowledge regarding the origins of auxin transport in the green lineage (Viridiplantae), integrating both data from wet lab experiments and sequence evidence on the presence of PIN-FORMED (PIN), PIN-LIKES (PILS), and AUXIN RESISTANT 1/LIKE-AUX1 (AUX1/LAX) homologs. We discuss a high divergence of auxin carrier homologs among algal lineages and emphasize the urgent need for the establishment of good molecular biology models from within the streptophyte green algae. We further postulate and discuss two hypotheses for the ancestral role of auxin in the green lineage. First, auxin was present as a by-product of cell metabolism and the evolution of its transport was stimulated by the need for IAA sequestration and cell detoxification. Second, auxin was primarily a signaling compound, possibly of bacterial origin, and its activity in the pre-plant green algae was a consequence of long-term co-existence with bacteria in shared ecological consortia.
Collapse
Affiliation(s)
- Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Roman Skokan
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Czech Republic
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová, Czech Republic
| |
Collapse
|
9
|
Aboulwafa M, Zhang Z, Saier MH. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. PLoS One 2019; 14:e0219332. [PMID: 31751341 PMCID: PMC6872149 DOI: 10.1371/journal.pone.0219332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/13/2019] [Indexed: 01/05/2023] Open
Abstract
The multicomponent phosphoenolpyruvate (PEP)-dependent sugar-transporting phosphotransferase system (PTS) in Escherichia coli takes up sugar substrates from the medium and concomitantly phosphorylates them, releasing sugar phosphates into the cytoplasm. We have recently provided evidence that many of the integral membrane PTS permeases interact with the fructose PTS (FruA/FruB) [1]. However, the biochemical and physiological significance of this finding was not known. We have carried out molecular genetic/biochemical/physiological studies that show that interactions of the fructose PTS often enhance, but sometimes inhibit the activities of other PTS transporters many fold, depending on the target PTS system under study. Thus, the glucose (Glc), mannose (Man), mannitol (Mtl) and N-acetylglucosamine (NAG) permeases exhibit enhanced in vivo sugar transport and sometimes in vitro PEP-dependent sugar phosphorylation activities while the galactitol (Gat) and trehalose (Tre) systems show inhibited activities. This is observed when the fructose system is induced to high levels and prevented when the fruA/fruB genes are deleted. Overexpression of the fruA and/or fruB genes in the absence of fructose induction during growth also enhances the rates of uptake of other hexoses. The β-galactosidase activities of man, mtl, and gat-lacZ transcriptional fusions and the sugar-specific transphosphorylation activities of these enzyme transporters were not affected either by frustose induction or by fruAB overexpression, showing that the rates of synthesis of the target PTS permeases were not altered. We thus suggest that specific protein-protein interactions within the cytoplasmic membrane regulate transport in vivo (and sometimes the PEP-dependent phosphorylation activities in vitro) of PTS permeases in a physiologically meaningful way that may help to provide a hierarchy of preferred PTS sugars. These observations appear to be applicable in principle to other types of transport systems as well.
Collapse
Affiliation(s)
- Mohammad Aboulwafa
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Zhongge Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Medrano-Soto A, Moreno-Hagelsieb G, McLaughlin D, Ye ZS, Hendargo KJ, Saier MH. Bioinformatic characterization of the Anoctamin Superfamily of Ca2+-activated ion channels and lipid scramblases. PLoS One 2018; 13:e0192851. [PMID: 29579047 PMCID: PMC5868767 DOI: 10.1371/journal.pone.0192851] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/31/2018] [Indexed: 01/01/2023] Open
Abstract
Our laboratory has developed bioinformatic strategies for identifying distant phylogenetic relationships and characterizing families and superfamilies of transport proteins. Results using these tools suggest that the Anoctamin Superfamily of cation and anion channels, as well as lipid scramblases, includes three functionally characterized families: the Anoctamin (ANO), Transmembrane Channel (TMC) and Ca2+-permeable Stress-gated Cation Channel (CSC) families; as well as four families of functionally uncharacterized proteins, which we refer to as the Anoctamin-like (ANO-L), Transmembrane Channel-like (TMC-L), and CSC-like (CSC-L1 and CSC-L2) families. We have constructed protein clusters and trees showing the relative relationships among the seven families. Topological analyses suggest that the members of these families have essentially the same topologies. Comparative examination of these homologous families provides insight into possible mechanisms of action, indicates the currently recognized organismal distributions of these proteins, and suggests drug design potential for the disease-related channel proteins.
Collapse
Affiliation(s)
- Arturo Medrano-Soto
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | | | - Daniel McLaughlin
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Zachary S. Ye
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Kevin J. Hendargo
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Xu H, Ghishan FK, Kiela PR. SLC9 Gene Family: Function, Expression, and Regulation. Compr Physiol 2018; 8:555-583. [PMID: 29687889 DOI: 10.1002/cphy.c170027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Slc9 family of Na+ /H+ exchangers (NHEs) plays a critical role in electroneutral exchange of Na+ and H+ in the mammalian intestine as well as other absorptive and secretory epithelia of digestive organs. These transport proteins contribute to the transepithelial Na+ and water absorption, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. They also influence the function of other membrane transport mechanisms, affect cellular proliferation and apoptosis as well as cell migration, adherence to the extracellular matrix, and tissue repair. Additionally, they modulate the extracellular milieu to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+ /H+ exchange is inhibited in selected gastrointestinal diseases, either by intrinsic factors (e.g., bile acids, inflammatory mediators) or infectious agents and associated bacterial toxins. Disrupted NHE activity may contribute not only to local and systemic electrolyte imbalance but also to the disease severity via multiple mechanisms. In this review, we describe the cation proton antiporter superfamily of Na+ /H+ exchangers with a particular emphasis on the eight SLC9A isoforms found in the digestive tract, followed by a more integrative description in their roles in each of the digestive organs. We discuss regulatory mechanisms that determine the function of Na+ /H+ exchangers as pertinent to the digestive tract, their regulation in pathological states of the digestive organs, and reciprocally, the contribution of dysregulated Na+ /H+ exchange to the disease pathogenesis and progression. © 2018 American Physiological Society. Compr Physiol 8:555-583, 2018.
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
13
|
Uhe M, Hogekamp C, Hartmann RM, Hohnjec N, Küster H. The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells. PLoS One 2018; 13:e0191841. [PMID: 29370287 PMCID: PMC5784984 DOI: 10.1371/journal.pone.0191841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/11/2018] [Indexed: 12/23/2022] Open
Abstract
Different symbiotic and pathogenic plant-microbe interactions involve the production of cysteine-rich antimicrobial defensins. In Medicago truncatula, the expression of four MtDefMd genes, encoding arbuscular mycorrhiza-dependent defensins containing an N-terminal signal peptide and exhibiting some differences to non-symbiotic defensins, raised over the time of fungal colonization. Whereas the MtDefMd1 and MtDefMd2 promoters were inactive in cells containing young arbuscules, cells with fully developed arbuscules displayed different levels of promoter activities, indicating an up-regulation towards later stages of arbuscule formation. MtDefMd1 and MtDefMd2 expression was absent or strongly down-regulated in mycorrhized ram1-1 and pt4-2 mutants, known for defects in arbuscule branching or premature arbuscule degeneration, respectively. A ~97% knock-down of MtDefMd1/MtDefMd2 expression did not significantly affect arbuscule size. Although overexpression of MtDefMd1 in arbuscule-containing cells led to an up-regulation of MtRam1, encoding a key transcriptional regulator of arbuscule formation, no morphological changes were evident. Co-localization of an MtDefMd1-mGFP6 fusion with additional, subcellular markers revealed that this defensin is associated with arbuscules in later stages of their life-cycle. MtDefMd1-mGFP6 was detected in cells with older arbuscules about to collapse, and ultimately in vacuolar compartments. Comparisons with mycorrhized roots expressing a tonoplast marker indicated that MtDefMd1 acts during late restructuring processes of arbuscule-containing cells, upon their transition into a post-symbiotic state.
Collapse
Affiliation(s)
- Marian Uhe
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Claudia Hogekamp
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Rico M. Hartmann
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Natalija Hohnjec
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| | - Helge Küster
- Unit IV-Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
14
|
Zhai L, Xie J, Lin Y, Cheng K, Wang L, Yue F, Guo J, Liu J, Yao S. Genome sequencing and heterologous expression of antiporters reveal alkaline response mechanisms of Halomonas alkalicola. Extremophiles 2017; 22:221-231. [PMID: 29270851 DOI: 10.1007/s00792-017-0991-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.
Collapse
Affiliation(s)
- Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Jiuyan Xie
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Yafang Lin
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Kun Cheng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Lijiang Wang
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Feng Yue
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Jingyan Guo
- Procter & Gamble Technologies (Beijing) Ltd, Beijing, 101312, People's Republic of China
| | - Jiquan Liu
- Procter & Gamble International Operations SA Singapore Branch, 70 Biopolis Street, Singapore, 138547, Singapore.
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| |
Collapse
|
15
|
Moreno-Hagelsieb G, Vitug B, Medrano-Soto A, Saier MH. The Membrane Attack Complex/Perforin Superfamily. J Mol Microbiol Biotechnol 2017; 27:252-267. [PMID: 29145176 DOI: 10.1159/000481286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.
Collapse
|
16
|
Characterization of the Tetraspan Junctional Complex (4JC) superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:402-414. [PMID: 27916633 DOI: 10.1016/j.bbamem.2016.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Connexins or innexins form gap junctions, while claudins and occludins form tight junctions. In this study, statistical data, derived using novel software, indicate that these four junctional protein families and eleven other families of channel and channel auxiliary proteins are related by common descent and comprise the Tetraspan (4 TMS) Junctional Complex (4JC) Superfamily. These proteins all share similar 4 transmembrane α-helical (TMS) topologies. Evidence is presented that they arose via an intragenic duplication event, whereby a 2 TMS-encoding genetic element duplicated tandemly to give 4 TMS proteins. In cases where high resolution structural data were available, the conclusion of homology was supported by conducting structural comparisons. Phylogenetic trees reveal the probable relationships of these 15 families to each other. Long homologues containing fusions to other recognizable domains as well as internally duplicated or fused domains are reported. Large "fusion" proteins containing 4JC domains proved to fall predominantly into family-specific patterns as follows: (1) the 4JC domain was N-terminal; (2) the 4JC domain was C-terminal; (3) the 4JC domain was duplicated or occasionally triplicated and (4) mixed fusion types were present. Our observations provide insight into the evolutionary origins and subfunctions of these proteins as well as guides concerning their structural and functional relationships.
Collapse
|
17
|
Abstract
Several members of the SLC9A family of Na+/H+ exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na+ absorption, intracellular pH (pH i ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+/H+ exchangers are frequent targets of inhibition in gastrointestinal pathologies, either by intrinsic factors (e.g. bile acids, inflammatory mediators) or infectious agents and associated microbial toxins. Based on emerging evidence, disruption of NHE activity via impaired expression or function of respective isoforms may contribute not only to local and systemic electrolyte imbalance, but also to the disease severity via multiple mechanisms. Here, we review the current state of knowledge about the roles Na+/H+ exchangers play in the pathogenesis of disorders of diverse origin and affecting a range of GI tissues.
Collapse
Affiliation(s)
- Michael A. Gurney
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona,Correspondence Address correspondence to: Pawel R. Kiela, DVM, PhD, Department of Pediatrics, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724. fax: (520) 626-4141.Department of Pediatrics, University of Arizona1501 North Campbell AvenueTucsonArizona 85724
| |
Collapse
|
18
|
Vergara-Jaque A, Fenollar-Ferrer C, Mulligan C, Mindell JA, Forrest LR. Family resemblances: A common fold for some dimeric ion-coupled secondary transporters. ACTA ACUST UNITED AC 2016; 146:423-34. [PMID: 26503722 PMCID: PMC4621753 DOI: 10.1085/jgp.201511481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The structures of two bacterial antiporters that act as multidrug resistance efflux pumps, MtrF and YdaH, resemble each other and that of the sodium-coupled succinate symporter VcINDY. Membrane transporter proteins catalyze the passage of a broad range of solutes across cell membranes, allowing the uptake and efflux of crucial compounds. Because of the difficulty of expressing, purifying, and crystallizing integral membrane proteins, relatively few transporter structures have been elucidated to date. Although every membrane transporter has unique characteristics, structural and mechanistic similarities between evolutionarily diverse transporters have been identified. Here, we compare two recently reported structures of membrane proteins that act as antimicrobial efflux pumps, namely MtrF from Neisseria gonorrhoeae and YdaH from Alcanivorax borkumensis, both with each other and with the previously published structure of a sodium-dependent dicarboxylate transporter from Vibrio cholerae, VcINDY. MtrF and YdaH belong to the p-aminobenzoyl-glutamate transporter (AbgT) family and have been reported as having architectures distinct from those of all other families of transporters. However, our comparative analysis reveals a similar structural arrangement in all three proteins, with highly conserved secondary structure elements. Despite their differences in biological function, the overall “design principle” of MtrF and YdaH appears to be almost identical to that of VcINDY, with a dimeric quaternary structure, helical hairpins, and clear boundaries between the transport and scaffold domains. This observation demonstrates once more that the same secondary transporter architecture can be exploited for multiple distinct transport modes, including cotransport and antiport. Based on our comparisons, we detected conserved motifs in the substrate-binding region and predict specific residues likely to be involved in cation or substrate binding. These findings should prove useful for the future characterization of the transport mechanisms of these families of secondary active transporters.
Collapse
Affiliation(s)
- Ariela Vergara-Jaque
- Computational Structural Biology Unit and Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Cristina Fenollar-Ferrer
- Computational Structural Biology Unit and Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Christopher Mulligan
- Computational Structural Biology Unit and Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Joseph A Mindell
- Computational Structural Biology Unit and Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| | - Lucy R Forrest
- Computational Structural Biology Unit and Membrane Transport Biophysics Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824
| |
Collapse
|
19
|
Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2. Extremophiles 2016; 20:631-9. [PMID: 27315164 DOI: 10.1007/s00792-016-0852-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Na(+)/H(+) antiporters play important roles in ion and pH homeostasis. In this study, two NhaD homologues that effectively catalyze Na(+)/H(+) antiporter were identified from Halomonas sp. Y2, a halotolerant and alkaliphilic strain isolated from sodium enriched black liquor. They exhibited high sequence identity of 72 % and similar binding affinities for Na(+) and Li(+) translocation, while having different pH profiles. Ha-NhaD1 was active at pH 6.0 and most active at pH 8.0-8.5, whereas Ha-NhaD2 lacked activity at pH 6.0 but exhibited maximum activity at pH 9.5 or higher. Based on multiple alignments, 11 partially conserved residues were selected and corresponding mutants were generated for Ha-NhaD1. As expected, replacement of most of the hydrophobic residues abolished the cation exchange activities. Three serine residues at positions 200, 282 and 353 in Ha-NhaD1 were replaceable by alanines with partial retention of activity. The S353A mutant exhibited significantly reduced binding affinity for Na(+) and Li(+), while S282 mutant exhibited an alkaline shift of about 1.5 pH units, as compared to the wild type Ha-NhaD1. Serine at position 282 was predicted to be located in transmembrane segment VIII and was found to be important in regulating pH sensitivity in concert with flanking residues.
Collapse
|
20
|
Reddy BL, Saier MH. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS One 2016; 11:e0152733. [PMID: 27064789 PMCID: PMC4827864 DOI: 10.1371/journal.pone.0152733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
We here report statistical analyses of 76 families of integral outer membrane pore-forming proteins (OMPPs) found in bacteria and eukaryotic organelles. 47 of these families fall into one superfamily (SFI) which segregate into fifteen phylogenetic clusters. Families with members of the same protein size, topology and substrate specificities often cluster together. Virtually all OMPP families include only proteins that form transmembrane pores. Nine such families, all of which cluster together in the SFI phylogenetic tree, contain both α- and β-structures, are multi domain, multi subunit systems, and transport macromolecules. Most other SFI OMPPs transport small molecules. SFII and SFV homologues derive from Actinobacteria while SFIII and SFIV proteins derive from chloroplasts. Three families of actinobacterial OMPPs and two families of eukaryotic OMPPs apparently consist primarily of α-helices (α-TMSs). Of the 71 families of (putative) β-barrel OMPPs, only twenty could not be assigned to a superfamily, and these derived primarily from Actinobacteria (1), chloroplasts (1), spirochaetes (8), and proteobacteria (10). Proteins were identified in which two or three full length OMPPs are fused together. Family characteristic are described and evidence agrees with a previous proposal suggesting that many arose by adjacent β-hairpin structural unit duplications.
Collapse
Affiliation(s)
- Bhaskara L. Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol 2016; 23:256-63. [PMID: 26828963 PMCID: PMC5215794 DOI: 10.1038/nsmb.3166] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
Secondary transporters use alternating access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters utilize a “rocking bundle” motion, where the protein moves around an immobile substrate binding site. However, the glutamate transporter homolog, GltPh, translocates its substrate binding site vertically across the membrane, an “elevator” mechanism. Here, we used the “repeat swap” approach to computationally predict the outward-facing state of the Na+/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial “elevator”-like movement of vcINDY’s substrate binding site, with a vertical translation of ~15 Å and a rotation of ~43°; multiple disulfide crosslinks which completely inhibit transport provide experimental confirmation and demonstrate that such movement is essential. In contrast, crosslinks across the VcINDY dimer interface preserve transport, revealing an absence of large scale coupling between protomers.
Collapse
|
22
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 2015; 44:D372-9. [PMID: 26546518 PMCID: PMC4702804 DOI: 10.1093/nar/gkv1103] [Citation(s) in RCA: 490] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/11/2015] [Indexed: 11/16/2022] Open
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) is a freely accessible reference database for transport protein research, which provides structural, functional, mechanistic, evolutionary and disease/medical information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB). It consists of more than 10 000 non-redundant transport systems with more than 11 000 reference citations, classified into over 1000 transporter families. Transporters in TCDB can be single or multi-component systems, categorized in a functional/phylogenetic hierarchical system of classes, subclasses, families, subfamilies and transport systems. TCDB also includes updated software designed to analyze the distinctive features of transport proteins, extending its usefulness. Here we present a comprehensive update of the database contents and features and summarize recent discoveries recorded in TCDB.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Vamsee S Reddy
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Medical Sciences, Boston University School of Medicine, 72 E Concord St., Boston, MA 02118, USA
| | - Brian V Tsu
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Muhammad Saad Ahmed
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chun Li
- Department of Biological Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Gabriel Moreno-Hagelsieb
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, Canada N2L 3C5
| |
Collapse
|
24
|
Tsu BV, Saier MH. The LysE Superfamily of Transport Proteins Involved in Cell Physiology and Pathogenesis. PLoS One 2015; 10:e0137184. [PMID: 26474485 PMCID: PMC4608589 DOI: 10.1371/journal.pone.0137184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 08/13/2015] [Indexed: 01/13/2023] Open
Abstract
The LysE superfamily consists of transmembrane transport proteins that catalyze export of amino acids, lipids and heavy metal ions. Statistical means were used to show that it includes newly identified families including transporters specific for (1) tellurium, (2) iron/lead, (3) manganese, (4) calcium, (5) nickel/cobalt, (6) amino acids, and (7) peptidoglycolipids as well as (8) one family of transmembrane electron carriers. Internal repeats and conserved motifs were identified, and multiple alignments, phylogenetic trees and average hydropathy, amphipathicity and similarity plots provided evidence that all members of the superfamily derived from a single common 3-TMS precursor peptide via intragenic duplication. Their common origin implies that they share common structural, mechanistic and functional attributes. The transporters of this superfamily play important roles in ionic homeostasis, cell envelope assembly, and protection from excessive cytoplasmic heavy metal/metabolite concentrations. They thus influence the physiology and pathogenesis of numerous microbes, being potential targets of drug action.
Collapse
Affiliation(s)
- Brian V. Tsu
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Genes encoding defensins of important Chagas disease vectors used for phylogenetic studies. Parasitol Res 2015; 114:4503-11. [DOI: 10.1007/s00436-015-4694-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
26
|
Babbitt PC, Bagos PG, Bairoch A, Bateman A, Chatonnet A, Chen MJ, Craik DJ, Finn RD, Gloriam D, Haft DH, Henrissat B, Holliday GL, Isberg V, Kaas Q, Landsman D, Lenfant N, Manning G, Nagano N, Srinivasan N, O'Donovan C, Pruitt KD, Sowdhamini R, Rawlings ND, Saier MH, Sharman JL, Spedding M, Tsirigos KD, Vastermark A, Vriend G. Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav063. [PMID: 26284514 PMCID: PMC4499208 DOI: 10.1093/database/bav063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/14/2022]
Abstract
During 11–12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.
Collapse
Affiliation(s)
- Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, Lamia, 35100, Greece
| | - Amos Bairoch
- SIB-Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Arnaud Chatonnet
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France
| | - Mark Jinan Chen
- Razavi Newman Center for Bioinformatics, Salk Institute, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA, ; Bioinformatics & Computational Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - David J Craik
- Queensland Bioscience Precinct, 306 Carmody Rd, Building 80, The University of Queensland, Australia
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 København Ø, Denmark
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13288 Marseille, France, ; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gemma L Holliday
- Department of Bioengineering and Therapeutic Sciences and California Institute for Quantitative Biosciences, University of California San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 København Ø, Denmark, ; CMBI, Raboudumc, Geert Grootplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Quentin Kaas
- Queensland Bioscience Precinct, 306 Carmody Rd, Building 80, The University of Queensland, Australia
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Nicolas Lenfant
- INRA, UMR866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics, Salk Institute, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA, ; Bioinformatics & Computational Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nozomi Nagano
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | - Claire O'Donovan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38 A, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore 560 065, India
| | - Neil D Rawlings
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Joanna L Sharman
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Michael Spedding
- Spedding Research Solutions, 6 Rue Ampere, 78110 Le Vesinet, France and
| | - Konstantinos D Tsirigos
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Swedish E-Science Research Center, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Gerrit Vriend
- CMBI, Raboudumc, Geert Grootplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
27
|
Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol 2015; 22:238-41. [PMID: 25686089 DOI: 10.1038/nsmb.2975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
Abstract
Bacteria use vitamin C (L-ascorbic acid) as a carbon source under anaerobic conditions. The phosphoenolpyruvate-dependent phosphotransferase system (PTS), comprising a transporter (UlaA), a IIB-like enzyme (UlaB) and a IIA-like enzyme (UlaC), is required for the anaerobic uptake of vitamin C and its phosphorylation to L-ascorbate 6-phosphate. Here, we present the crystal structures of vitamin C-bound UlaA from Escherichia coli in two conformations at 1.65-Å and 2.35-Å resolution. UlaA forms a homodimer and exhibits a new fold. Each UlaA protomer consists of 11 transmembrane segments arranged into a 'V-motif' domain and a 'core' domain. The V motifs form the interface between the two protomers, and the core-domain residues coordinate vitamin C. The alternating access of the substrate from the opposite side of the cell membrane may be achieved through rigid-body rotation of the core relative to the V motif.
Collapse
|
28
|
Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins 2014; 82:2797-811. [PMID: 25043943 DOI: 10.1002/prot.24643] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/07/2022]
Abstract
The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.
Collapse
Affiliation(s)
- Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | | | | | | | |
Collapse
|
29
|
Lee A, Vastermark A, Saier MH. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins. MICROBIOLOGY-SGM 2014; 160:1679-1689. [PMID: 24869855 DOI: 10.1099/mic.0.077776-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels.
Collapse
Affiliation(s)
- Andre Lee
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
30
|
Västermark A, Lunt B, Saier M. Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units. J Mol Microbiol Biotechnol 2014; 24:82-90. [PMID: 24603210 DOI: 10.1159/000358429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Based on alleged functional residue correspondences between FucP and LacY, a recent study has resulted in a proposed model of 3-TMS unit rearrangements [Madej et al.: Proc Natl Acad Sci USA 2013;110:5870-5874]. We rebut this theory, using 7 different lines of evidence. Our observations suggest that these two transporters are homologous throughout their lengths, having evolved from a common ancestor without repeat unit rearrangements. We exploit the availability of the high-resolution XylE crystal structures in multiple conformations including the inward-facing state to render possible direct comparisons with LacY. Based on a Δdistance map, we confirm the conclusion of Quistgaard et al. [Nat Struct Mol Biol 2013;20:766-768] that the N-terminal 6 TMS halves of these transporters are internally less mobile than the second halves during the conformational transition from the outward occluded state to the inward occluded state and inward occluded state to inward open state. These observations, together with those of Madej et al. [2013], lead to the suggestion that functionally equivalent catalytic residues involved in substrate binding and transport catalysis have evolved in dissimilar positions, but apparently often in similar positions in the putative 3-TMS repeat units, from a single structural scaffold without intragenic rearrangement.
Collapse
Affiliation(s)
- Ake Västermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, Calif., USA
| | | | | |
Collapse
|
31
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
32
|
Abstract
The Transporter Classification Database (TCDB; http://www.tcdb.org) serves as a common reference point for transport protein research. The database contains more than 10 000 non-redundant proteins that represent all currently recognized families of transmembrane molecular transport systems. Proteins in TCDB are organized in a five level hierarchical system, where the first two levels are the class and subclass, the second two are the family and subfamily, and the last one is the transport system. Superfamilies that contain multiple families are included as hyperlinks to the five tier TC hierarchy. TCDB includes proteins from all types of living organisms and is the only transporter classification system that is both universal and recognized by the International Union of Biochemistry and Molecular Biology. It has been expanded by manual curation, contains extensive text descriptions providing structural, functional, mechanistic and evolutionary information, is supported by unique software and is interconnected to many other relevant databases. TCDB is of increasing usefulness to the international scientific community and can serve as a model for the expansion of database technologies. This manuscript describes an update of the database descriptions previously featured in NAR database issues.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | |
Collapse
|
33
|
Yee DC, Shlykov MA, Västermark A, Reddy VS, Arora S, Sun EI, Saier MH. The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 2013; 280:5780-800. [PMID: 23981446 DOI: 10.1111/febs.12499] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 01/27/2023]
Abstract
Visual rhodopsins are recognized members of the large and diverse family of G protein-coupled receptors (GPCRs), but their evolutionary origin and relationships to other proteins are not known. In a previous paper [Shlykov MA, Zheng WH, Chen JS & Saier MH Jr (2012) Biochim Biophys Acta 1818, 703-717], we characterized the 4-toluene sulfonate uptake permease (TSUP) family of transmembrane proteins, and showed that these 7-transmembrane segment (TMS) or 8-TMS proteins arose by intragenic duplication of a gene encoding a 4-TMS protein, sometimes followed by loss of a terminal TMS. In this study, we show that the TSUP, GPCR and microbial rhodopsin families are related to each other and to six other currently recognized transport protein families. We designate this superfamily the transporter/opsin/G protein-coupled receptor (TOG) superfamily. Despite their 8-TMS origins, the members of most constituent families exhibit 7-TMS topologies that are well conserved, and these arose by loss of either the N-terminal TMS (more frequent) or the C-terminal TMS (less frequent), depending on the family. Phylogenetic analyses revealed familial relationships within the superfamily and protein relationships within each of the nine families. The results of the statistical analyses leading to the conclusion of homology were confirmed using hidden Markov models, Pfam and 3D superimpositions. Proteins functioning by dissimilar mechanisms (channels, primary active transporters, secondary active transporters, group translocators and receptors) are interspersed on a phylogenetic tree of the TOG superfamily, suggesting that changes in the transport and energy-coupling mechanisms occurred multiple times during evolution of this superfamily.
Collapse
Affiliation(s)
- Daniel C Yee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Reddy BL, Saier MH. Topological and phylogenetic analyses of bacterial holin families and superfamilies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2654-71. [PMID: 23856191 DOI: 10.1016/j.bbamem.2013.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/28/2013] [Accepted: 07/02/2013] [Indexed: 01/21/2023]
Abstract
Holins are small "hole-forming" transmembrane proteins that mediate bacterial cell lysis during programmed cell death or following phage infection. We have identified fifty two families of established or putative holins and have included representative members of these proteins in the Transporter Classification Database (TCDB; www.tcdb.org). We have identified the organismal sources of members of these families, calculated their average protein sizes, estimated their topologies and determined their relative family sizes. Topological analyses suggest that these proteins can have 1, 2, 3 or 4 transmembrane α-helical segments (TMSs), and members of a single family are frequently, but not always, of a single topology. In one case, proteins of a family proved to have either 2 or 4 TMSs, and the latter arose by intragenic duplication of a primordial 2 TMS protein-encoding gene resembling the former. Using established statistical approaches, some of these families have been shown to be related by common descent. Seven superfamilies, including 21 of the 52 recognized families were identified. Conserved motif and Pfam analyses confirmed most superfamily assignments. These results serve to expand upon the scope of channel-forming bacterial holins.
Collapse
Affiliation(s)
- Bhaskara L Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA; Department of Mathematics and Natural Sciences, College of Letters and Sciences, National University, Ontario, CA 91764, USA
| | | |
Collapse
|
35
|
Gromiha MM, Ou YY. Bioinformatics approaches for functional annotation of membrane proteins. Brief Bioinform 2013; 15:155-68. [DOI: 10.1093/bib/bbt015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect Immun 2013; 81:896-904. [PMID: 23297388 DOI: 10.1128/iai.01212-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae, the causative agent of atypical pneumonia, is one of the bacteria with the smallest genomes that are nonetheless capable of independent life. Because of their longstanding close association with their human host, the bacteria have undergone reductive evolution and lost most biosynthetic abilities. Therefore, they depend on nutrients provided by the host that have to be taken up by the cell. Indeed, M. pneumoniae has a large set of hitherto unexplored transporters and lipoproteins that may be implicated in transport processes. Together, these proteins account for about 17% of the protein complement of M. pneumoniae. In the natural habitat of M. pneumoniae, human lung epithelial surfaces, phospholipids are the major available carbon source. Thus, the uptake and utilization of glycerol and glycerophosphodiesters that are generated by the activity of lipases are important for the nutrition of M. pneumoniae in its common habitat. In this study, we have investigated the roles of several potential transport proteins and lipoproteins in the utilization of glycerol and glycerophosphodiesters. On the basis of experiments with the corresponding mutant strains, our results demonstrate that the newly identified GlpU transport protein (MPN421) is responsible for the uptake of the glycerophosphodiester glycerophosphocholine, which is then intracellularly cleaved to glycerol-3-phosphate and choline. In addition, the proteins MPN076 and MPN077 are accessory factors in glycerophosphocholine uptake. Moreover, the lipoproteins MPN133 and MPN284 are essential for the uptake of glycerol. Our data suggest that they may act as binding proteins for glycerol and deliver glycerol molecules to the glycerol facilitator GlpF.
Collapse
|
37
|
Zhang L, Thomas JC, Didelot X, Robinson DA. Molecular signatures identify a candidate target of balancing selection in an arcD-like gene of Staphylococcus epidermidis. J Mol Evol 2012; 75:43-54. [PMID: 23053194 DOI: 10.1007/s00239-012-9520-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 09/24/2012] [Indexed: 01/19/2023]
Abstract
A comparative population genetics study revealed high levels of nucleotide polymorphism and intermediate-frequency alleles in an arcC gene of Staphylococcus epidermidis, but not in a homologous gene of the more aggressive human pathogen, Staphylococcus aureus. Further investigation showed that the arcC genes used in the multilocus sequence typing schemes of these two species were paralogs. Phylogenetic analyses of arcC-containing loci, including the arginine catabolic mobile element, from both species, suggested that these loci had an eventful history involving gene duplications, rearrangements, deletions, and horizontal transfers. The peak signatures in the polymorphic S. epidermidis locus were traced to an arcD-like gene adjacent to arcC; these signatures consisted of unusually elevated Tajima's D and π/K ratios, which were robust to assumptions about recombination and species divergence time and among the most elevated in the S. epidermidis genome. Amino acid polymorphisms, including one that differed in polarity and hydropathy, were located in the peak signatures and defined two allelic lineages. Recombination events were detected between these allelic lineages and potential donors and recipients of S. epidermidis were identified in each case. By comparison, the orthologous gene of S. aureus showed no unusual signatures. The ArcD-like protein belonged to the unknown ion transporter 3 family and appeared to be unrelated to ArcD from the arginine deiminase pathway. These studies report the first comparative population genetics results for staphylococci and the first statistical evidence for a candidate target of balancing selection in S. epidermidis.
Collapse
Affiliation(s)
- Liangfen Zhang
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|