1
|
Bamoria P, Ratan SK, Panda SS, Neogi S, Mandal S, Kumar C, Saxena G. Interstitial Cells of Cajal and Ganglion Cell Distribution in Sigmoid Stomal Limbs and Distal Rectum after Stoma Formation in Male Anorectal Malformation Patients Undergoing Staged Repair. J Indian Assoc Pediatr Surg 2025; 30:22-27. [PMID: 39968250 PMCID: PMC11832098 DOI: 10.4103/jiaps.jiaps_155_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction This study was undertaken to assess the distribution of ganglion cells (GCs) and interstitial cells of Cajal (ICCs) across different points of distal rectal pouch in anorectal malformation (ARM) patients over the three stages of repair. We hypothesize that along with the surgical factors, there could be intrinsic factors as well which can be the cause of dysmotility in these patients after surgical repair. Methodology Full-thickness colonic biopsy specimens were taken from the proximal stoma, distal stoma, and distal rectal pouch of 21 boys aged 0-8 months undergoing 3 staged repair of ARM at our tertiary care center between August 2022 and December 2023. There was an interstage interval of approximately 12-14 weeks. All underwent high-divided sigmoid colostomy in stage 1. Biopsy specimens for GC and ICC number were routinely processed, and immunohistochemistry was done for CD117. The data was assessed and compared with respect to location and stage of surgery. Results Both GC and ICC showed a gradual decrease in mean number over three stages for both proximal and distal ends of colostomy. For proximal stoma, the distribution of either cell type did not differ across the stages, but for distal stoma, the number of cells was significantly lower in the second stage (following colostomy, before posterior sagittal anorectoplasty). However, no difference was noted between the second and third stages. This indicates that factors during/just after colostomy itself must be responsible for decrease in ICC/GC. Conclusion Lesser number of GC and/or ICC in the distal pouch from stage 2 onward may point toward its association with projected hypomotility in ARM patients. Apart from innate distribution, we also infer that this could be consequent to vascular insult which may occur at the time of divided colostomy. Loop stoma may be a better alternative as vascularity is uninterrupted in loop colostomy.
Collapse
Affiliation(s)
- Priyanka Bamoria
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Simmi K. Ratan
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | | | - Sujoy Neogi
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Shramana Mandal
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| | - Chiranjiv Kumar
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| | - Gaurav Saxena
- Department of Pediatric Surgery, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
2
|
Gau J, Patel P, Pan J, Kao T. Analyzing fecal loading and retention patterns by abdominal X-rays of hospitalized older adults: A retrospective study. Aging Med (Milton) 2022; 5:38-44. [PMID: 35309161 PMCID: PMC8917260 DOI: 10.1002/agm2.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022] Open
Abstract
Background Aging may affect ascending colon (AC) differently from descending colon (DC) and increase the risk of fecal loading (FL) in AC. Methods Patients aged ≥65 years admitted to a community hospital were analyzed by abdominal x-ray for fecal loads and stool retention patterns. FL was scored between 0 and 5 (severe) on each segment of colon with a possible total score 20. Mean segment scores ≥3.5 were designated as high scores for both AC and DC. Logistic regression was performed between groups to identify factors associated with FL patterns. Results Groups identified were high FL in both AC and DC (N = 21, 17.2%), FL predominantly in AC (N = 38, 31.1%), low FL in both AC and DC (N=60, 49.2%), and FL low in AC and high in DC (N = 3, 2.5%). Among 71 patients with total FL scores ≥13 (indicating significant stool retention), 37 (52.1%) had the FL predominantly in AC. Patients prescribed antibiotic(s) prior to hospitalization had lower odds of FL predominantly in AC (adjusted odds ratio = 0.18, 95% confidence interval = 0.04-0.84) compared to the group of low FL in both AC and DC with the adjustment of confounders. Conclusion This study found that 52.1% of those with significant stool retention on x-ray had the FL predominantly in AC. Antibiotic use was associated with lower odds of having FL predominately in AC. This study provided insights of FL distribution in colon and AC could be an area for significant stool burden in older adults with stool retention.
Collapse
Affiliation(s)
- Jen‐Tzer Gau
- Department of Primary Care/geriatric medicineOhio University Heritage College of Osteopathic Medicine (OU‐HCOM)AthensOhioUSA
- Ohio University Heritage College of Osteopathic Medicine (OU‐HCOM)AthensOhioUSA
| | - Parth Patel
- Ohio University Heritage College of Osteopathic Medicine (OU‐HCOM)AthensOhioUSA
- Present address:
SUNY Upstate Medical University HospitalSyracuseNew YorkUSA
| | - Jen‐Jung Pan
- Gastroenterology, Hepatology and Liver TransplantationBanner‐University Medical Center PhoenixPhoenixArizonaUSA
| | - Tzu‐Cheg Kao
- Uniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
3
|
Radenkovic G, Petrovic V, Zivanovic D, Stoiljkovic N, Sokolovic D, Zivkovic N, Radenkovic D, Velickov A, Jovanovic J. Interstitial Cells of Cajal and Neural Structures in the Human Fetal Appendix. J Neurogastroenterol Motil 2021; 27:127-133. [PMID: 33380557 PMCID: PMC7786081 DOI: 10.5056/jnm20100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background/Aims The interstitial cells of Cajal (ICC) are located within and around the digestive tract's muscle layers. They function as intestinal muscle pacemakers and aid in the modification of enteric neurotransmission. The appendix's unique position requires an appropriate contraction pattern of its muscular wall to adequately evacuate its contents. We investigated the development and distribution of nervous structures and ICC in the human fetal appendix. Methods Specimens were exposed to anti-c-kit (CD117) antibodies to investigate ICC differentiation. Enteric plexuses were examined using anti-neuron-specific enolase, and the differentiation of smooth muscle cells was studied with anti-desmin antibodies. Results During weeks 13-14, numerous myenteric plexus ganglia form an almost uninterrupted sequence throughout the body and apex of the appendix. Fewer ganglia were present at the submucosal border of the circular muscle layer and within this layer. A large number of ganglia appear within the circular and longitudinal muscle layers in a later fetal period. The first ICC subtypes noted were of the myenteric plexus and the submucous plexus. In the later fetal period, the number of intramuscular ICC markedly rises, and this subtype becomes predominant. Conclusions The ICC and nervous structure distribution in the human fetal appendix are significantly different from all other parts of the small and large intestine. The organization of ICC and the enteric nervous system provides the basis for the specific contraction pattern of the muscular wall of the appendix.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | - Vladimir Petrovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | | - Nenad Stoiljkovic
- Department of Physiology, Faculty of Medicine, University of Nis, Serbia
| | - Dusan Sokolovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Faculty of Medicine, University of Nis, Serbia
| | - Dina Radenkovic
- Guy's and St Thomas' Hospital and King's College London, London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Serbia
| | | |
Collapse
|
4
|
Veličkov A, Radenković G, Petrović V, Veličkov A. DIABETIC ALTERATIONS OF INTERSTITIAL CELLS OF CAJAL. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Radenkovic G, Radenkovic D, Velickov A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J Cell Mol Med 2017; 22:778-785. [PMID: 29193736 PMCID: PMC5783873 DOI: 10.1111/jcmm.13375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/08/2017] [Indexed: 01/02/2023] Open
Abstract
Neural crest cells (NCC) can migrate into different parts of the body and express their strong inductive potential. In addition, they are multipotent and are able to differentiate into various cell types with diverse functions. In the primitive gut, NCC induce differentiation of muscular structures and interstitial cells of Cajal (ICC), and they themselves differentiate into the elements of the enteric nervous system (ENS), neurons and glial cells. ICC develop by way of mesenchymal cell differentiation in the outer parts of the primitive gut wall around the myenteric plexus (MP) ganglia, with the exception of colon, where they appear simultaneously also at the submucosal border of the circular muscular layer around the submucosal plexus (SMP) ganglia. However, in a complex process of reciprocal induction of NCC and local mesenchyma, c‐kit positive precursors are the first to differentiate, representing probably the common precursors of ICC and smooth muscle cells (SMC). C‐kit positive precursors could represent a key impact factor regarding the final differentiation of NCC into neurons and glial cells with neurons subsequently excreting stem cell factor (SCF) and other signalling molecules. Under the impact of SCF, a portion of c‐kit positive precursors lying immediately around the ganglia differentiate into ICC, while the rest differentiate into SMC.
Collapse
Affiliation(s)
- Goran Radenkovic
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Dina Radenkovic
- UCL Medical School, University College London (UCL), London, UK
| | - Aleksandra Velickov
- Department of Histology and Embryology, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
6
|
Lee SM, Kim N, Jo HJ, Park JH, Nam RH, Lee HS, Kim HJ, Lee MY, Kim YS, Lee DH. Comparison of Changes in the Interstitial Cells of Cajal and Neuronal Nitric Oxide Synthase-positive Neuronal Cells With Aging Between the Ascending and Descending Colon of F344 Rats. J Neurogastroenterol Motil 2017; 23:592-605. [PMID: 28774159 PMCID: PMC5628993 DOI: 10.5056/jnm17061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Neuronal degeneration and changes in interstitial cells of Cajal (ICCs) are important mechanisms of age-related constipation. This study aims to compare the distribution of ICCs and neuronal nitric oxide synthase (nNOS) with regard to age-related changes between the ascending colon (AC) and descending colon (DC) in 6-, 31-, and 74-week old and 2-year old male Fischer-344 rats. Methods The amount of fecal pellet and the bead expulsion times were measured. Fat proportion in the muscle layer of the colon was analyzed by hematoxylin and eosin staining. Proto-oncogene receptor tyrosine kinase (KIT) and neuronal nitric oxide synthase (nNOS) expression were analyzed with Western blotting and immunohistochemistry. Isovolumetric contractile measurements and electrical field stimulation were used to assess smooth muscle contractility. Results Colon transit and bead expulsion slowed with senescence. Fat in the muscle layer accumulated with age in the AC, but not in the DC. The proportion of KIT-immunoreactive ICCs in the submucosal and myenteric plexus was higher in the DC than in the AC, and it declined with age, especially in the AC. In contrast, the proportion of NOS-immunoreactive neurons in the myenteric plexus was higher in the AC than in the DC, and both decreased in older rats. Nitric oxide levels declined with age in the DC. Muscle strip experiments showed that the inhibitory response mediated by nitric oxide in the circular direction of the DC was reduced in 2-year old rats. Conclusion The AC and DC differ in their distribution of ICCs and nNOS, and age-related loss of nitrergic neurons more severely affects the DC than the AC.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jin Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Jinju, Gyeongsangnam-do, Korea
| | - Moon Young Lee
- Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Jeollabuk-do, Korea
| | - Yong Sung Kim
- Division of Gastroenterology and Wonkwang Digestive Disease Research Institute, Department of Internal Medicine, Wonkwang University Sanbon Hospital, Gunpo, Gyeonggi-do, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
8
|
Ilie CA, Rusu MC, Didilescu AC, Motoc AGM, Mogoantă L. Embryonic hematopoietic stem cells and interstitial Cajal cells in the hindgut of late stage human embryos: evidence and hypotheses. Ann Anat 2015; 200:24-9. [PMID: 25723517 DOI: 10.1016/j.aanat.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/31/2014] [Accepted: 01/01/2015] [Indexed: 12/13/2022]
Abstract
There have been few studies on human embryos describing a specific pattern of hindgut colonization by hematopoietic stem cells (HSCs) and interstitial Cajal cells (ICCs). We aimed to study CD34, CD45 and CD117/c-kit expression in late stage human embryos, to attain observational data that could be related to studies on the aorta-gonad-mesonephros (AGM)-derived HSCs, and data on hindgut ICCs. Antibodies were also applied to identify alpha-smooth muscle actin and neurofilaments. Six human embryos of 48-56 days were used. In the 48 day embryo, the hindgut was sporadically populated by c-kit+ ICCs, but, in all other embryos, a layer of myenteric ICCs had been established. Intraneural c-kit+ cells were found in pelvic nerves and vagal trunks, suggesting that the theory of Ramon y Cajal assuming that ICCs may be primitive neurons may not be so invalid. Also in the 48 day embryo, c-kit+/CD45+ perivascular cells were found along the pelvic neurovascular axes, suggesting that not only liver, but also other organs could be seeded with HSCs from the AGM region. CD45+ cells with dendritic morphologies were found in all hindgut layers, including the epithelium. This last evidence is suggestive of an AGM contribution to the tissue resident macrophages and could be related to processes of sprouting angiogenesis which, in turn, have been found to be guided by filopodia of endothelial tip cells. Further studies on human embryonic and fetal material should be performed to attempt to clarify whether the hindgut colonization with HSCs is a transitory or definitive process.
Collapse
Affiliation(s)
- C A Ilie
- Department of Anatomy, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; International Society of Regenerative Medicine and Surgery (ISRMS), Bucharest, Romania.
| | - A C Didilescu
- Division of Embryology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A G M Motoc
- Department of Anatomy, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - L Mogoantă
- Research Center for Microscopic Morphology and Immunology, Department of Morphology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
9
|
Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014; 94:859-907. [PMID: 24987007 DOI: 10.1152/physrev.00037.2013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
10
|
Abramovic M, Radenkovic G, Velickov A. Appearance of interstitial cells of Cajal in the human midgut. Cell Tissue Res 2014; 356:9-14. [PMID: 24414177 DOI: 10.1007/s00441-013-1772-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Several subtypes of the interstitial cells of Cajal (ICC) form networks that play a role in gastrointestinal motor control. ICC express c-kit and depend on signaling via Kit receptors for development and phenotype maintenance. At 7-8 weeks of development, c-kit-immunoreactive (c-kit-IR) cells are present in the human oesophagus, stomach and proximal duodenum wall. In the remaining small and large bowel, c-kit-IR cells appear later. The object of the present study is to determine the timing of the appearance of c-kit-IR ICC in the parts of the digestive tube originating from the midgut (distal duodenum, jejunum, ileum and proximal colon). Specimens were obtained from eight human embryos and 11 fetuses at 7-12 weeks of gestational age. The specimens were exposed to anti-c-kit antibodies to investigate ICC differentiation. The differentiation of enteric neurons and smooth muscle cells was immunohistochemically examined by using anti-PGP9,5 and anti-desmin antibodies, respectively. In the distal duodenum, jejunum and ileum, c-kit-IR cells emerged at week 9 at the level of the myenteric plexus in the form of a thin row of cells encircling the inception of the ganglia. These cells were multipolar or spindle-shaped with two long processes and corresponded to the ICC of the myenteric plexus. In the proximal colon, c-kit-IR cells emerged at week 9-10 in the form of two parallel belts of cells extending at the submucosal plexus and the myenteric plexus levels. We conclude that ICC develop following two different patterns in the human midgut.
Collapse
Affiliation(s)
- Mirjana Abramovic
- Institute of Chemistry, Faculty of Medicine, University of Nis, 81 Dr Zorana Djindjica Blvd, 18000, Nis, Serbia
| | | | | |
Collapse
|