1
|
Bacevich BM, Smith RDJ, Reihl AM, Mazzocca AD, Hutchinson ID. Advances with Platelet-Rich Plasma for Bone Healing. Biologics 2024; 18:29-59. [PMID: 38299120 PMCID: PMC10827634 DOI: 10.2147/btt.s290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Despite significant advances in the understanding and delivery of osteosynthesis, fracture non-union remains a challenging clinical problem in orthopaedic surgery. To bridge the gap, basic science characterization of fracture healing provides a platform to identify and target biological strategies to enhance fracture healing. Of immense interest, Platelet-rich plasma (PRP) is a point of care orthobiologic that has been extensively studied in bone and soft tissue healing given its relative ease of translation from the benchtop to the clinic. The aim of this narrative review is to describe and relate pre-clinical in-vitro and in-vivo findings to clinical observations investigating the efficacy of PRP to enhance bone healing for primary fracture management and non-union treatment. A particular emphasis is placed on the heterogeneity of PRP preparation techniques, composition, activation strategies, and delivery. In the context of existing data, the routine use of PRP to enhance primary fracture healing and non-union management cannot be supported. However, it is acknowledged that extensive heterogeneity of PRP treatments in clinical studies adds obscurity; ultimately, refinement (and consensus) of PRP treatments for specific clinical indications, including repetition studies are warranted.
Collapse
Affiliation(s)
- Blake M Bacevich
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Richard David James Smith
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Alec M Reihl
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| | - Augustus D Mazzocca
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
- Medical Director, Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Brigham, Boston, MA, USA
| | - Ian D Hutchinson
- Division of Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Massachusetts General Brigham, Boston, MA, USA
| |
Collapse
|
2
|
Godbout C, Ryan G, Ramnaraign DJ, Hegner C, Desjardins S, Gagnon S, Bates BD, Whatley I, Schemitsch EH, Nauth A. Optimal delivery of endothelial progenitor cells in a rat model of critical-size bone defects. J Orthop Res 2024; 42:193-201. [PMID: 37416978 DOI: 10.1002/jor.25658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/21/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Nonunion and segmental bone defects are complex issues in orthopedic trauma. The use of endothelial progenitor cells (EPCs), as part of a cell-based therapy for bone healing is a promising approach. In preclinical studies, culture medium (CM) is commonly used to deliver EPCs to the defect site, which has the potential for immunogenicity in humans. The goal of this study was to find an effective and clinically translatable delivery medium for EPCs. Accordingly, this study compared EPCs delivered in CM, phosphate-buffered saline (PBS), platelet-poor plasma (PPP), and platelet-rich plasma (PRP) in a rat model of femoral critical-size defects. Fischer 344 rats (n = 35) were divided into six groups: EPC+CM, EPC+PBS, EPC+PPP, EPC+PRP, PPP alone, and PRP alone. A 5 mm mid-diaphyseal defect was created in the right femur and stabilized with a miniplate. The defect was filled with a gelatin scaffold impregnated with the corresponding treatment. Radiographic, microcomputed tomography and biomechanical analyses were performed. Overall, regardless of the delivery medium, groups that received EPCs had higher radiographic scores and union rates, higher bone volume, and superior biomechanical properties compared to groups treated with PPP or PRP alone. There were no significant differences in any outcomes between EPC subgroups or between PPP and PRP alone. These results suggest that EPCs are effective in treating segmental defects in a rat model of critical-size defects regardless of the delivery medium used. Consequently, PBS could be the optimal medium for delivering EPCs, given its low cost, ease of preparation, accessibility, noninvasiveness, and nonimmunogenic properties.
Collapse
Affiliation(s)
- Charles Godbout
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Gareth Ryan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - David J Ramnaraign
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Christian Hegner
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Desjardins
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Stéphane Gagnon
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Brent D Bates
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Ian Whatley
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Emil H Schemitsch
- Department of Surgery, Division of Orthopaedic Surgery, University of Western Ontario, London, Ontario, Canada
| | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Division of Orthopaedic Surgery, St. Michael's Hospital-Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Zhao J, Liang G, Han Y, Yang W, Xu N, Luo M, Pan J, Liu J, Zeng LF. Combination of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) in the treatment of knee osteoarthritis: a meta-analysis of randomised controlled trials. BMJ Open 2022; 12:e061008. [PMID: 36385022 PMCID: PMC9670925 DOI: 10.1136/bmjopen-2022-061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The purpose of this meta-analysis was to investigate the efficacy and safety of mesenchymal stem cells (MSCs) combined with platelet-rich plasma (PRP) in the treatment of knee osteoarthritis (KOA). DESIGN Systematic review and meta-analysis. PARTICIPANTS Patients with KOA. INTERVENTIONS Use of MSCs+PRP. PRIMARY AND SECONDARY OUTCOMES Visual Analogue Scale (VAS) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, Knee Injury and Osteoarthritis Outcome Score (KOOS) and adverse reactions. DATA SOURCES PubMed, Cochrane Library, Embase and China National Knowledge Infrastructure were searched from inception to 15 July 2021. MEASURES The OR or weighted mean difference (WMD) of relevant outcome indicators was calculated. Study quality was evaluated using the risk-of-bias assessment tool version 2.0. Heterogeneity among studies was evaluated by calculating I2. If I2<50%, a fixed-effect model was applied; conversely, if I2 ≥50%, a random-effect model was applied. RESULTS Six controlled clinical trials with 493 cases were included. The meta-analysis results showed that in terms of the VAS score 3 months after treatment, MSCs+PRP had no significant effect on the reduction of the VAS score in patients with KOA compared with the control (p=0.09), hyaluronic acid (HA) (p=0.15) or PRP alone (p=0.07). MSCs+PRP was more effective in reducing the VAS score at 6 and 12 months after treatment than the control (WMD=-0.55, 95% CI -0.87 to -0.22, p<0.001), HA (WMD=-1.20, 95% CI -2.28 to -0.13, p=0.03) or PRP alone (WMD=-0.54, 95% CI -0.89 to -0.18, p=0.003). Regarding the decrease in the total WOMAC score at 3 and 6 months after treatment, MSCs+PRP showed better clinical efficacy than the control or HA alone (p<0.01). Compared with the control, MSCs+PRP exhibited no significant difference in reducing the total WOMAC score 12 months after treatment (p=0.39). There was no significant difference between MSCs+PRP and the control in terms of improvement of the KOOS 12 months after treatment (p=0.16). Compared with MSCs alone, MSCs+PRP exhibited no significant difference in the incidence of adverse reactions (p=0.22) 12 months after treatment. CONCLUSIONS Treatment with MSCs+PRP showed good clinical efficacy in improving pain and joint function in patients with KOA. Compared with MSCs alone, there was no significant difference in the incidence of adverse reactions with MSCs+PRP. PROSPERO REGISTRATION NUMBER CRD 42021275830.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People's Republic of China
| | - Guihong Liang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People's Republic of China
| | - Yanhong Han
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
| | - Weiyi Yang
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
| | - Nanjun Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Minghui Luo
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
| | - Jianke Pan
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
| | - Jun Liu
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People's Republic of China
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, Guangdong, China
- The Fifth School of Clinical Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ling-Feng Zeng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- The Department of Sports Medicine of the Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People's Republic of China
- The Research Team on Bone and Joint Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Nadine S, Fernandes IJ, Correia CR, Mano JF. Close-to-native bone repair via tissue-engineered endochondral ossification approaches. iScience 2022; 25:105370. [PMID: 36339269 PMCID: PMC9626746 DOI: 10.1016/j.isci.2022.105370] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to solve the clinical challenges related to bone grafting, several tissue engineering (TE) strategies have been proposed to repair critical-sized defects. Generally, the classical TE approaches are designed to promote bone repair via intramembranous ossification. Although promising, strategies that direct the osteogenic differentiation of mesenchymal stem/stromal cells are usually characterized by a lack of functional vascular supply, often resulting in necrotic cores. A less explored alternative is engineering bone constructs through a cartilage-mediated approach, resembling the embryological process of endochondral ossification. The remodeling of an intermediary hypertrophic cartilaginous template triggers vascular invasion and bone tissue deposition. Thus, employing this knowledge can be a promising direction for the next generation of bone TE constructs. This review highlights the most recent biomimetic strategies for applying endochondral ossification in bone TE while discussing the plethora of cell types, culture conditions, and biomaterials essential to promote a successful bone regeneration process.
Collapse
|
5
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Paris GC, Azevedo AA, Ferreira AL, Azevedo YMA, Rainho MA, Oliveira GP, Silva KR, Cortez EAC, Stumbo AC, Carvalho SN, de Carvalho L, Thole AA. Therapeutic potential of mesenchymal stem cells in multiple organs affected by COVID-19. Life Sci 2021; 278:119510. [PMID: 33865879 PMCID: PMC8049196 DOI: 10.1016/j.lfs.2021.119510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023]
Abstract
Currently, the world has been devastated by an unprecedented pandemic in this century. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), has been causing disorders, dysfunction and morphophysiological alterations in multiple organs as the disease evolves. There is a great scientific community effort to obtain a therapy capable of reaching the multiple affected organs in order to contribute for tissue repair and regeneration. In this regard, mesenchymal stem cells (MSCs) have emerged as potential candidates concerning the promotion of beneficial actions at different stages of COVID-19. MSCs are promising due to the observed therapeutic effects in respiratory preclinical models, as well as in cardiac, vascular, renal and nervous system models. Their immunomodulatory properties and secretion of paracrine mediators, such as cytokines, chemokines, growth factors and extracellular vesicles allow for long range tissue modulation and, particularly, blood-brain barrier crossing. This review focuses on SARS-CoV-2 impact to lungs, kidneys, heart, vasculature and central nervous system while discussing promising MSC's therapeutic mechanisms in each tissue. In addition, MSC's therapeutic effects in high-risk groups for COVID-19, such as obese, diabetic and hypertensive patients are also explored.
Collapse
Affiliation(s)
- Gustavo C Paris
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adriana L Ferreira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yanca M A Azevedo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mateus A Rainho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Genilza P Oliveira
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karina R Silva
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Erika A C Cortez
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana C Stumbo
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simone N Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lais de Carvalho
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra A Thole
- LPCT - Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
7
|
Zhang Q, Zhang J, Chen L, Fan Y, Long J, Liu S. Osteogenic and Angiogenic Potency of VEGF165-Transfected Canine Bone Marrow Mesenchymal Cells Combined with Coral Hydroxyapatite in Vitro. Tissue Eng Regen Med 2021; 18:875-886. [PMID: 34302695 DOI: 10.1007/s13770-021-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To explore the osteogenic and angiogenic potential of human vascular endothelial growth factor 165 (hVEGF165) gene-transfected canine bone marrow mesenchymal stem cells (BMSCs) combined with coral hydroxyapatite (CHA) scaffold. METHODS We constructed a lentiviral vector and transfected canine BMSCs with the best multiplicity of infection. Osteogenesis was induced in the transfected groups (GFP-BMSCs group and hVEGF-BMSCs group) and non-transfected group (BMSCs group), followed by the evaluation of alkaline phosphatase (ALP) activity and alizarin red S staining. Cells from the three groups were co-cultured with CHA granules, respectively to obtain the tissue-engineered bone. MTT assay and fluorescence microscopy were employed to assess cell proliferation and adhesion. The expression of osteogenic and angiogenic related genes and proteins were evaluated at 7, 14, 21, and 28 days post osteoinduction in cell culture alone and cell co-culture with CHA, respectively using RT-PCR and ELISA. RESULTS The hVEGF165 gene was transfected into BMSCs successfully. Higher ALP activity and more calcified nodules were found in the hVEGF-BMSCs group than in the control groups (p < 0.001). Cells attached and proliferated in CHA particles. Both cells cultured alone and cells co-culture with CHA expressed more osteogenic and angiogenic related genes and proteins in the hVEGF-BMSCs group compared to the GFP-BMSCs and BMSCs groups (p < 0.05). CONCLUSION High expression of hVEGF165 in BMSCs potentially promote the osteogenic potential of BMSCs, and synergically drive the expression of other osteogenic and angiogenic factors. hVEGF-BMSCs co-cultured with CHA expressed more osteogenic and angiogenic related factors, creating a favorable microenvironment for osteogenesis and angiogenesis. Also, the findings have allowed for the construction of a CHA-hVEGF-BMSCs tissue-engineered bone.
Collapse
Affiliation(s)
- Quanyin Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China
| | - Jie Zhang
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China
| | - Lin Chen
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China
| | - Yunjian Fan
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China
| | - Jiazhen Long
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China
| | - Shuguang Liu
- Stomatological Hospital, Southern Medical University, S366 Jiangnan Boulevard, Guangzhou, 510280, China.
| |
Collapse
|
8
|
Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int J Mol Sci 2021; 22:ijms22126203. [PMID: 34201385 PMCID: PMC8228022 DOI: 10.3390/ijms22126203] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are known as water-swollen networks formed from naturally derived or synthetic polymers. They have a high potential for medical applications and play a crucial role in tissue repair and remodeling. MSC-derived exosomes are considered to be new entities for cell-free treatment in different human diseases. Recent progress in cell-free bone tissue engineering via combining exosomes obtained from human mesenchymal stem cells (MSCs) with hydrogel scaffolds has resulted in improvement of the methodologies in bone tissue engineering. Our research has been actively focused on application of biotechnological methods for improving osteogenesis and bone healing. The following text presents a concise review of the methodologies of fabrication and preparation of hydrogels that includes the exosome loading properties of hydrogels for bone regenerative applications.
Collapse
Affiliation(s)
- Elham Pishavar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Mahshid Naserifar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Maryam Hashemi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Correspondence: (S.R.); (J.B.)
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Correspondence: (S.R.); (J.B.)
| |
Collapse
|
9
|
Qu H, Sun S. Efficacy of mesenchymal stromal cells for the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2021; 16:11. [PMID: 33407686 PMCID: PMC7789676 DOI: 10.1186/s13018-020-02128-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are used as an emerging new option for the treatment of knee osteoarthritis (OA). However, their efficacy remains controversial across studies with different doses of MSCs and cell processing methods. We conducted this meta-analysis to assess the efficacy of MSCs in the treatment of knee OA. METHODS Randomized controlled trials (RCTs) published in PubMed, Embase, Web of Science, SinoMed (Chinese BioMedical Literature Service System, China), and CNKI (National Knowledge Infrastructure, China) databases were systematically reviewed. The pain level and function improvements were evaluated using visual analog scale (VAS), McMaster Universities Osteoarthritis Index (WOMAC), and International Knee Documentation Committee (IKDC). The pooled estimate was calculated with weighted mean difference (WMD) with 95% confidence intervals (95%CIs). RESULTS Nine RCTs involving 476 patients were included in this meta-analysis. The pooled estimate showed that the treatment of MSCs significantly reduced VAS, WOMAC pain, WOMAC stiffness, and WOMAC function scores at a long-term follow-up (12 or 24 months). However, for the IKDC and WOMAC total scores, MSCs also showed significant improvement in these outcomes, although this was not statistically significant when compared to the control. CONCLUSION Based on the current studies, our results suggested that MSCs were a promising option for the treatment of patients with knee OA. However, considering the potential limitations, more well-performed, large-scale RCTs are needed to verify our findings.
Collapse
Affiliation(s)
- Huazheng Qu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Joint Surgery, the Third Hospital of Jinan, Jinan, 250132, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
10
|
Abstract
This chapter provides an overview of the growth factors active in bone regeneration and healing. Both normal and impaired bone healing are discussed, with a focus on the spatiotemporal activity of the various growth factors known to be involved in the healing response. The review highlights the activities of most important growth factors impacting bone regeneration, with a particular emphasis on those being pursued for clinical translation or which have already been marketed as components of bone regenerative materials. Current approaches the use of bone grafts in clinical settings of bone repair (including bone grafts) are summarized, and carrier systems (scaffolds) for bone tissue engineering via localized growth factor delivery are reviewed. The chapter concludes with a consideration of how bone repair might be improved in the future.
Collapse
|
11
|
Liebig BE, Kisiday JD, Bahney CS, Ehrhart NP, Goodrich LR. The platelet-rich plasma and mesenchymal stem cell milieu: A review of therapeutic effects on bone healing. J Orthop Res 2020; 38:2539-2550. [PMID: 32589800 PMCID: PMC8354210 DOI: 10.1002/jor.24786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 02/04/2023]
Abstract
Platelet-rich plasma is autologous plasma that contains concentrated platelets compared to whole blood. It is relatively inexpensive to produce, can be easily isolated from whole blood, and can be administered while the patient is in the operating room. Further, because platelet-rich plasma is an autologous therapy, there is minimal risk for adverse reactions to the patient. Platelet-rich plasma has been used to promote bone regeneration due to its abundance of concentrated growth factors that are essential to wound healing. In this review, we summarize the methods for producing platelet-rich plasma and the history of its use in bone regeneration. We also summarize the growth factor profiles derived from platelet-rich plasma, with emphasis on those factors that play a direct role in promoting bone repair within the local fracture environment. In addition, we discuss the potential advantages of combining platelet-rich plasma with mesenchymal stem cells, a multipotent cell type often obtained from bone marrow or fat, to improve craniofacial and long bone regeneration. We detail what is currently known about how platelet-rich plasma influences mesenchymal stem cells in vitro, and then highlight the clinical outcomes of administering platelet-rich plasma and mesenchymal stem cells as a combination therapy to promote bone regeneration in vivo.
Collapse
Affiliation(s)
- Bethany E. Liebig
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - John D. Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Chelsea S. Bahney
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado
| | - Nicole P. Ehrhart
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Laurie R. Goodrich
- Department of Clinical Sciences, Orthopaedic Research Center, Translational Medicine Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
12
|
Fang J, Wang X, Jiang W, Zhu Y, Hu Y, Zhao Y, Song X, Zhao J, Zhang W, Peng J, Wang Y. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:571-585. [PMID: 32380937 DOI: 10.1089/ten.teb.2019.0292] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platelet-rich plasma (PRP) is an autologous platelet concentrate prepared from the whole blood that is activated to release growth factors (GFs) and cytokines and has been shown to have the potential capacity to reduce inflammation and improve tissue anabolism for regeneration. The use of PRP provides a potential for repair due to its abundant GFs and cytokines, which are key in initiating and modulating regenerative microenvironments for soft and hard tissues. Among outpatients, orthopedic injuries are common and include bone defects, ligament injury, enthesopathy, musculoskeletal injury, peripheral nerve injury, chronic nonhealing wounds, articular cartilage lesions, and osteoarthritis, which are caused by trauma, sport-related or other types of trauma, or tumor resection. Surgical intervention is often required to treat these injuries. However, for numerous reasons regarding limited regeneration capacity and insufficient blood supply of the defect region, these treatments commonly result in unsatisfactory outcomes, and follow-up treatment is challenging. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries. Impact statement In recent years, platelet-rich plasma (PRP) has become widely used in the treatment of diseases associated with orthopedic injuries, and the results of numerous studies are encouraging. Due to diseases associated with orthopedic injuries being common in clinics, as a conservative treatment, more and more doctors and patients are more likely to accept PRP. Importantly, PRP is a biological product of autologous blood that is obtained by a centrifugation procedure to enrich platelets from whole blood, resulting in few complications, such as negligible immunogenicity from an autologous source, and it is also simple to produce through an efficient and cost-effective method in a sterile environment. However, the applicability, advantages, and disadvantages of PRP therapy have not yet been fully elucidated. The aim of the present review is to explore future research in the field of PRP therapy in the treatment of diseases associated with orthopedic injuries, as well as to provide references for clinics.
Collapse
Affiliation(s)
- Jie Fang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Graduate School of The North China University of Science and Technology, Hebei, P.R. China.,Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Xin Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wen Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yongqiang Hu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Xueli Song
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Jinjuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China
| | - Wenlong Zhang
- Department of Hand and Foot Surgery, Tianjin Union Medical Center, Tianjin, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries, PLA, Beijing, P.R. China.,Co-innovation Center of Neuroregeneration Nantong University, Nantong, Jiangsu Province, P.R. China
| |
Collapse
|
13
|
Development of nano-tricalcium phosphate/polycaprolactone/platelet-rich plasma biocomposite for bone defect regeneration. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Menger MM, Laschke MW, Orth M, Pohlemann T, Menger MD, Histing T. Vascularization Strategies in the Prevention of Nonunion Formation. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:107-132. [PMID: 32635857 DOI: 10.1089/ten.teb.2020.0111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delayed healing and nonunion formation are major challenges in orthopedic surgery, which require the development of novel treatment strategies. Vascularization is considered one of the major prerequisites for successful bone healing, providing an adequate nutrient supply and allowing the infiltration of progenitor cells to the fracture site. Hence, during the last decade, a considerable number of studies have focused on the evaluation of vascularization strategies to prevent or to treat nonunion formation. These involve (1) biophysical applications, (2) systemic pharmacological interventions, and (3) tissue engineering, including sophisticated scaffold materials, local growth factor delivery systems, cell-based techniques, and surgical vascularization approaches. Accumulating evidence indicates that in nonunions, these strategies are indeed capable of improving the process of bone healing. The major challenge for the future will now be the translation of these strategies into clinical practice to make them accessible for the majority of patients. If this succeeds, these vascularization strategies may markedly reduce the incidence of nonunion formation. Impact statement Delayed healing and nonunion formation are a major clinical problem in orthopedic surgery. This review provides an overview of vascularization strategies for the prevention and treatment of nonunions. The successful translation of these strategies in clinical practice is of major importance to achieve adequate bone healing.
Collapse
Affiliation(s)
- Maximilian M Menger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Germany
| | - Tina Histing
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Ghaffarinovin Z, Soltaninia O, Mortazavi Y, Esmaeilzadeh A, Nadri S. Repair of rat cranial bone defect by using amniotic fluid-derived mesenchymal stem cells in polycaprolactone fibrous scaffolds and platelet-rich plasma. ACTA ACUST UNITED AC 2020; 11:209-217. [PMID: 34336609 PMCID: PMC8314035 DOI: 10.34172/bi.2021.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/20/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Introduction: Tissue regenerative medicine strategies, as a promising alternative has become of major interest to the reconstruction of critical size bone defects. This study evaluated the effects of the simultaneous application of polycaprolactone (PCL), amniotic fluid mesenchymal stem cells (AF-MSCs) and platelet-rich plasma (PRP) on the repair of rat cranial bone defects. Methods: The AF-MSCs were isolated at the end of the second week of pregnancy in rats. PRP obtained from rat blood and the random PCL fibrous scaffolds were prepared using the electrospinning method. Circular full thickness (5 mm) bone defects were developed on both sides of the parietal bones (animal number=24) and the scaffolds containing AF-MSCs and PRP were implanted in the right lesions. Thereafter, after eight weeks the histological and immunohistochemistry studies were performed to evaluate the bone formation and collagen type I expression. Results: The spindle-shaped mesenchymal stem cells were isolated and the electron microscope images indicated the preparation of a random PCL scaffold. Immunohistochemical findings showed that collagen type I was expressed by AF-MSCs cultured on the scaffold. The results of hematoxylin and eosin (H&E) staining indicated the formation of blood vessels in the presence of PRP. Additionally, immunofluorescence findings suggested that PRP had a positive effect on collagen type I expression. Conclusion: The simultaneous application of fibrous scaffold + AF-MSCs + PRP has positive effects on bone regeneration. This study showed that PRP can affect the formation of new blood vessels in the scaffold transplanted in the bone defect.
Collapse
Affiliation(s)
- Zeinab Ghaffarinovin
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Soltaninia
- Department of Oral & Maxillofacial Surgery, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yousef Mortazavi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Jin S, Yang C, Huang J, Liu L, Zhang Y, Li S, Zhang L, Sun Q, Yang P. Conditioned medium derived from FGF-2-modified GMSCs enhances migration and angiogenesis of human umbilical vein endothelial cells. Stem Cell Res Ther 2020; 11:68. [PMID: 32070425 PMCID: PMC7029497 DOI: 10.1186/s13287-020-1584-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Angiogenesis plays an important role in tissue repair and regeneration, and conditioned medium (CM) derived from mesenchymal stem cells (MSC-CM) possesses pro-angiogenesis. Nevertheless, the profile and concentration of growth factors in MSC-CM remain to be optimized. Fibroblast growth factor-2 (FGF-2) has been proven to be an effective angiogenic factor. Thus, the aim of this study was to verify whether FGF-2 gene overexpression optimized CM from human gingival mesenchymal stem cells (hGMSCs) and whether such optimized CM possessed more favorable pro-angiogenesis effect. METHODS First, FGF-2 gene-modified hGMSCs were constructed using lentiviral transfection technology (LV-FGF-2+-hGMSCs) and the concentration of angiogenesis-related factors in LV-FGF-2+-hGMSC-CM was determined by ELISA. Then, human umbilical vein endothelial cells (HUVECs) were co-cultured for 3 days with LV-FGF-2+-hGMSC-CM, and the expression level of placenta growth factor (PLGF), stem cell factor (SCF), vascular endothelial growth factor receptor 2 (VEGFR2) in HUVECs were determined by qRT-PCR, western blot, and cellular immunofluorescence techniques. The migration assay using transwell and in vitro tube formation experiments on matrigel matrix was conducted to determine the chemotaxis and angiogenesis enhanced by LV-FGF-2+-hGMSC-CM. Finally, NOD-SCID mice were injected with matrigel mixed LV-FGF-2+-hGMSC-CM, and the plug sections were analyzed by immunohistochemistry staining with anti-human CD31 antibody. RESULTS LV-FGF-2+-hGMSC-CM contained significantly more FGF-2, vascular endothelial growth factor A (VEGF-A), and transforming growth factor β (TGF-β) than hGMSC-CM. HUVECs pretreated with LV-FGF-2+-hGMSC-CM expressed significantly more PLGF, SCF, and VEGFR2 at gene and protein level than hGMSC-CM pretreated HUVECs. Compared with hGMSC-CM, LV-FGF-2+-hGMSC-CM presented significantly stronger chemotaxis to HUVECs and significantly strengthened HUVECs mediated in vitro tube formation ability. In vivo, LV-FGF-2+-hGMSC-CM also possessed stronger promoting angiogenesis ability than hGMSC-CM. CONCLUSIONS Overexpression of FGF-2 gene promotes hGMSCs paracrine of angiogenesis-related growth factors, thereby obtaining an optimized conditioned medium for angiogenesis promotion.
Collapse
Affiliation(s)
- Shanshan Jin
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chengzhe Yang
- Department of Stomatology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiahui Huang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Lianlian Liu
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Yu Zhang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shutong Li
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Liguo Zhang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Qinfeng Sun
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| |
Collapse
|
17
|
A Randomized Controlled Trial of the Treatment of Rotator Cuff Tears with Bone Marrow Concentrate and Platelet Products Compared to Exercise Therapy: A Midterm Analysis. Stem Cells Int 2020; 2020:5962354. [PMID: 32399045 PMCID: PMC7204132 DOI: 10.1155/2020/5962354] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Injectable regenerative therapies such as bone marrow concentrate (BMC) and platelet-rich plasma (PRP) may represent a safe alternative in the treatment of rotator cuff tears. This is a midterm review of a randomized, crossover trial comparing autologous BMC and platelet product injections versus exercise therapy in the treatment of partial and full-thickness supraspinatus tears. Patients enrolled into the study were between 18 and 65 years of age presenting to an outpatient orthopedic clinic with partial to full thickness, nonretracted supraspinatus tendon tears. Enrolled patients were randomized to either ultrasound-guided autologous BMC with PRP and platelet lysate (PL) percutaneous injection treatment or exercise therapy. Patients could cross over to BMC treatment after at least 3 months of exercise therapy. Patients completed the Disability of the Arm, Shoulder and Hand (DASH) scores as the primary outcome measure. Secondary outcomes included the numeric pain scale (NPS), a modified Single Assessment Numeric Evaluation (SANE), and a blinded MRI review. At this midterm review, results from 25 enrolled patients who have reached at least 12-month follow-up are presented. No serious adverse events were reported. Significant differences were seen in patient reported outcomes for the BMC treatment compared to exercise therapy at 3 and 6 months for pain, and for function and reported improvement (SANE) at 3 months (p < .05). Patients reported a mean 89% improvement at 24 months, with sustained functional gains and pain reduction. MRI review showed a size decrease of most tears post-BMC treatment. These findings suggest that ultrasound-guided BMC and platelet product injections are a safe and useful alternative to conservative exercise therapy of torn, nonretracted supraspinatus tendons. This trial is registered with NCT01788683.
Collapse
|
18
|
Wang C, Lu WW, Wang M. Multifunctional fibrous scaffolds for bone regeneration with enhanced vascularization. J Mater Chem B 2019; 8:636-647. [PMID: 31829384 DOI: 10.1039/c9tb01520e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to the structural similarity to the extracellular matrix of human tissue and the ultra-high surface area-to-volume ratio, three dimensional electrospun fibrous structures have been increasingly used as tissue engineering scaffolds. Given that successful bone regeneration requires both good osteogenesis and vascularization, producing scaffolds that have both osteogenic and angiogenic potential is highly desirable. In this investigation, tricomponent fibrous scaffolds simultaneously incorporated with recombinant human vein endothelial growth factor (rhVEGF), recombinant human bone morphogenetic protein-2 (rhBMP-2) and bioactive calcium phosphate (Ca-P) nanoparticles are produced through a novel multi-source multi-power electrospinning method, and sequential growth factor release with a quick rhVEGF release and a steady rhBMP-2 release is achieved. The enhanced human umbilical vein endothelial cell (HUVEC) migration and tube formation, and up-regulated human bone marrow derived mesenchymal stem cell (hBMSC) osteogenic differentiation and mineralization demonstrate that tricomponent scaffolds have balanced angiogenic-osteogenic properties in vitro. 8 weeks after the scaffold implantation into the cranial defects of mice, obvious new bone regeneration and newly formed capillaries are observed in tricomponent scaffolds, suggesting that the tricomponent scaffolds enhance osteogenesis in vivo with required vascularization, which shows the great potential of the tricomponent scaffolds in bone tissue regeneration.
Collapse
Affiliation(s)
- Chong Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China. and School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, China
| | - William Weijia Lu
- Department of Orthopedics and Traumatology, Li Ka-Shing Faculty of Medicine, The University of Hong Kong, Sasson Road, Hong Kong, Hong Kong SAR, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
19
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110521. [PMID: 32228899 DOI: 10.1016/j.msec.2019.110521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Worldwide research on electrospinning enabled it as a versatile technique for producing nanofibers with specified physio-chemical characteristics suitable for diverse biomedical applications. In the case of tissue engineering and regenerative medicine, the nanofiber scaffolds' characteristics are custom designed based on the cells and tissues specific needs. This fabrication technique is also innovated for the production of nanofibers with special micro-structure and secondary structure characteristics such as porous fibers, hollow structure, and core- sheath structure. This review attempts to critically and succinctly capture the vast number of developments reported in the literature over the past two decades. We then discuss their applications as scaffolds for induction of cells growth and differentiation or as architecture for being used as graft for tissue engineering. The special nanofibers designed for improving regeneration of several tissues including heart, bone, central nerve system, spinal cord, skin and ocular tissue are introduced. We also discuss the potential of the electrospinning in drug delivery applications, which is a critical factor for cell culture, tissue formation and wound healing applications.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
20
|
Bolte J, Vater C, Culla AC, Ahlfeld T, Nowotny J, Kasten P, Disch AC, Goodman SB, Gelinsky M, Stiehler M, Zwingenberger S. Two-step stem cell therapy improves bone regeneration compared to concentrated bone marrow therapy. J Orthop Res 2019; 37:1318-1328. [PMID: 30628121 DOI: 10.1002/jor.24215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.
Collapse
Affiliation(s)
- Julia Bolte
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Anna Carla Culla
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Jörg Nowotny
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - Alexander C Disch
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Maik Stiehler
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Dailiana ZH, Stefanou N, Khaldi L, Dimakopoulos G, Bowers JR, Fink C, Urbaniak JR. Vascular endothelial growth factor for the treatment of femoral head osteonecrosis: An experimental study in canines. World J Orthop 2018; 9:120-129. [PMID: 30254968 PMCID: PMC6153136 DOI: 10.5312/wjo.v9.i9.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the treatment of osteonecrosis of the femoral head (ONFH) with the use of vascular endothelial growth factor (VEGF). METHODS In 30 mature beagles (6 groups of 5 beagles) ONFH was induced cryosurgically and one of the following solutions was administered locally in the femoral head (FH) in each group: Single injection of 500 μg VEGF (t-VEGFμ group); single injection of 500 ng VEGF (t-VEGFn group); continuous delivery of 500 μg VEGF through osmotic micropump (t-VEGFpump-μ group); continuous delivery of 500 ng VEGF through osmotic micropump (t-VEGFpump-n group); single injection of 0.9% sodium chloride (t-NS group), while one group that served as control group did not receive any local solution (No-t group). FHs were retrieved 12 wk postoperatively, underwent decalcification and hematoxylin/eosin and toluidine blue staining. In two canines per group, one half of FH was processed without decalcification and stained with modified Masson Trichrome. Histological sections were observed by light microscopy and measured with a semi-automatized bone histomorphometry system and Bone Volume/Total Volume (BV/TV), Marrow Volume/Total Volume (MaV/TV), and Trabecular Thickness (TbTh) were assessed. Standard and robust tests (Welch, Brown Forsythe) of analysis of variance along with multiple comparisons, were carried out among the categories. RESULTS The untreated (No-t) group had signs of osteonecrosis, whereas the VEGF groups revealed reversal of the osteonecrosis. Statistical analysis of the decalcified specimens revealed a significantly better BV/TV ratio and a higher TbTh between the VEGF treatment groups (except the t-VEGFn group) and the No-t group or the control t-NS group. Single dose 500 μgVEGF group had significantly better BV/TV ratio and higher TbTh when compared to the No-t group (50.45 ± 6.18 vs 29.50 ± 12.27, P = 0.002 and 151.44 ± 19.07 vs 107.77 ± 35.15, P = 0.161 respectively) and the control t-NS group (50.45 ± 6.18 vs 30.9 ± 6.67, P = 0.004 and 151.44 ± 19.07 vs 107.14 ± 35.71, P = 0.151 respectively). Similar differences were found for the prolonged VEGF delivery/pump groups of 500 μg and 500 ng. Analysis of the totality of specimens (decalcified/non-decalcified) enhanced the aforementioned differences and additionally revealed significant differences in the comparison of the TbTh. CONCLUSION In an experimental model of ONFH in canines it was found that local treatment with VEGF leads to bone tissue remodeling and new bone formation.
Collapse
Affiliation(s)
- Zoe H Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessalia, Larissa 41500, Greece
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Nikolaos Stefanou
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessalia, Larissa 41500, Greece
| | - Lubna Khaldi
- Department of Pathology, “Saint Savvas” Anti-Cancer Hospital, Athens 11522, Greece
| | - Georgios Dimakopoulos
- Medical Statistics, Epirus Science and Technology Park Campus of the University of Ioannina, Ioannina 45500, Greece
| | - James R Bowers
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States
- Emerge Ortho, Independence Park, Durham, NC 27704, United States
| | - Cristian Fink
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States
- Gelenkpunkt, Sports and Joint Surgery, Innsbruck 6020, Austria
- Research Unit of Orthopedic Sports Medicine and Injury Prevention, Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT, Tirol 6060, Austria
| | - James R Urbaniak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
22
|
Zhang S, Li P, Yuan Z, Tan J. Effects of platelet-rich plasma on the activity of human menstrual blood-derived stromal cells in vitro. Stem Cell Res Ther 2018; 9:48. [PMID: 29482651 PMCID: PMC6389087 DOI: 10.1186/s13287-018-0795-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/04/2017] [Accepted: 02/01/2018] [Indexed: 01/15/2023] Open
Abstract
Background Human menstrual blood-derived stromal cells (MenSCs) are highly proliferative and show multiple differentiation capacity. The convenience and non-invasiveness make MenSC a novel cell source for regenerative medicine applications. Platelet-rich plasma (PRP) contains abundant growth factors which are beneficial to wound healing. However, the influence of PRP on MenSCs remains elusive. Here, we evaluated the role of PRP in MenSCs proliferation and assessed the effects of PRP on endometrial receptivity regulation in vitro. Methods MenSCs cultured with 10% activated PRP were compared with those cultured with 10% fetal bovine serum (FBS). Differences in cell proliferation, differentiation, and endometrial receptivity-related gene expression were evaluated. Results Notably, 10% activated PRP significantly promoted MenSCs proliferation and adipogenic/osteogenic differentiation while suppressing apoptosis. Expression of the mesenchymal stem cells (MSCs) marker CD105 and the perivascular markers SUSD2 and CD146 were elevated after PRP treatment. Moreover, short-term PRP stimulation activated the phosphorylation of Akt and signal transducer and activator of transcription 3 (STAT3) pathways, upregulated expression of FoxO1, LIF, and IL1-β, and downregulated IL-6. Conclusions In summary, PRP could promote MenSC proliferation, markedly accelerate cell stemness, and evaluate MenSC functions by enhancing the expression of angiogenesis and endometrial receptivity markers, suggesting its potential use as a promising supplement for MenSCs in endometrial regenerative medicine. Our results provide a theoretical basis for the clinical application of co-transplantation of PRP combined with MenSCs. Electronic supplementary material The online version of this article (10.1186/s13287-018-0795-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siwen Zhang
- Reproductive medicine Center, Obstetrics and Gynecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Pingping Li
- Reproductive medicine Center, Obstetrics and Gynecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital affiliated to China Medical University, No. 7, Economic Development Zone, Benxi, 117004, China
| | - Jichun Tan
- Reproductive medicine Center, Obstetrics and Gynecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110022, China.
| |
Collapse
|
23
|
Osteochondral Angiogenesis and Promoted Vascularization: New Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:315-330. [DOI: 10.1007/978-3-319-76735-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Lee J, Kim G. Calcium-Deficient Hydroxyapatite/Collagen/Platelet-Rich Plasma Scaffold with Controlled Release Function for Hard Tissue Regeneration. ACS Biomater Sci Eng 2017; 4:278-289. [DOI: 10.1021/acsbiomaterials.7b00640] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- JiUn Lee
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering,
College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Korea
| |
Collapse
|
25
|
Wang C, Wang M. Electrospun multicomponent and multifunctional nanofibrous bone tissue engineering scaffolds. J Mater Chem B 2017; 5:1388-1399. [DOI: 10.1039/c6tb02907h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tricomponent bone tissue engineering scaffold incorporating rhVEGF, rhBMP-2 and Ca-P was made through multi-source dual-power electrospinning.
Collapse
Affiliation(s)
- Chong Wang
- Department of Mechanical Engineering
- Faculty of Engineering
- The University of Hong Kong
| | - Min Wang
- Department of Mechanical Engineering
- Faculty of Engineering
- The University of Hong Kong
| |
Collapse
|
26
|
Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. INTERNATIONAL ORTHOPAEDICS 2016; 41:221-237. [PMID: 27888295 DOI: 10.1007/s00264-016-3342-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
PURPOSE The treatment of large bone defects represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have also been used to further improve bone healing. Among these, platelet-rich plasma (PRP) is the most exploited strategy. The aim of the present study was to systematically review the available literature to identify: 1) preclinical in-vivo results supporting the rational of PRP use for bone healing; 2) evidence from the clinical practice on the actual clinical benefit of PRP for the treatment of fractures and complications such as delayed unions and non-unions. METHODS A systematic review of the literature was performed on the application of PRP in bone healing, using the following inclusion criteria: pre-clinical and clinical reports of any level of evidence, written in English language, published in the last 20 years (1996-2016), on the use of PRP to stimulate long-bone defect treatment, with focus on fracture and delayed/non-unions healing. RESULTS The search in the Pubmed database identified 64 articles eligible for inclusion: 45 were preclinical in-vivo studies and 19 were clinical studies. Despite the fact that the overall pre-clinical results seem to support the benefit of PRP in 91.1 % of the studies, a more in depth analysis underlined a lower success rate, with a positive outcome of 84.4 % in terms of histological analysis, and even lower values considering radiological and biomechanical results (75.0 % and 72.7 % positive outcome respectively). This was also mirrored in the clinical literature, where the real benefit of PRP use to treat fractures and non-unions is still under debate. CONCLUSION Overall, the available literature presents major limitations in terms of low quality and extreme heterogeneity, which hamper the possibility to optimize PRP treatment and translate it into a real clinical benefit despite positive preclinical findings on its biological potential to favour bone healing.
Collapse
|
27
|
Wang X, Friis TE, Masci PP, Crawford RW, Liao W, Xiao Y. Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing. Sci Rep 2016; 6:35645. [PMID: 27767056 PMCID: PMC5073366 DOI: 10.1038/srep35645] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Thor E. Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Paul P. Masci
- Translational Research Institute, School of Medicine, The University of Queensland, Brisbane, 4102 Queensland, Australia
| | - Ross W. Crawford
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| | - Wenbo Liao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000 Guizhou, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059 Queensland, Australia
| |
Collapse
|
28
|
Ritz U, Götz H, Baranowski A, Heid F, Rommens PM, Hofmann A. Influence of different calcium phosphate ceramics on growth and differentiation of cells in osteoblast-endothelial co-cultures. J Biomed Mater Res B Appl Biomater 2016; 105:1950-1962. [PMID: 27292649 DOI: 10.1002/jbm.b.33728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Strategies for improvement of angiogenesis and vasculogenesis using different cells and materials are paramount aims in the field of bone tissue engineering. Thereby, the interaction between different cell types and scaffold materials is crucial for growth, differentiation, and long-term outcomes of tissue-engineered constructs. In this study, we evaluated the interaction of osteoblasts and endothelial cells in three-dimensional tissue-engineered constructs using beta tricalciumphosphate (β-TCP, [ß-Ca3 (PO4 )2 ]) and calcium-deficient hydroxyapatite (CDHA, [Ca9 (PO4 )5 (HPO4 )OH]) ceramics as scaffolds. We focused on initial cell organization, cell proliferation, and differential expression of osteoblastic and endothelial markers employing monocultures and co-cultures of endothelial cells of two different origins [human umbilical vein endothelial cells (HUVECs) and outgrowth endothelial cells (OECs)] with primary human osteoblasts (hOBs). Despite different chemical and physical characteristics of CDHA and β-TCP ceramics, similar patterns in cell growth, differentiation, and gene expression were detected in tissue-engineered constructs consisting of hOB, HUVEC, and HUVEC/hOB-co-cultures. Under dynamic cell culture conditions we found proliferation of these cells with stable endothelial and osteoblastic differentiation patterns. Both material types are highly biocompatible with these cells providing a promising perspective for the future research. In this study, both materials did not support growth and differentiation of OEC. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1950-1962, 2017.
Collapse
Affiliation(s)
- Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Heid
- Department of Anesthesiology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
29
|
Mussano F, Genova T, Munaron L, Petrillo S, Erovigni F, Carossa S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 2016; 27:467-71. [PMID: 26950533 DOI: 10.3109/09537104.2016.1143922] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During wound healing, biologically active molecules are released from platelets. The rationale of using platelet-rich plasma (PRP) relies on the concentration of bioactive molecules and subsequent delivery to healing sites. These bioactive molecules have been seldom simultaneously quantified within the same PRP preparation. In the present study, the flexible Bio-Plex system was employed to assess the concentration of a large range of cytokines, chemokines, and growth factors in 16 healthy volunteers so as to determine whether significant baseline differences may be found. Besides IL-1b, IL-1ra, IL-4, IL-6, IL-8, IL-12, IL-13, IL-17, INF-γ, TNF-α, MCP-1, MIP-1a, RANTES, bFGF, PDGF, and VEGF that were already quantified elsewhere, the authors reported also on the presence of IL-2, IL-5, IL-7, IL-9, IL-10, IL-15 G-CSF, GM-CSF, Eotaxin, CXCL10 chemokine (IP-10), and MIP 1b. Among the most interesting results, it is convenient to mention the high concentrations of the HIV-suppressive and inflammatory cytokine RANTES and a statistically significant difference between males and females in the content of PDGF-BB. These data are consistent with previous reports pointing out that gender, diet, and test system affect the results of platelet function in healthy subjects, but seem contradictory when compared to other quantification assays in serum and plasma. The inconsistencies affecting the experimental results found in literature, along with the variability found in the content of bioactive molecules, urge further research, hopefully in form of randomized controlled clinical trials, in order to find definitive evidence of the efficacy of PRP treatment in various pathologic and regenerative conditions.
Collapse
Affiliation(s)
- F Mussano
- a CIR Dental School, Department of Surgical Sciences , University of Turin , Turin , Italy
| | - T Genova
- a CIR Dental School, Department of Surgical Sciences , University of Turin , Turin , Italy.,b Department of Life Sciences and Systems Biology , University of Turin , Turin , Italy
| | - L Munaron
- b Department of Life Sciences and Systems Biology , University of Turin , Turin , Italy.,c Centre for Nanostructured Interfaces and Surfaces (NIS) , University of Turin , Turin , Italy
| | - S Petrillo
- d Molecular Biotechnology Center , University of Turin , Turin , Italy
| | - F Erovigni
- a CIR Dental School, Department of Surgical Sciences , University of Turin , Turin , Italy
| | - S Carossa
- a CIR Dental School, Department of Surgical Sciences , University of Turin , Turin , Italy
| |
Collapse
|
30
|
Almubarak S, Nethercott H, Freeberg M, Beaudon C, Jha A, Jackson W, Marcucio R, Miclau T, Healy K, Bahney C. Tissue engineering strategies for promoting vascularized bone regeneration. Bone 2016; 83:197-209. [PMID: 26608518 PMCID: PMC4911893 DOI: 10.1016/j.bone.2015.11.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023]
Abstract
This review focuses on current tissue engineering strategies for promoting vascularized bone regeneration. We review the role of angiogenic growth factors in promoting vascularized bone regeneration and discuss the different therapeutic strategies for controlled/sustained growth factor delivery. Next, we address the therapeutic uses of stem cells in vascularized bone regeneration. Specifically, this review addresses the concept of co-culture using osteogenic and vasculogenic stem cells, and how adipose derived stem cells compare to bone marrow derived mesenchymal stem cells in the promotion of angiogenesis. We conclude this review with a discussion of a novel approach to bone regeneration through a cartilage intermediate, and discuss why it has the potential to be more effective than traditional bone grafting methods.
Collapse
Affiliation(s)
- Sarah Almubarak
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Hubert Nethercott
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Marie Freeberg
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Caroline Beaudon
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; UCSF-UCB Masters of Translational Medicine Program, Berkeley and San Francisco, CA, United States
| | - Amit Jha
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Wesley Jackson
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Healy
- Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States; Departments of Bioengineering, and Material Science and Engineering, University of California, Berkeley (UCB), Berkeley, CA, United States.
| |
Collapse
|
31
|
Gianakos A, Ni A, Zambrana L, Kennedy JG, Lane JM. Bone Marrow Aspirate Concentrate in Animal Long Bone Healing: An Analysis of Basic Science Evidence. J Orthop Trauma 2016; 30:1-9. [PMID: 26371620 DOI: 10.1097/bot.0000000000000453] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Long bone fractures that fail to heal or show a delay in healing can lead to increased morbidity. Bone marrow aspirate concentrate (BMAC) containing bone mesenchymal stem cells (BMSCs) has been suggested as an autologous biologic adjunct to aid long bone healing. The purpose of this study was to systematically review the basic science in vivo evidence for the use of BMAC with BMSCs in the treatment of segmental defects in animal long bones. DATA SOURCES The PubMed/MEDLINE and EMBASE databases were screened in July 14-25, 2014. STUDY SELECTION The following search criteria were used: [("bmac" OR "bone marrow aspirate concentrate" OR "bmc" OR "bone marrow concentrate" OR "mesenchymal stem cells") AND ("bone" OR "osteogenesis" OR "fracture healing" OR "nonunion" OR "delayed union")]. DATA EXTRACTION Three authors extracted data and analyzed for trends. Quality of evidence score was given to each study. DATA SYNTHESIS Results are presented as Hedge G standardized effect sizes with 95% confidence intervals. RESULTS The search yielded 35 articles for inclusion. Of studies reporting statistics, 100% showed significant increase in bone formation in the BMAC group on radiograph. Ninety percent reported significant improvement in earlier bone healing on histologic/histomorphometric assessment. Eighty-one percent reported a significant increase in bone area on micro-computed tomography. Seventy-eight percent showed a higher torsional stiffness for the BMAC-treated defects. CONCLUSION In the in vivo studies evaluated, BMAC confer beneficial effects on the healing of segmental defects in animal long bone models when compared with a control. Proof-of-concept has been established for BMAC in the treatment of animal segmental bone defects.
Collapse
|
32
|
Oryan A, Alidadi S, Moshiri A. Platelet-rich plasma for bone healing and regeneration. Expert Opin Biol Ther 2015; 16:213-32. [DOI: 10.1517/14712598.2016.1118458] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
34
|
Wu X, Wang Q, Kang N, Wu J, Gu C, Bi J, Lv T, Xie F, Hu J, Liu X, Cao Y, Xiao R. The effects of different vascular carrier patterns on the angiogenesis and osteogenesis of BMSC-TCP-based tissue-engineered bone in beagle dogs. J Tissue Eng Regen Med 2015; 11:542-552. [PMID: 26251084 DOI: 10.1002/term.2076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaowei Wu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Qian Wang
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Ning Kang
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jingguo Wu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Congmin Gu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jianhai Bi
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Tao Lv
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Fangnan Xie
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Jiewei Hu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Xia Liu
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Yilin Cao
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| | - Ran Xiao
- Research Centre of Plastic Surgery Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing People's Republic of China
| |
Collapse
|
35
|
Han Q, Yang P, Wu Y, Meng S, Sui L, Zhang L, Yu L, Tang Y, Jiang H, Xuan D, Kaplan DL, Kim SH, Tu Q, Chen J. Epigenetically Modified Bone Marrow Stromal Cells in Silk Scaffolds Promote Craniofacial Bone Repair and Wound Healing. Tissue Eng Part A 2015; 21:2156-65. [PMID: 25923143 DOI: 10.1089/ten.tea.2014.0484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic regulation of gene expression is a central mechanism that governs cell stemness, determination, commitment, and differentiation. It has been recently found that PHF8, a major H4K20/H3K9 demethylase, plays a critical role in craniofacial and bone development. In this study, we hypothesize that PHF8 promotes osteoblastogenesis by epigenetically regulating the expression of a nuclear matrix protein, special AT-rich sequence-binding protein 2 (SATB2) that plays pivotal roles in skeletal patterning and osteoblast differentiation. Our results showed that expression levels of PHF8 and SATB2 in preosteoblasts and bone marrow stromal cells (BMSCs) increased simultaneously during osteogenic induction. Overexpressing PHF8 in these cells upregulated the expression of SATB2, Runx2, osterix, and bone matrix proteins. Conversely, knockdown of PHF8 reduced the expression of these genes. Furthermore, ChIP assays confirmed that PHF8 specifically bound to the transcription start site (TSS) of the SATB2 promoter, and the expression of H3K9me1 at the TSS region of SATB2 decreased in PHF8 overexpressed group. Implantation of the BMSCs overexpressing PHF8 with silk protein scaffolds promoted bone regeneration in critical-sized defects in mouse calvaria. Taken together, our results demonstrated that PHF8 epigenetically modulates SATB2 activity, triggering BMSCs osteogenic differentiation and facilitating bone formation and regeneration in biodegradable silk scaffolds.
Collapse
Affiliation(s)
- Qianqian Han
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,2 Shandong Provincial Key Lab of Oral Biomedicine , Jinan, China .,3 Guangdong Provincial Stomatological Hospital , Guangzhou, China
| | - Pishan Yang
- 2 Shandong Provincial Key Lab of Oral Biomedicine , Jinan, China .,4 Department of Periodontology, School of Stomatology, Shandong University , Jinan, China
| | - Yuwei Wu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Shu Meng
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Lei Sui
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Lan Zhang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Liming Yu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Yin Tang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Hua Jiang
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Dongying Xuan
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,3 Guangdong Provincial Stomatological Hospital , Guangzhou, China
| | - David L Kaplan
- 5 Department of Biomedical Engineering, Tufts University , Medford, Massachusetts
| | - Sung Hoon Kim
- 6 Cancer Preventive Material Development Research Center (CPMDRC) and Institute, College of Oriental Medicine, Kyung Hee University , Seoul, Korea
| | - Qisheng Tu
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts
| | - Jake Chen
- 1 Division of Oral Biology, Tufts University School of Dental Medicine , Boston, Massachusetts.,7 Department of Anatomy and Cell Biology, Tufts University School of Medicine , Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts
| |
Collapse
|
36
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
37
|
Peric M, Dumic-Cule I, Grcevic D, Matijasic M, Verbanac D, Paul R, Grgurevic L, Trkulja V, Bagi CM, Vukicevic S. The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone 2015; 70:73-86. [PMID: 25029375 DOI: 10.1016/j.bone.2014.07.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/30/2014] [Accepted: 07/05/2014] [Indexed: 12/31/2022]
Abstract
Bone has a high potential for endogenous self-repair. However, due to population aging, human diseases with impaired bone regeneration are on the rise. Current strategies to facilitate bone healing include various biomolecules, cellular therapies, biomaterials and different combinations of these. Animal models for testing novel regenerative therapies remain the gold standard in pre-clinical phases of drug discovery and development. Despite improvements in animal experimentation, excessive poorly designed animal studies with inappropriate endpoints and inaccurate conclusions are being conducted. In this review, we discuss animal models, procedures, methods and technologies used in bone repair studies with the aim to assist investigators in planning and performing scientifically sound experiments that respect the wellbeing of animals. In the process of designing an animal study for bone repair investigators should consider: skeletal characteristics of the selected animal species; a suitable animal model that mimics the intended clinical indication; an appropriate assessment plan with validated methods, markers, timing, endpoints and scoring systems; relevant dosing and statistically pre-justified sample sizes and evaluation methods; synchronization of the study with regulatory requirements and additional evaluations specific to cell-based approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Mihaela Peric
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia.
| | - Ivo Dumic-Cule
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Danka Grcevic
- University of Zagreb School of Medicine, Department of Physiology and Immunology, Salata 3, Zagreb, Croatia
| | - Mario Matijasic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Donatella Verbanac
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Department for Intercellular Communication, Salata 2, Zagreb, Croatia
| | - Ruth Paul
- Paul Regulatory Services Ltd, Fisher Hill Way, Cardiff CF15 8DR, UK
| | - Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia
| | - Vladimir Trkulja
- University of Zagreb School of Medicine, Department of Pharmacology, Salata 11, Zagreb, Croatia
| | - Cedo M Bagi
- Pfizer Inc., Global Research and Development, Global Science and Technology, 100 Eastern Point Road, Groton, CT 06340, USA
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Salata 11, Zagreb, Croatia.
| |
Collapse
|
38
|
Yuan Q, Sun L, Li JJ, An CH. Elevated VEGF levels contribute to the pathogenesis of osteoarthritis. BMC Musculoskelet Disord 2014; 15:437. [PMID: 25515407 PMCID: PMC4391471 DOI: 10.1186/1471-2474-15-437] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/11/2014] [Indexed: 12/23/2022] Open
Abstract
Background The aim of our meta-analysis is to understand the relationship between the pathogenesis of osteoarthritis and the expression levels of vascular endothelial growth factor (VEGF) in multiple disease tissues in osteoarthritis patients. Methods The following electronic databases were searched, without language restrictions, to retrieve published studies relevant to VEGF and osteoarthritis: MEDLINE (1966 ~ 2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013) and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analysis of the extracted data was performed using the STATA statistical software. Standardized mean difference (SMD) with its corresponding 95% confidence interval (95% CI) was calculated. Results A total of 11 case–control studies, containing 302 osteoarthritis patients and 195 healthy controls, met our selection criteria for this meta-analysis. Our analyses of the data available from multiple disease tissues demonstrate that VEGF expression levels in osteoarthritis patients are significantly higher than healthy controls (SMD = 1.18, 95% CI: 4.91 ~ 9.11, P < 0.001). A subgroup analysis based on ethnicity revealed that both Asian and Caucasian osteoarthritis patients had higher levels of VEGF expression compared to their respective healthy counterparts (Asians: SMD = 5.49, 95% CI: 3.44 ~ 7.54, P < 0.001; Caucasians: SMD = 15.17, 95% CI: 5.21 ~ 25.13, P = 0.003; respectively). We also performed other subgroup analyses based on country, language and sample source, and the results showed that, in all these subgroups, osteoarthritis patients had higher levels of VEGF expression than healthy controls (all P > 0.05). Conclusion Our meta-analysis provides evidence that higher VEGF expression levels strongly correlate with the pathogenesis of osteoarthritis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-437) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Li Sun
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P.R. China.
| | - Jian-Jun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| | - Chun-Hou An
- Department of Orthopedics, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, P.R. China.
| |
Collapse
|
39
|
Rath SN, Brandl A, Hiller D, Hoppe A, Gbureck U, Horch RE, Boccaccini AR, Kneser U. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One 2014; 9:e113319. [PMID: 25470000 PMCID: PMC4254617 DOI: 10.1371/journal.pone.0113319] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023] Open
Abstract
Bioactive glass (BG) scaffolds are being investigated for bone tissue engineering applications because of their osteoconductive and angiogenic nature. However, to increase the in vivo performance of the scaffold, including enhancing the angiogenetic growth into the scaffolds, some researchers use different modifications of the scaffold including addition of inorganic ionic components to the basic BG composition. In this study, we investigated the in vitro biocompatibility and bioactivity of Cu2+-doped BG derived scaffolds in either BMSC (bone-marrow derived mesenchymal stem cells)-only culture or co-culture of BMSC and human dermal microvascular endothelial cells (HDMEC). In BMSC-only culture, cells were seeded either directly on the scaffolds (3D or direct culture) or were exposed to ionic dissolution products of the BG scaffolds, kept in permeable cell culture inserts (2D or indirect culture). Though we did not observe any direct osteoinduction of BMSCs by alkaline phosphatase (ALP) assay or by PCR, there was increased vascular endothelial growth factor (VEGF) expression, observed by PCR and ELISA assays. Additionally, the scaffolds showed no toxicity to BMSCs and there were healthy live cells found throughout the scaffold. To analyze further the reasons behind the increased VEGF expression and to exploit the benefits of the finding, we used the indirect method with HDMECs in culture plastic and Cu2+-doped BG scaffolds with or without BMSCs in cell culture inserts. There was clear observation of increased endothelial markers by both FACS analysis and acetylated LDL (acLDL) uptake assay. Only in presence of Cu2+-doped BG scaffolds with BMSCs, a high VEGF secretion was demonstrated by ELISA; and typical tubular structures were observed in culture plastics. We conclude that Cu2+-doped BG scaffolds release Cu2+, which in turn act on BMSCs to secrete VEGF. This result is of significance for the application of BG scaffolds in bone tissue engineering approaches.
Collapse
Affiliation(s)
- Subha N. Rath
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram, Telangana, India
| | - Andreas Brandl
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Hiller
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Hoppe
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg, Erlangen, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, Universtiy of Würzburg, Würzburg, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, Germany
- Department of Hand, Plastic and Reconstructive Surgery - Burn Center, University of Heidelberg, Ludwigshafen, Germany
| |
Collapse
|
40
|
Liu X, Wang P, Chen W, Weir MD, Bao C, Xu HHK. Human embryonic stem cells and macroporous calcium phosphate construct for bone regeneration in cranial defects in rats. Acta Biomater 2014; 10:4484-93. [PMID: 24972090 DOI: 10.1016/j.actbio.2014.06.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/09/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023]
Abstract
Human embryonic stem cells (hESCs) are an exciting cell source as they offer an unlimited supply of cells that can differentiate into all cell types for regenerative medicine applications. To date, there has been no report on hESCs with calcium phosphate cement (CPC) scaffolds for bone regeneration in vivo. The objectives of this study were to: (i) investigate hESCs for bone regeneration in vivo in critical-sized cranial defects in rats; and (ii) determine the effects of cell seeding and platelets in macroporous CPC on new bone and blood vessel formation. hESCs were cultured to yield mesenchymal stem cells (MSCs), which underwent osteogenic differentiation. Four groups were tested in rats: (i) CPC control without cells; (ii) CPC with hESC-derived MSCs (CPC+hESC-MSC); (iii) CPC with hESC-MSCs and 30% human platelet concentrate (hPC) (CPC+hESC-MSC+30% hPC); and (iv) CPC+hESC-MSC+50% hPC. In vitro, MSCs were derived from embryoid bodies of hESCs. Cells on CPC were differentiated into the osteogenic lineage, with highly elevated alkaline phosphatase and osteocalcin expressions, as well as mineralization. At 12weeks in vivo, the groups with hESC-MSCs and hPC had three times as much new bone as, and twice the blood vessel density of, the CPC control. The new bone in the defects contained osteocytes and blood vessels, and the new bone front was lined with osteoblasts. The group with 30% hPC and hESC-MSCs had a blood vessel density that was 49% greater than the hESC-MSC group without hPC, likely due to the various growth factors in the platelets enhancing both new bone and blood vessel formation. In conclusion, hESCs are promising for bone tissue engineering, and hPC can enhance new bone and blood vessel formation. Macroporous CPC with hESC-MSCs and hPC may be useful for bone regeneration in craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Xian Liu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ping Wang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenchuan Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Hakimi M, Grassmann JP, Betsch M, Schneppendahl J, Gehrmann S, Hakimi AR, Kröpil P, Sager M, Herten M, Wild M, Windolf J, Jungbluth P. The composite of bone marrow concentrate and PRP as an alternative to autologous bone grafting. PLoS One 2014; 9:e100143. [PMID: 24950251 PMCID: PMC4064995 DOI: 10.1371/journal.pone.0100143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
One possible alternative to the application of autologous bone grafts represents the use of autologous bone marrow concentrate (BMC). The purpose of our study was to evaluate the potency of autologous platelet-rich plasma (PRP) in combination with BMC. In 32 mini-pigs a metaphyseal critical-size defect was surgically created at the proximal tibia. The animals were allocated to four treatment groups of eight animals each (1. BMC+CPG group, 2. BMC+CPG+PRP group, 3. autograft group, 4. CPG group). In the BMC+CPG group the defect was filled with autologous BMC in combination with calcium phosphate granules (CPG), whereas in the BMC+CPG+PRP group the defect was filled with the composite of autologous BMC, CPG and autologous PRP. In the autograft group the defect was filled with autologous cancellous graft, whereas in the CPG group the defect was filled with CPG solely. After 6 weeks radiological and histomorphometrical analysis showed significantly more new bone formation in the BMC+CPG+PRP group compared to the BMC+CPG group and the CPG group. There were no significant differences between the BMC+CPG+PRP group and the autograft group. In the PRP platelets were enriched significantly about 4.7-fold compared to native blood. In BMC the count of mononuclear cells increased significantly (3.5-fold) compared to the bone marrow aspirate. This study demonstrates that the composite of BMC+CPG+PRP leads to a significantly higher bone regeneration of critical-size defects at the proximal tibia in mini-pigs than the use of BMC+CPG without PRP. Furthermore, within the limits of the present study the composite BMC+CPG+PRP represents a comparable alternative to autologous bone grafting.
Collapse
Affiliation(s)
- Mohssen Hakimi
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan-Peter Grassmann
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Marcel Betsch
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Johannes Schneppendahl
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sebastian Gehrmann
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ahmad-Reza Hakimi
- Department of Oral Surgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Patric Kröpil
- Department of Diagnostic and Interventional Radiology, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Sager
- Animal Research Institute, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Monika Herten
- Department of Orthopaedics, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Michael Wild
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Joachim Windolf
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| | - Pascal Jungbluth
- Department of Trauma and Handsurgery, Heinrich Heine University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
42
|
Abstract
Angiogenesis is a vital component of bone healing. The formation of the new blood vessels at the fracture site restores the hypoxia and nutrient deprivation found at the early stages after fracture whilst at a later stage facilitates osteogenesis by the activity of the osteoprogenitor cells. Emerging evidence suggests that there are certain molecules and gene therapies that could promote new blood vessel formation and as a consequence enhance the local bone healing response. This article summarizes the current in vivo evidence on therapeutic approaches aiming at the augmentation of the angiogenic signalling during bone repair.
Collapse
|