1
|
Laudicella R, Mantarro C, Catalfamo B, Alongi P, Gaeta M, Minutoli F, Baldari S, Bisdas S. PET Imaging in Gliomas. RADIOLOGY‐NUCLEAR MEDICINE DIAGNOSTIC IMAGING 2023:194-218. [DOI: 10.1002/9781119603627.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
3
|
Minchev G, Wurzer A, Ptacek W, Kronreif G, Micko A, Dorfer C, Wolfsberger S. Development of a miniaturized robotic guidance device for stereotactic neurosurgery. J Neurosurg 2022; 137:479-488. [PMID: 34920429 DOI: 10.3171/2021.9.jns21794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/07/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Consistently high accuracy and a straightforward use of stereotactic guidance systems are crucial for precise stereotactic targeting and a short procedural duration. Although robotic guidance systems are widely used, currently available systems do not fully meet the requirements for a stereotactic guidance system that combines the advantages of frameless surgery and robotic technology. The authors developed and optimized a small-scale yet highly accurate guidance system that can be seamlessly integrated into an existing operating room (OR) setup due to its design. The aim of this clinical study is to outline the development of this miniature robotic guidance system and present the authors' clinical experience. METHODS After extensive preclinical testing of the robotic stereotactic guidance system, adaptations were implemented for robot fixation, software usability, navigation integration, and end-effector application. Development of the robotic system was then advanced in a clinical series of 150 patients between 2013 and 2019, including 111 needle biopsies, 13 catheter placements, and 26 stereoelectroencephalography (SEEG) electrode placements. During the clinical trial, constant modifications were implemented to meet the setup requirements, technical specifications, and workflow for each indication. For each application, specific setup, workflow, and median procedural accuracy were evaluated. RESULTS Application of the miniature robotic system was feasible in 149 of 150 cases. The setup in each procedure was successfully implemented without adding significant OR time. The workflow was seamlessly integrated into the preexisting procedure. In the course of the study, procedural accuracy was improved. For the biopsy procedure, the real target error (RTE) was reduced from a mean of 1.8 ± 1.03 mm to 1.6 ± 0.82 mm at entry (p = 0.05), and from 1.7 ± 1.12 mm to 1.6 ± 0.72 mm at target (p = 0.04). For the SEEG procedures, the RTE was reduced from a mean of 1.43 ± 0.78 mm in the first half of the procedures to 1.12 ± 0.52 mm (p = 0.002) at entry in the second half, and from 1.82 ± 1.13 mm to 1.57 ± 0.98 mm (p = 0.069) at target, respectively. No healing complications or infections were observed in any case. CONCLUSIONS The miniature robotic guidance device was able to prove its versatility and seamless integration into preexisting workflow by successful application in 149 stereotactic procedures. According to these data, the robot could significantly improve accuracy without adding time expenditure.
Collapse
Affiliation(s)
- Georgi Minchev
- 1Department of Neurosurgery, Medical University Vienna; and
| | - Ayguel Wurzer
- 1Department of Neurosurgery, Medical University Vienna; and
| | - Wolfgang Ptacek
- 2Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | - Gernot Kronreif
- 2Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
| | | | | | | |
Collapse
|
4
|
Hemodynamic Imaging in Cerebral Diffuse Glioma-Part A: Concept, Differential Diagnosis and Tumor Grading. Cancers (Basel) 2022; 14:cancers14061432. [PMID: 35326580 PMCID: PMC8946242 DOI: 10.3390/cancers14061432] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse gliomas are the most common primary malignant intracranial neoplasms. Aside from the challenges pertaining to their treatment-glioblastomas, in particular, have a dismal prognosis and are currently incurable-their pre-operative assessment using standard neuroimaging has several drawbacks, including broad differentials diagnosis, imprecise characterization of tumor subtype and definition of its infiltration in the surrounding brain parenchyma for accurate resection planning. As the pathophysiological alterations of tumor tissue are tightly linked to an aberrant vascularization, advanced hemodynamic imaging, in addition to other innovative approaches, has attracted considerable interest as a means to improve diffuse glioma characterization. In the present part A of our two-review series, the fundamental concepts, techniques and parameters of hemodynamic imaging are discussed in conjunction with their potential role in the differential diagnosis and grading of diffuse gliomas. In particular, recent evidence on dynamic susceptibility contrast, dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging are reviewed together with perfusion-computed tomography. While these techniques have provided encouraging results in terms of their sensitivity and specificity, the limitations deriving from a lack of standardized acquisition and processing have prevented their widespread clinical adoption, with current efforts aimed at overcoming the existing barriers.
Collapse
|
5
|
Abstract
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.
Collapse
|
6
|
Akshulakov SK, Kerimbayev TT, Biryuchkov MY, Urunbayev YA, Farhadi DS, Byvaltsev VA. Current Trends for Improving Safety of Stereotactic Brain Biopsies: Advanced Optical Methods for Vessel Avoidance and Tumor Detection. Front Oncol 2019; 9:947. [PMID: 31632903 PMCID: PMC6783564 DOI: 10.3389/fonc.2019.00947] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023] Open
Abstract
Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.
Collapse
Affiliation(s)
- Serik K Akshulakov
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Talgat T Kerimbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Michael Y Biryuchkov
- Department of Neurosurgery and Traumatology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Yermek A Urunbayev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan
| | - Dara S Farhadi
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, JSC "National Center for Neurosurgery", Nur-Sultan, Kazakhstan.,Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia
| |
Collapse
|
7
|
Jin T, Ren Y, Zhang H, Xie Q, Yao Z, Feng X. Application of MRS- and ASL-guided navigation for biopsy of intracranial tumors. Acta Radiol 2019; 60:374-381. [PMID: 29958510 DOI: 10.1177/0284185118780906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The diagnosis of a tumor depends on accurate identification of the target area for biopsy. However, tumor heterogeneity and the inability of conventional structural data for identifying the most malignant areas can reduce this accuracy. PURPOSE To evaluate the feasibility and practicality of magnetic resonance spectroscopy (MRS)- and arterial spin labeling (ASL)-guided MRI navigation for needle biopsy of intracranial tumors. MATERIAL AND METHODS Thirty patients with intracranial tumors who underwent intraoperative stereotactic biopsy were retrospectively analyzed. Contrast-enhanced 3D-BRAVO or 3D-T2FLAIR structural data, combined with MRS and ASL data, were used to identify the target area for biopsy. High-choline or high-perfusion sites were chosen preferentially, and then the puncture trajectory was optimized to obtain specimens for histopathologic examination. RESULTS Twenty-two specimens were collected from 20 glioma patients (two specimens each were collected from two patients) and ten specimens were collected from ten lymphoma patients. The diagnosis rate after the biopsy was 93.3% (28/30). Two gliomas were initially diagnosed as gliosis and subsequently diagnosed correctly after the collection of a second biopsy specimen. Combined MRS and ASL helped target selection in 23 cases (76.7%), including three cases each of low-enhancing and non-enhancing gliomas. In two cases, the target selection decision was changed because the areas initially chosen on the basis of positron emission tomography data did not match the high-perfusion areas identified with ASL. CONCLUSION Compared with conventional MRI, combined MRS and ASL improved the accuracy of target selection for the stereotactic biopsy of intracranial tumors.
Collapse
Affiliation(s)
- Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Qian Xie
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
8
|
Ren Y, Zhang X, Rui W, Pang H, Qiu T, Wang J, Xie Q, Jin T, Zhang H, Chen H, Zhang Y, Lu H, Yao Z, Zhang J, Feng X. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. J Magn Reson Imaging 2018; 49:808-817. [PMID: 30194745 DOI: 10.1002/jmri.26240] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Noninvasive detection of isocitrate dehydrogenase 1 mutation (IDH1(+)) and loss of nuclear alpha thalassemia/mental retardation syndrome X-linked expression ((ATRX(-)) are clinically meaningful for molecular stratification of low-grade gliomas (LGGs). PURPOSE To study a radiomic approach based on multiparametric MR for noninvasively determining molecular status of IDH1(+) and ATRX(-) in patients with LGG. STUDY TYPE Retrospective, radiomics. POPULATION Fifty-seven LGG patients with IDH1(+) (n = 36 with 19 ATRX(-) and 17 ATRX(+) patients) and IDH1(-) (n = 21). FIELD STRENGTH/SEQUENCE 3.0T MRI / 3D arterial spin labeling (3D-ASL), T2 /fluid-attenuated inversion recovery (T2 FLAIR), and diffusion-weighted imaging (DWI). ASSESSMENT In all, 265 high-throughput radiomic features were extracted on each tumor volume of interest from T2 FLAIR and the other three parametric maps of ASL-derived cerebral blood flow (CBF), DWI-derived apparent diffusion coefficient (ADC), and exponential ADC (eADC). Optimal feature subsets were selected as using the support vector machine with a recursive feature elimination algorithm (SVM-RFE). Receiver operating characteristic curve (ROC) analysis was employed to assess the efficiency for identifying the IDH1(+) and ATRX(-) status. STATISTICAL TESTS Student's t-test, chi-square test, and Fisher's exact test were applied to confirm whether intergroup significant differences exist between molecular subtypes decided by IDH1 and ATRX. RESULTS Optimal SVM predictive models of IDH1(+) and ATRX(-) were established using 28 features from T2 Flair, ADC, eADC, and CBF and six features from T2 Flair, ADC, and CBF. The accuracies/AUCs/sensitivity/specifity/PPV/NPV of predicting IDH1(+) in LGG were 94.74%/0.931/100%/85.71%/92.31%/100%, and those of predicting ATRX(-) in LGG with IDH1(+) were 91.67%/0.926/94.74%/88.24%/90.00%/93.75%, respectively. DATA CONCLUSION Using the optimal texture features extracted from multiple MR sequences or parametric maps, a promising stratifying strategy was acquired for predicting molecular subtypes of IDH1 and ATRX in LGGs. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;49:808-817.
Collapse
Affiliation(s)
- Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xi Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Haopeng Pang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Qian Xie
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Hong Chen
- Division of Neuropathology, Department of Pathology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yong Zhang
- GE Healthcare, MR Research, No. 1 Huatuo Road, Shanghai, P.R. China
| | - Hongbing Lu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Junhai Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Xiaoyuan Feng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
9
|
Salama GR, Heier LA, Patel P, Ramakrishna R, Magge R, Tsiouris AJ. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future. Front Neurol 2018; 8:660. [PMID: 29403420 PMCID: PMC5786563 DOI: 10.3389/fneur.2017.00660] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/22/2017] [Indexed: 01/20/2023] Open
Abstract
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Collapse
Affiliation(s)
- Gayle R Salama
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Linda A Heier
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Praneil Patel
- Department of Neuroradiology, Weill Cornell Medical College, New York, NY, United States
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY, United States
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
10
|
“Two is not enough” – Impact of the number of tissue samples obtained from stereotactic brain biopsies in suspected glioblastoma. J Clin Neurosci 2018; 47:311-314. [DOI: 10.1016/j.jocn.2017.09.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022]
|
11
|
Keil VC, Pintea B, Gielen GH, Greschus S, Fimmers R, Gieseke J, Simon M, Schild HH, Hadizadeh DR. Biopsy targeting with dynamic contrast-enhanced versus standard neuronavigation MRI in glioma: a prospective double-blinded evaluation of selection benefits. J Neurooncol 2017; 133:155-163. [PMID: 28425048 DOI: 10.1007/s11060-017-2424-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Current biopsy planning based on contrast-enhanced T1W (CET1W) or FLAIR sequences frequently delivers biopsy samples that are not in concordance with the gross tumor diagnosis. This study investigates whether the quantitative information of transfer constant Ktrans maps derived from T1W dynamic contrast-enhanced MRI (DCE-MRI) can help enhance the quality of biopsy target selection in glioma. 28 patients with suspected glioma received MRI including DCE-MRI and a standard neuronavigation protocol of 3D FLAIR- and CET1W data sets (0.1 mmol/kg gadobutrol) at 3.0 T. After exclusion of five cases with no Ktrans-elevation, 2-6 biopsy targets were independently selected by a neurosurgeon (samples based on standard imaging) and a neuroradiologist (samples based on kinetic parameter Ktrans) per case and tissue samples corresponding to these targets were collected by a separate independent neurosurgeon. Standard technique and Ktrans-based samples were rated for diagnostic concordance with the gross tumor resection reference diagnosis (67 WHO IV; 24 WHO III and II) by a neuropathologist blinded for selection mode. Ktrans-based sample targets differed from standard technique sample targets in 90/91 cases. More Ktrans-based than standard imaging-based samples could be extracted. Diagnoses from Ktrans-based samples were more frequently concordant with the reference gross tumor diagnoses than those from standard imaging-based samples (WHO IV: 30/39 vs. 11/20; p = 0.08; WHO III/II: 12/13 vs. 6/11; p = 0.06). In 4/5 non-contrast-enhancing gliomas, Ktrans-based selection revealed significantly more accurate samples than standard technique sample-selection (10/12 vs. 2/8 samples; p = 0.02). If Ktrans elevation is present, Ktrans-based biopsy targeting provides significantly more diagnostic tissue samples in non-contrast-enhancing glioma than selection based on CET1W and FLAIR-weighted images alone.
Collapse
Affiliation(s)
- Vera C Keil
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Bogdan Pintea
- Department of Neurosurgery, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Gerrit H Gielen
- Department of Neuropathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Rolf Fimmers
- University Hospital Bonn, IMBIE, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Jürgen Gieseke
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.,PHILIPS Healthcare, Lübeckertordamm 1-3, 20099, Hamburg, Germany
| | - Matthias Simon
- Department of Neurosurgery, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.,Department of Neurosurgery, Ev. Krankenhaus Bielefeld, Kantensiek 11, 33617, Bielefeld, Germany
| | - Hans H Schild
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany
| | - Dariusch R Hadizadeh
- Department of Radiology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| |
Collapse
|
12
|
Tong E, Sugrue L, Wintermark M. Understanding the Neurophysiology and Quantification of Brain Perfusion. Top Magn Reson Imaging 2017; 26:57-65. [PMID: 28277465 DOI: 10.1097/rmr.0000000000000128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Newer neuroimaging technology has moved beyond pure anatomical imaging and ventured into functional and physiological imaging. Perfusion magnetic resonance imaging (PWI), which depicts hemodynamic conditions of the brain at the microvascular level, has an increasingly important role in clinical central nervous system applications. This review provides an overview of the established role of PWI in brain tumor and cerebrovascular imaging, as well as some emerging applications in neuroimaging. PWI allows better characterization of brain tumors, grading, and monitoring. In acute stroke imaging, PWI is utilized to distinguish penumbra from infarcted tissue. PWI is a promising tool in the assessment of neurodegenerative and neuropsychiatric diseases, although its clinical role is not yet defined.
Collapse
Affiliation(s)
- Elizabeth Tong
- *Department of Radiology & Biomedical Imaging, University of California, San Francisco †Department of Neuroradiology, Stanford University Medical Center, Palo Alto, CA
| | | | | |
Collapse
|
13
|
Gaudino S, Russo R, Verdolotti T, Caulo M, Colosimo C. Advanced MR imaging in hemispheric low-grade gliomas before surgery; the indications and limits in the pediatric age. Childs Nerv Syst 2016; 32:1813-22. [PMID: 27659824 DOI: 10.1007/s00381-016-3142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Advanced magnetic resonance imaging (MRI) techniques is an umbrella term that includes diffusion (DWI) and diffusion tensor (DTI), perfusion (PWI), spectroscopy (MRS), and functional (fMRI) imaging. These advanced modalities have improved the imaging of brain tumors and provided valuable additional information for treatment planning. Despite abundant literature on advanced MRI techniques in adult brain tumors, few reports exist for pediatric brain ones, potentially because of technical challenges. REVIEW OF THE LITERATURE The authors review techniques and clinical applications of DWI, PWI, MRS, and fMRI, in the setting of pediatric hemispheric low-grade gliomas. PERSONAL EXPERIENCE The authors propose their personal experience to highlight benefits and limits of advanced MR imaging in diagnosis, grading, and presurgical planning of pediatric hemispheric low-grade gliomas. DISCUSSION Advanced techniques should be used as complementary tools to conventional MRI, and in theory, the combined use of the three techniques should ensure achieving the best results in the diagnosis of hemispheric low-grade glioma and in presurgical planning to maximize tumor resection and preserve brain function. FUTURE PERSPECTIVES In the setting of pediatric neurooncology, these techniques can be used to distinguish low-grade from high-grade tumor. However, these methods have to be applied on a large scale to understand their real potential and clinical relapse, and further technical development is required to reduce the excessive scan times and other technical limitations.
Collapse
Affiliation(s)
- Simona Gaudino
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 1, 00168, Rome, Italy.
| | - Rosellina Russo
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 1, 00168, Rome, Italy
| | - Tommaso Verdolotti
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 1, 00168, Rome, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Science, University "G. D'annunzio", Chieti, Italy
| | - Cesare Colosimo
- Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 1, 00168, Rome, Italy
| |
Collapse
|
14
|
Dynamic Susceptibility Contrast MR Imaging in Glioma: Review of Current Clinical Practice. Magn Reson Imaging Clin N Am 2016; 24:649-670. [PMID: 27742108 DOI: 10.1016/j.mric.2016.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic susceptibility contrast (DSC) MR imaging, a perfusion-weighted MR imaging technique typically used in neuro-oncologic applications for estimating the relative cerebral blood volume within brain tumors, has demonstrated much potential for determining prognosis, predicting therapeutic response, and assessing early treatment response of gliomas. This review highlights recent developments using DSC-MR imaging and emphasizes the need for technical standardization and validation in prospective studies in order for this technique to become incorporated into standard-of-care imaging for patients with brain tumors.
Collapse
|
15
|
Ragel BT, Ryken TC, Kalkanis SN, Ziu M, Cahill D, Olson JJ. The role of biopsy in the management of patients with presumed diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline. J Neurooncol 2015; 125:481-501. [PMID: 26530259 DOI: 10.1007/s11060-015-1866-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/27/2015] [Indexed: 10/22/2022]
Abstract
QUESTION What is the optimal role of biopsy in the initial management of presumptive low-grade glioma in adults? TARGET POPULATION Adult patients with imaging suggestive of a low-grade glioma. RECOMMENDATIONS LEVEL III Stereotactic biopsy is recommended when definitive surgical resection is limited by lesions that are deep-seated, not resectable, and/or located within eloquent cortex, or in patients unable to undergo craniotomy due to medical co-morbidities to obtain the critical tissue diagnosis needed for targeted treatment planning for patients with low-grade gliomas. QUESTION What is the best technique for brain biopsy? TARGET POPULATION Adult patients with imaging suggestive of a low-grade glioma. RECOMMENDATIONS LEVEL III Frameless and frame-based stereotactic brain biopsy for low-grade gliomas are recommended based on clinical circumstances as they provide similar diagnostic yield, diagnostic accuracy, morbidity, and mortality. It is recommended the surgeon consider advanced imaging techniques (e.g., perfusion, spectroscopy, metabolic studies) to target specific regions of interest to potentially improve diagnostic accuracy.
Collapse
Affiliation(s)
- Brian T Ragel
- Rebound Orthopedics and Neurosurgery, 200 NE Mother Joseph Place, Suite 210, Vancouver, WA, 98664, USA.
| | - Timothy C Ryken
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Mateo Ziu
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Welker K, Boxerman J, Kalnin A, Kaufmann T, Shiroishi M, Wintermark M. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain. AJNR Am J Neuroradiol 2015; 36:E41-51. [PMID: 25907520 DOI: 10.3174/ajnr.a4341] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 11/07/2022]
Abstract
MR perfusion imaging is becoming an increasingly common means of evaluating a variety of cerebral pathologies, including tumors and ischemia. In particular, there has been great interest in the use of MR perfusion imaging for both assessing brain tumor grade and for monitoring for tumor recurrence in previously treated patients. Of the various techniques devised for evaluating cerebral perfusion imaging, the dynamic susceptibility contrast method has been employed most widely among clinical MR imaging practitioners. However, when implementing DSC MR perfusion imaging in a contemporary radiology practice, a neuroradiologist is confronted with a large number of decisions. These include choices surrounding appropriate patient selection, scan-acquisition parameters, data-postprocessing methods, image interpretation, and reporting. Throughout the imaging literature, there is conflicting advice on these issues. In an effort to provide guidance to neuroradiologists struggling to implement DSC perfusion imaging in their MR imaging practice, the Clinical Practice Committee of the American Society of Functional Neuroradiology has provided the following recommendations. This guidance is based on review of the literature coupled with the practice experience of the authors. While the ASFNR acknowledges that alternate means of carrying out DSC perfusion imaging may yield clinically acceptable results, the following recommendations should provide a framework for achieving routine success in this complicated-but-rewarding aspect of neuroradiology MR imaging practice.
Collapse
Affiliation(s)
- K Welker
- From the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
| | - J Boxerman
- Department of Diagnostic Imaging (J.B.), Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island
| | - A Kalnin
- Department of Radiology (A.K.), Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - T Kaufmann
- From the Department of Radiology (K.W., T.K.), Mayo Clinic, Rochester, Minnesota
| | - M Shiroishi
- Division of Neuroradiology, Department of Radiology (M.S.), Keck School of Medicine, University of Southern California, Los Angeles, California
| | - M Wintermark
- Department of Radiology, Neuroradiology Section (M.W.), Stanford University, Stanford, California
| | | |
Collapse
|
17
|
Aprile I, Giovannelli G, Fiaschini P, Muti M, Kouleridou A, Caputo N. High- and low-grade glioma differentiation: the role of percentage signal recovery evaluation in MR dynamic susceptibility contrast imaging. Radiol Med 2015; 120:967-74. [PMID: 25762408 DOI: 10.1007/s11547-015-0511-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/19/2014] [Indexed: 10/23/2022]
Abstract
PURPOSE Evaluation of cerebral blood volume (CBV) with magnetic resonance (MR) imaging can differentiate low-grade from high-grade gliomas. The percentage of signal recovery (PSR) in the venous phase of perfusion curves is inversely proportional to blood-brain barrier (BBB) permeability. Since even BBB permeability relates to glioma malignancy grade, we carried out a comparative evaluation between CBV and PSR to characterise cerebral gliomas. MATERIALS AND METHODS Forty-nine patients with cerebral gliomas were studied with MR perfusion imaging. In all tumours, both maximum CBV and minimum PSR were calculated. The difference between the CBV and PSR mean values among the low-grade and high-grade gliomas was assessed using statistical methods. We also examined whether there was an additional difference between low-grade and grade III gliomas. Finally, CBV and PSR diagnostic sensitivity and specificity in identifying low-grade gliomas compared to all gliomas and low-grade gliomas compared to all gliomas excluding glioblastomas was assessed. RESULTS A significant difference between low-grade and high-grade gliomas with both CBV and PSR was demonstrated. Conversely, there was a significant difference between low-grade and grade III gliomas only with PSR, while CBV did not show significant difference. Finally, superior sensitivity and specificity of PSR compared to CBV in identifying low-grade gliomas was demonstrated both compared to all gliomas and all gliomas excluding glioblastomas. CONCLUSION The PSR evaluation proved better than CBV for determining the grade of brain and is therefore a useful tool to be considered in the MR evaluation of gliomas.
Collapse
Affiliation(s)
- Italo Aprile
- Neuroradiology Unit, S. Maria Hospital, Terni, Italy.
| | | | | | - Marco Muti
- Radiotherapy Unit, S. Maria Hospital, Terni, Italy.
| | | | - Nevia Caputo
- Neuroradiology Unit, S. Maria Hospital, Terni, Italy.
| |
Collapse
|
18
|
Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, Le Gars D, Peltier J. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg 2015; 122:342-52. [DOI: 10.3171/2014.9.jns14107] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT
Stereotactic biopsy procedures are an everyday part of neurosurgery. The procedure provides an accurate histological diagnosis with the least possible morbidity. Robotic stereotactic biopsy needs to be an accurate, safe, frameless, and rapid technique. This article reports the clinical results of a series of 100 frameless robotic biopsies using a Medtech ROSA device.
METHODS
The authors retrospectively analyzed their first 100 frameless stereotactic biopsies performed with the robotic ROSA device: 84 biopsies were performed by frameless robotic surface registration, 7 were performed by robotic bone fiducial marker registration, and 9 were performed by scalp fiducial marker registration. Intraoperative flat-panel CT scanning was performed concomitantly in 25 cases. The operative details of the robotic biopsies, the diagnostic yield, and mortality and morbidity data observed in this series are reported.
RESULTS
A histological diagnosis was established in 97 patients. No deaths or permanent morbidity related to surgery were observed. Six patients experienced transient neurological worsening. Six cases of bleeding within the lesion or along the biopsy trajectory were observed on postoperative CT scans but were associated with transient clinical symptoms in only 2 cases. Stereotactic surgery was performed with patients in the supine position in 93 cases and in the prone position in 7 cases. The use of fiducial markers was reserved for posterior fossa biopsy via a transcerebellar approach, via an occipital approach, or for pediatric biopsy.
CONCLUSIONS
ROSA frameless stereotactic biopsies appear to be accurate and safe robotized frameless procedures.
Collapse
|
19
|
Khatab S, Spliet W, Woerdeman PA. Frameless image-guided stereotactic brain biopsies: emphasis on diagnostic yield. Acta Neurochir (Wien) 2014; 156:1441-50. [PMID: 24898761 DOI: 10.1007/s00701-014-2145-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Studies regarding frameless stereotactic brain biopsy mainly report high diagnostic yield (DY) as opposed to relatively low diagnostic accuracy. This discrepancy raises the question of the certainty and precision of obtained diagnoses. This article proposes a DY definition encompassing diagnostic certainty and precision according to the World Health Organization (WHO) central nervous system (CNS) tumour classification system. Furthermore, our eight-year experience with this procedure is reviewed and evaluated. METHODS A consecutive series of 235 frameless biopsy procedures was reviewed. Criteria were set up for categorising obtained diagnoses. All cases were included in a predictive factor analysis of inconclusive biopsy and postoperative complications. RESULTS According to our predefined DY criteria, the DY was 72.8 %. The inconclusive biopsy outcome measured 21.7 %; the non-diagnostic biopsy outcome was 5.5 %. The only predictive factor found for inconclusive biopsy procedures was age under 30. Predictive factors for postoperative complications, which were found statistically significant after multivariable analysis, were glucose level and intra-operative haemorrhage. The total morbidity rate was 8.5 %, including a mortality rate of 0.9 %. CONCLUSIONS Although frameless stereotactic brain biopsy procedures are considered to be relatively safe, the true DY is significantly less than previously reported, most probably due to the lack of standardised DY criteria. Based on our DY definition and subsequent DY findings, standardisation of DY criteria and definition is paramount for biopsy diagnosis interpretation.
Collapse
Affiliation(s)
- Sodaba Khatab
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
20
|
Conventional and advanced MRI features of pediatric intracranial tumors: supratentorial tumors. AJR Am J Roentgenol 2013; 200:W483-503. [PMID: 23617516 DOI: 10.2214/ajr.12.9724] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE. Our objective is to review the imaging characteristics and applications of conventional and advanced neuroimaging techniques of supratentorial intracranial masses in the pediatric population. Specifically, we review astrocytomas, oligodendrogliomas, primary neuroectodermal tumors, dysembryoplastic neuroepithelial tumors, gangliogliomas, arachnoid cysts, and choroid plexus and pineal region masses. CONCLUSION. Advanced imaging methods, such as MR spectroscopy, perfusion MRI, functional MRI, diffusion-tensor imaging, and tractography, help develop a more accurate differential diagnosis and aid in planning tumor treatment.
Collapse
|