1
|
Zlomuzica A, Plank L, Kodzaga I, Dere E. A fatal alliance: Glial connexins, myelin pathology and mental disorders. J Psychiatr Res 2023; 159:97-115. [PMID: 36701970 DOI: 10.1016/j.jpsychires.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Mature oligodendrocytes are myelin forming glial cells which are responsible for myelination of neuronal axons in the white matter of the central nervous system. Myelin pathology is a major feature of severe neurological disorders. Oligodendrocyte-specific gene mutations and/or white matter alterations have also been addressed in a variety of mental disorders. Breakdown of myelin integrity and demyelination is associated with severe symptoms, including impairments in motor coordination, breathing, dysarthria, perception (vision and hearing), and cognition. Furthermore, there is evidence indicating that myelin sheath defects and white matter pathology contributes to the affective and cognitive symptoms of patients with mental disorders. Oligodendrocytes express the connexins GJC2; mCx47 [human (GJC2) and mouse (mCx47) connexin gene nomenclature according to Söhl and Willecke (2003)], GJB1; mCx32, and GJD1; mCx29 in both white and gray matter. Preclinical findings indicate that alterations in connexin expression in oligodendrocytes and astrocytes can induce myelin defects. GJC2; mCx47 is expressed at early embryonic stages in oligodendrocyte precursors cells which precedes central nervous system myelination. In adult humans and animals GJC2, respectively mCx47 expression is essential for oligodendrocyte function and ensures adequate myelination as well as myelin maintenance in the central nervous system. In the past decade, evidence has accumulated suggesting that mental disorders can be accompanied by changes in connexin expression, myelin sheath defects and corresponding white matter alterations. This dual pathology could compromise inter-neuronal information transfer, processing and communication and eventually contribute to behavioral, sensory-motor, affective and cognitive symptoms in patients with mental disorders. The induction of myelin repair and remyelination in the central nervous system of patients with mental disorders could help to restore normal neuronal information propagation and ameliorate behavioral and cognitive symptoms in individuals with mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Iris Kodzaga
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787, Bochum, Germany; Sorbonne Université, UFR des Sciences de la Vie, 9 quai Saint Bernard, F-75005, Paris, France.
| |
Collapse
|
2
|
Tu J, Zhang H, Yang T, Liu Y, Kibreab S, Zhang Y, Gao L, Moses RE, O'Malley BW, Xiao J, Li X. Aging-associated REGγ proteasome decline predisposes to tauopathy. J Biol Chem 2022; 298:102571. [PMID: 36209822 PMCID: PMC9647549 DOI: 10.1016/j.jbc.2022.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
The REGγ-20S proteasome is an ubiquitin- and ATP-independent degradation system, targeting selective substrates, possibly helping to regulate aging. The studies we report here demonstrate that aging-associated REGγ decline predisposes to decreasing tau turnover, as in a tauopathy. The REGγ proteasome promotes degradation of human and mouse tau, notably phosphorylated tau and toxic tau oligomers that shuttle between the cytoplasm and nuclei. REGγ-mediated proteasomal degradation of tau was validated in 3- to 12-month-old REGγ KO mice, REGγ KO;PS19 mice, and PS19 mice with forebrain conditional neuron-specific overexpression of REGγ (REGγ OE) and behavioral abnormalities. Coupled with tau accumulation, we found with REGγ-deficiency, neuron loss, dendrite reduction, tau filament accumulation, and microglial activation are much more prominent in the REGγ KO;PS19 than the PS19 model. Moreover, we observed that the degenerative neuronal lesions and aberrant behaviors were alleviated in REGγ OE;PS19 mice. Memory and other behavior analysis substantiate the role of REGγ in prevention of tauopathy-like symptoms. In addition, we investigated the potential mechanism underlying aging-related REGγ decline. This study provides valuable insights into the novel regulatory mechanisms and potential therapeutic targets for tau-related neurodegenerative diseases.
Collapse
|
3
|
Zlomuzica A, Plank L, Dere E. A new path to mental disorders: Through gap junction channels and hemichannels. Neurosci Biobehav Rev 2022; 142:104877. [PMID: 36116574 DOI: 10.1016/j.neubiorev.2022.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Behavioral disturbances related to emotional regulation, reward processing, cognition, sleep-wake regulation and activity/movement represent core symptoms of most common mental disorders. Increasing empirical and theoretical evidence suggests that normal functioning of these behavioral domains relies on fine graded coordination of neural and glial networks which are maintained and modulated by intercellular gap junction channels and unapposed pannexin or connexin hemichannels. Dysfunctions in these networks might contribute to the development and maintenance of psychopathological and neurobiological features associated with mental disorders. Here we review and discuss the evidence indicating a prominent role of gap junction channel and hemichannel dysfunction in core symptoms of mental disorders. We further discuss how the increasing knowledge on intercellular gap junction channels and unapposed pannexin or connexin hemichannels in the brain might lead to deeper mechanistic insight in common mental disorders and to the development of novel treatment approaches. We further attempt to exemplify what type of future research on this topic could be integrated into multidimensional approaches to understand and cure mental disorders.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Laurin Plank
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
4
|
Komachali SR, Sheikholeslami M, Salehi M. A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder. Genomics Inform 2022; 20:e24. [PMID: 35794704 PMCID: PMC9299563 DOI: 10.5808/gi.22008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.
Collapse
Affiliation(s)
- Sajad Rafiee Komachali
- Department of Biology, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran.,Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| | | | - Mansoor Salehi
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan 81759-54319, Iran
| |
Collapse
|
5
|
Activation of the unfolded protein response by Connexin47 mutations associated with Pelizaeus-Merzbacher-like disease. Mol Cell Neurosci 2022; 120:103716. [PMID: 35276347 DOI: 10.1016/j.mcn.2022.103716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Pelizaeus-Merzbacher-like disease type 1 (PMLD1) is a hypomyelinating disorder arising in patients with mutations in GJC2, encoding Connexin47 (Cx47). PMLD1 causes nystagmus, cerebellar ataxia, spasticity and changes in CNS white matter detected by MRI. At least one mutation (p.I33M) yields a much milder phenotype, spastic paraplegia type 44 (SPG44). Cx47 contributes to gap junction communication channels between oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), and between OLs and astrocytes. Prior studies in cell lines have shown that PMLD1 mutants such as p.P87S display defective protein trafficking, intracellular retention in the ER and loss-of-function. Here we show that when expressed in primary OLs, three PMLD1 associated mutants (p.P87S, p.Y269D and p.M283T) show ER retention of Cx47 and evidence of activation of the cellular stress (unfolded protein response, UPR) and apoptotic pathways. On the other hand, the milder SPG44 associated mutation p.I33M shows a wild-type-like subcellular distribution and no activation of the UPR or apoptotic pathways. These studies provide new insight into a potential element of toxic gain of function underlying the mechanism of PMLD1 that should help guide future therapeutic approaches.
Collapse
|
6
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
7
|
Owczarek-Lipska M, Mulahasanovic L, Obermaier CD, Hörtnagel K, Neubauer BA, Korenke GC, Biskup S, Neidhardt J. Novel mutations in the GJC2 gene associated with Pelizaeus–Merzbacher-like disease. Mol Biol Rep 2019; 46:4507-4516. [DOI: 10.1007/s11033-019-04906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 12/15/2022]
|
8
|
Impaired anandamide/palmitoylethanolamide signaling in hippocampal glutamatergic neurons alters synaptic plasticity, learning, and emotional responses. Neuropsychopharmacology 2019; 44:1377-1388. [PMID: 30532004 PMCID: PMC6784910 DOI: 10.1038/s41386-018-0274-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/28/2022]
Abstract
Endocannabinoid signaling via anandamide (AEA) is implicated in a variety of neuronal functions and considered a promising therapeutic target for numerous emotion-related disorders. The major AEA degrading enzyme is fatty acid amide hydrolase (FAAH). Genetic deletion and pharmacological inhibition of FAAH reduce anxiety and improve emotional responses and memory in rodents and humans. Complementarily, the mechanisms and impact of decreased AEA signaling remain to be delineated in detail. In the present study, using the Cre/loxP system combined with an adeno-associated virus (AAV)-mediated delivery system, FAAH was selectively overexpressed in hippocampal CA1-CA3 glutamatergic neurons of adult mice. This approach led to specific FAAH overexpression at the postsynaptic site of CA1-CA3 neurons, to increased FAAH enzymatic activity, and, in consequence, to decreased hippocampal levels of AEA and palmitoylethanolamide (PEA), but the levels of the second major endocannabinoid 2-arachidonoyl glycerol (2-AG) and of oleoylethanolamide (OEA) were unchanged. Electrophysiological recordings revealed an enhancement of both excitatory and inhibitory synaptic activity and of long-term potentiation (LTP). In contrast, excitatory and inhibitory long-term depression (LTD) and short-term synaptic plasticity, apparent as depolarization-induced suppression of excitation (DSE) and inhibition (DSI), remained unaltered. These changes in hippocampal synaptic activity were associated with an increase in anxiety-like behavior, and a deficit in object recognition memory and in extinction of aversive memory. This study indicates that AEA is not involved in hippocampal short-term plasticity, or eLTD and iLTD, but modulates glutamatergic transmission most likely via presynaptic sites, and that disturbances in this process impair learning and emotional responses.
Collapse
|
9
|
Vejar S, Oyarzún JE, Retamal MA, Ortiz FC, Orellana JA. Connexin and Pannexin-Based Channels in Oligodendrocytes: Implications in Brain Health and Disease. Front Cell Neurosci 2019; 13:3. [PMID: 30760982 PMCID: PMC6361860 DOI: 10.3389/fncel.2019.00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocytes are the myelin forming cells in the central nervous system (CNS). In addition to this main physiological function, these cells play key roles by providing energy substrates to neurons as well as information required to sustain proper synaptic transmission and plasticity at the CNS. The latter requires a fine coordinated intercellular communication with neurons and other glial cell types, including astrocytes. In mammals, tissue synchronization is mainly mediated by connexins and pannexins, two protein families that underpin the communication among neighboring cells through the formation of different plasma membrane channels. At one end, gap junction channels (GJCs; which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells allowing electrical and metabolic coupling. At the other end, hemichannels and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments, serving as diffusion pathways of ions and small molecules. Here, we briefly review the current knowledge about the expression and function of hemichannels, pannexons and GJCs in oligodendrocytes, as well as the evidence regarding the possible role of these channels in metabolic and synaptic functions at the CNS. In particular, we focus on oligodendrocyte-astrocyte coupling during axon metabolic support and its implications in brain health and disease.
Collapse
Affiliation(s)
- Sebastián Vejar
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan E. Oyarzún
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Juan A. Orellana
- Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Abstract
Major depressive disorder (MDD) is a chronic and debilitating illness that affects over 350 million people worldwide; however, current treatments have failed to cure or prevent the progress of depression. Increasing evidence suggests a crucial role for connexins in MDD. In this review, we have summarised recent accomplishments regarding the role of connexins, gap junctions, and hemichannels in the aetiology of MDD, and discussed the limitations of current research. A blockage of gap junctions or hemichannels induces depressive behaviour. Possible underlying mechanisms include the regulation of neurosecretory functions and synaptic activity by gap junctions and hemichannels. Gap junctions are functionally inhibited under stress conditions. Conversely, hemichannel permeability is increased. Antidepressants inhibit hemichannel permeability; however, they have contrasting effects on the function of gap junctions under normal conditions and can protect them against stress. In conclusion, the blockage of hemichannels concurrent with improvements in gap junction functionality might be potential targets for depression treatment.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tohru Yamakuni
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
11
|
Liu Z, Xu D, Wang S, Chen Y, Li Z, Gao X, Jiang L, Tang Y, Peng Y. Astrocytes induce proliferation of oligodendrocyte progenitor cells via connexin 47-mediated activation of the ERK/Id4 pathway. Cell Cycle 2017; 16:714-722. [PMID: 28278052 DOI: 10.1080/15384101.2017.1295183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The proliferative ability of oligodendrocyte progenitor cells (OPCs) varied markedly under different culture conditions. Astrocytes (ASTs) have been verified to play a major role in regulating the proliferation of OPCs through direct contact. However, the mechanisms have not been fully clarified. To investigate the effect and mechanism under AST and OPC co-culture conditions, we analyzed all connexins comprehensively in OPCs under OPC mono-culture, AST-secreted cell factor co-culture and AST-OPC direct-contact co-culture, and found that significantly differentially expressed Cx47 was the most significant. To assess whether Cx47 plays a role in proliferation, Cx47 siRNA were conducted. The result indicates that the cell cycle of OPCs was changed, and the cell proliferation was markedly inhibited. Kyoto Encyclopedia of Genes and Genomes (KEGG) predictive analysis suggested that Cx47 regulate cell cycle and proliferation by Ca2+ activation of ERK1/2. To verify the prediction, flow cytometry, confocal microscopy, 5-ethynyl-2'-deoxyuridine (EdU), polymerase chain reaction (RT-PCR) and western blot were used. The results show that interference of Cx47 led to decreased Ca2+ concentrations, lower p-ERK 1/2 levels, reduced transcription factor inhibitor of DNA binding 4 (Id4) expression, arrested cell cycle and reduced OPCs proliferative ability. Additionally, blocking ERK1/2 signaling caused decreased Id4 expression, arrested cell cycle in G1 phase, and reduced OPCs proliferative ability. In conclusion, ASTs can cause Ca2+ signaling activation, ERK1/2 phosphorylation, and Id4 expression stimulation in OPCs, inducing proliferation of these cells, mainly through Cx47.
Collapse
Affiliation(s)
- Zhaoyu Liu
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Dan Xu
- b Department of Neurosurgery , The First Affiliated Hospital of Chongqing Medical University , Chongqing , P.R. China
| | - Shang Wang
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Yi Chen
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Zhen Li
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Xiaoyan Gao
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Lu Jiang
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Yong Tang
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| | - Yan Peng
- a Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology , Chongqing Medical University , Chongqing , P.R. China
| |
Collapse
|
12
|
Schoenfeld TJ, Kloth AD, Hsueh B, Runkle MB, Kane GA, Wang SSH, Gould E. Gap junctions in the ventral hippocampal-medial prefrontal pathway are involved in anxiety regulation. J Neurosci 2014; 34:15679-88. [PMID: 25411496 PMCID: PMC4236399 DOI: 10.1523/jneurosci.3234-13.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023] Open
Abstract
Anxiety disorders are highly prevalent but little is known about their underlying mechanisms. Gap junctions exist in brain regions important for anxiety regulation, such as the ventral hippocampus (vHIP) and mPFC, but their functions in these areas have not been investigated. Using pharmacological blockade of neuronal gap junctions combined with electrophysiological recordings, we found that gap junctions play a role in theta rhythm in the vHIP and mPFC of adult mice. Bilateral infusion of neuronal gap junction blockers into the vHIP decreased anxiety-like behavior on the elevated plus maze and open field. Similar anxiolytic effects were observed with unilateral infusion of these drugs into the vHIP combined with contralateral infusion into the mPFC. No change in anxious behavior was observed with gap junction blockade in the unilateral vHIP alone or in the bilateral dorsal HIP. Since physical exercise is known to reduce anxiety, we examined the effects of long-term running on the expression of the neuronal gap junction protein connexin-36 among inhibitory interneurons and found a reduction in the vHIP. Despite this change, we observed no alteration in theta frequency or power in long-term runners. Collectively, these findings suggest that neuronal gap junctions in the vHIP-mPFC pathway are important for theta rhythm and anxiety regulation under sedentary conditions but that additional mechanisms are likely involved in running-induced reduction in anxiety.
Collapse
Affiliation(s)
| | - Alexander D Kloth
- Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | | | | | | - Samuel S-H Wang
- Molecular Biology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
13
|
Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dörmann P, Willecke K. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 2013; 288:21433-21447. [PMID: 23760501 DOI: 10.1074/jbc.m113.479907] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.
Collapse
Affiliation(s)
- Philipp Ebel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | | | - Elisabeth Petrasch-Parwez
- the Department of Neuroanatomy and Molecular Brain Research, Ruhr-University of Bochum, 44801 Bochum, Germany
| | - Armin Zlomuzica
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Kiyoka Kinugawa
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Jean Mariani
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - David Minich
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Christina Ginkel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Jochen Welcker
- the Department of Neuroscience, Max-Delbrueck-Centrum, Berlin, 13125 Berlin, Germany
| | - Joachim Degen
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Matthias Eckhardt
- the Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Ekrem Dere
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany,; the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, and
| | - Klaus Willecke
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES),.
| |
Collapse
|
14
|
Ginkel C, Hartmann D, vom Dorp K, Zlomuzica A, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Rabionet M, Dere E, Dörmann P, Sandhoff K, Willecke K. Ablation of neuronal ceramide synthase 1 in mice decreases ganglioside levels and expression of myelin-associated glycoprotein in oligodendrocytes. J Biol Chem 2012; 287:41888-902. [PMID: 23074226 DOI: 10.1074/jbc.m112.413500] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ceramide synthase 1 (CerS1) catalyzes the synthesis of C18 ceramide and is mainly expressed in the brain. Custom-made antibodies to a peptide from the C-terminal region of the mouse CerS1 protein yielded specific immunosignals in neurons but no other cell types of wild type brain, but the CerS1 protein was not detected in CerS1-deficient mouse brains. To elucidate the biological function of CerS1-derived sphingolipids in the brain, we generated CerS1-deficient mice by introducing a targeted mutation into the coding region of the cers1 gene. General deficiency of CerS1 in mice caused a foliation defect, progressive shrinkage, and neuronal apoptosis in the cerebellum. Mass spectrometric analyses revealed up to 60% decreased levels of gangliosides in cerebellum and forebrain. Expression of myelin-associated glycoprotein was also decreased by about 60% in cerebellum and forebrain, suggesting that interaction and stabilization of oligodendrocytic myelin-associated glycoprotein by neuronal gangliosides is due to the C18 acyl membrane anchor of CerS1-derived precursor ceramides. A behavioral analysis of CerS1-deficient mice yielded functional deficits including impaired exploration of novel objects, locomotion, and motor coordination. Our results reveal an essential function of CerS1-derived ceramide in the regulation of cerebellar development and neurodevelopmentally regulated behavior.
Collapse
|