1
|
Zhou D, Zhao N, Chen Y, Sun J, Li Y, Peng Z, Liu Y. Laser emission from tapered fiber-based liquid-crystal microsphere for sensing. OPTICS LETTERS 2023; 48:3773-3776. [PMID: 37450747 DOI: 10.1364/ol.492930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
This Letter introduces a novel laser emission probe for liquid-crystal microspheres based on a tapered fiber. A cholesteric liquid crystal (CLC) is injected into a hollow glass microsphere (HGM) attached at the front end of a tapered fiber in order to produce laser. Tapered fibers are preferable to rectangular fibers for liquid-crystal microsphere laser emission. The whispering gallery mode (WGM) laser is significantly suppressed by the tapered fiber-based liquid-crystal microsphere, which also displays an apparent single-mode photonic bandgap (PBG) laser peak. The stimulation response of tapered fiber-based liquid-crystal microspheres to organic vapors causes a modification of the laser peak wavelength with increasing gas concentration. In addition, laser emission generated by tapered fiber-based liquid-crystal microspheres is expected to be used in fields such as microenvironmental biosensing.
Collapse
|
2
|
Pápai M, Benedek T, Táncsics A, Bornemann TLV, Plewka J, Probst AJ, Hussein D, Maróti G, Menashe O, Kriszt B. Selective enrichment, identification, and isolation of diclofenac, ibuprofen, and carbamazepine degrading bacteria from a groundwater biofilm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44518-44535. [PMID: 36690856 PMCID: PMC10076411 DOI: 10.1007/s11356-022-24975-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are three of the most widely detected and most concerning pharmaceutical residues in aquatic ecosystems. The aim of this study was to identify bacteria that may be involved in their degradation from a bacterial biofilm. Selective enrichment cultures in mineral salt solution containing pharmaceutical compounds as sole source of carbon and energy were set up, and population dynamics were monitored using shotgun metagenome sequencing. Bacterial genomes were reconstructed using genome-resolved metagenomics. Thirty bacterial isolates were obtained, identified at species level, and tested regarding pharmaceutical biodegradation at an initial concentration of 1.5 mg l-1. The results indicated that most probably diclofenac biodegrading cultures consisted of members of genera Ferrovibrio, Hydrocarboniphaga, Zavarzinia, and Sphingopyxis, while in ibuprofen biodegradation Nocardioides and Starkeya, and in carbamazepine biodegradation Nocardioides, Pseudonocardia, and Sphingopyxis might be involved. During the enrichments, compared to the initial state the percentage relative abundance of these genera increased up to three orders of magnitude. Except Starkeya, the genomes of these bacteria were reconstructed and annotated. Metabolic analyses of the annotated genomes indicated that these bacteria harbored genes associated with pharmaceutical biodegradation. Stenotrophomonas humi DIC_5 and Rhizobium daejeonense IBU_18 isolates eliminated diclofenac and ibuprofen during the tests in the presence of either glucose (3 g l-1) or in R2A broth. Higher than 90% concentration reduction was observed in the case of both compounds.
Collapse
Affiliation(s)
- Márton Pápai
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Tibor Benedek
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary.
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Till L V Bornemann
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Julia Plewka
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Alexander J Probst
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Daood Hussein
- Institute of Horticultural Sciences, Laboratories of Food Analysis, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Temesvári Krt. 62., Szeged, Hungary
- Seqomics Biotechnology Ltd, Vállalkozók 7, 6782, Mórahalom, Hungary
| | - Ofir Menashe
- Water Industry Engineering Department, The Engineering Faculty, Kinneret Academic College On the Sea of Galilee, D.N. Emek Ha, 15132, Yarden, Israel
- BioCastle Water Technologies Ltd, Tzemah, Israel
| | - Balázs Kriszt
- Department of Environmental Safety, Hungarian University of Agriculture and Life Sciences, Institute of Aquaculture and Environmental Safety, Páter K. U. 1, 2100, Gödöllő, Hungary
| |
Collapse
|
3
|
Degradation of 1,4-dioxane by Newly Isolated Acinetobacter sp. M21 with Molasses as the Auxiliary Substrate. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
A multicomponent THF hydroxylase initiates tetrahydrofuran degradation in Cupriavidus metallidurans ZM02. Appl Environ Microbiol 2022; 88:e0188021. [PMID: 35108100 DOI: 10.1128/aem.01880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38±0.24 μmol min-1 mg-1 and 1.77±0.37 μmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.
Collapse
|
5
|
Ramos-García ÁA, Walecka-Hutchison C, Freedman DL. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane. Biodegradation 2022; 33:157-168. [PMID: 35102492 DOI: 10.1007/s10532-022-09971-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
1,4-Dioxane is a pervasive and persistent contaminant in numerous aquifers. Although the median concentration in most contaminant plumes is in the microgram per liter range, a subset of sites have contamination in the milligram per liter range. Most prior studies that have examined 1,4-dioxane concentrations in the hundreds of milligrams per liter range have been performed with industrial wastewater. The main objective of this study was to evaluate aerobic biodegradation of 1,4-dioxane in microcosms prepared with soil and groundwater from a site where concentrations range from ~ 1500 mg·L-1 in the source zone, to 450 mg·L-1 at a midpoint of the groundwater plume, and to 6 mg·L-1 at a down-gradient location. Treatments included biostimulation with propane, addition of propane and a propanotrophic enrichment culture (ENV487), and unamended. The highest rates of biodegradation for each location in the plume occurred in the bioaugmented treatments, although indigenous propanotrophs also biodegraded 1,4-dioxane to below 25 µg·L-1. Nutrient additions were required to sustain biodegradation of propane and cometabolism of 1,4-dioxane. Among the unamended treatments, biodegradation of 1,4-dioxane was detected in the mid-gradient microcosms. An isolate was obtained that grows on 1,4-dioxane as a sole source of carbon and energy and identified through whole-genome sequencing as Pseudonocardia dioxivorans BERK-1. In a prior study, the same strain was isolated from an aquifer in the southeastern United States. Monod kinetic parameters for BERK-1 are similar to those for strain CB1190.
Collapse
Affiliation(s)
- Ángel A Ramos-García
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA
| | | | - David L Freedman
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA.
| |
Collapse
|
6
|
Wang P, Li F, Wang W, Wang R, Yang Y, Cui T, Liu N, Li M. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112206. [PMID: 33866286 DOI: 10.1016/j.ecoenv.2021.112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
1,4-Dioxane (dioxane), an emerging groundwater contaminant, is frequently detected in landfill leachates with its structural analog, tetrahydrofuran (THF). Along with undesirable leakage of landfill leachates, dioxane and THF inevitably percolate into groundwater leading to a broader region of contamination. Cometabolic bioremediation is an effective approach to manage commingled THF and dioxane pollution. In this study, a newly isolated bacterium Arthrobacter sp. WN18 is able to co-oxidize dioxane with THF as the primary substrate. Meanwhile, the THF-induced thmADBC gene cluster was responsible for the dioxane degradation rate indicating THF monooxygenase is the essential enzyme that initializing α-hydroxylation of THF and dioxane. Further, γ-butyrolactone and HEAA were characterized as the key metabolites of THF and dioxane, respectively. In addition, WN18 can tolerate the inhibition of trichloroethylene (5.0 mg/L) as a representative of co-existing leachate constituent, and sustain its activity at various pH (5-11), temperatures (15-42 °C), and salinities (up to 4%, as NaCl wt). Like other Arthrobacter species, WN18 also exhibited the capability of fixing nitrogen. All this evidence indicates the feasibility and advantage of WN18 as a thmADBC-catalyzed inoculator to bioremediate co-contamination of THF and dioxane.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Wenmin Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Ruofan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
7
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Isolation and Characterization of Novel Bacteria Capable of Degrading 1,4-Dioxane in the Presence of Diverse Co-Occurring Compounds. Microorganisms 2021; 9:887. [PMID: 33919159 PMCID: PMC8143092 DOI: 10.3390/microorganisms9050887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Biodegradation is found to be a promising, cost-effective and eco-friendly option for the treatment of industrial wastewater contaminated by 1,4-dioxane (1,4-D), a highly stable synthetic chemical and probable human carcinogen. This study aimed to isolate, identify, and characterize metabolic 1,4-D-degrading bacteria from a stable 1,4-D-degrading microbial consortium. Three bacterial strains (designated as strains TS28, TS32, and TS43) capable of degrading 1,4-D as a sole carbon and energy source were isolated and identified as Gram-positive Pseudonocardia sp. (TS28) and Gram-negative Dokdonella sp. (TS32) and Afipia sp. (TS43). This study, for the first time, confirmed that the genus Dokdonella is involved in the biodegradation of 1,4-D. The results reveal that all of the isolated strains possess inducible 1,4-D-degrading enzymes and also confirm the presence of a gene encoding tetrahydrofuran/dioxane monooxygenase (thmA/dxmA) belonging to group 5 soluble di-iron monooxygenases (SDIMOs) in both genomic and plasmid DNA of each of the strains, which is possibly responsible for the initial oxidation of 1,4-D. Moreover, the isolated strains showed a broad substrate range and are capable of degrading 1,4-D in the presence of additional substrates, including easy-to-degrade compounds, 1,4-D biodegradation intermediates, structural analogs, and co-contaminants of 1,4-D. This indicates the potential of the isolated strains, especially strain TS32, in removing 1,4-D from contaminated industrial wastewater containing additional organic load. Additionally, the results will help to improve our understanding of how multiple 1,4-D-degraders stably co-exist and interact in the consortium, relying on a single carbon source (1,4-D) in order to develop an efficient biological 1,4-D treatment system.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Takuya Shimizu
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| |
Collapse
|
8
|
Ma F, Wang Y, Yang J, Guo H, Su D, Yu L. Degradation of 1,4-Dioxane by Xanthobacter sp. YN2. Curr Microbiol 2021; 78:992-1005. [PMID: 33547937 DOI: 10.1007/s00284-021-02347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
1,4-Dioxane is a highly toxic and carcinogenic pollutant found worldwide in groundwater and soil environments. Several microorganisms have been isolated by their ability to grow on 1,4-dioxane; however, low 1,4-dioxane tolerance and slow degradation kinetics remain obstacles for their use in 1,4-dioxane bioremediation. We report here the isolation and characterization of a new strain, Xanthobacter sp. YN2, capable of highly efficient 1,4-dioxane degradation. High degradation efficiency and high tolerance to 1,4-dioxane make this new strain an ideal candidate for the biodegradation of 1,4-dioxane in various treatment facilities. The maximum degradation rate of 1,4-dioxane was found to be 1.10 mg-1,4-dioxane/h mg-protein. Furthermore, Xanthobacter sp. YN2 was shown to grow in the presence of higher than 3000 mg/L 1,4-dioxane with little to no degradation inhibition. In addition, Xanthobacter sp. YN2 could grow on and degrade 1,4-dioxane at pH ranges 5 to 8 and temperatures between 20 and 40 °C. Xanthobacter sp. YN2 was also found to be able to grow on a variety of other substrates including several analogs of 1,4-dioxane. Genome sequence analyses revealed the presence of two soluble di-iron monooxygenase (SDIMO) gene clusters, and regulation studies determined that all of the genes in these two clusters were upregulated in the presence of 1,4-dioxane. This study provides insights into the bacterial stress response and the highly efficient biodegradation of 1,4-dioxane as well as the identification of a novel Group-2 SDIMO.
Collapse
Affiliation(s)
- Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Yingning Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Haijuan Guo
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, China
| | - Delin Su
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Lan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
9
|
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front Microbiol 2021; 11:583120. [PMID: 33488536 PMCID: PMC7821382 DOI: 10.3389/fmicb.2020.583120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| | - Helena Gimeno-Valero
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
10
|
Huang H, Qi M, Liu Y, Wang H, Wang X, Qiu Y, Lu Z. Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Front Microbiol 2020; 11:594052. [PMID: 33362743 PMCID: PMC7758286 DOI: 10.3389/fmicb.2020.594052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydrofuran (THF) is a universal solvent widely used in the synthesis of chemicals and pharmaceuticals. As a refractory organic contaminant, it can only be degraded by a small group of microbes. In this study, a thiamine auxotrophic THF-degrading bacterium, Rhodococcus ruber ZM07, was isolated from an enrichment culture H-1. It was cocultured with Escherichia coli K12 (which cannot degrade THF but can produce thiamine) and/or Escherichia coli K12ΔthiE (which can neither degrade THF nor produce thiamine) with or without exogenous thiamine. This study aims to understand the interaction mechanisms between ZM07 and K12. We found that K12 accounted for 30% of the total when cocultured and transferred with ZM07 in thiamine-free systems; in addition, in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system without thiamine, K12ΔthiE disappeared in the 8th transfer, while K12 could still stably exist (the relative abundance remained at approximately 30%). The growth of K12 was significantly inhibited in the thiamine-rich system. Its proportion was almost below 4% after the fourth transfer in both the two-strain (ZM07 and K12) and three-strain (ZM07, K12, and K12ΔthiE) systems; K12ΔthiE’s percentage was higher than K12’s in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system with exogenous thiamine, and both represented only a small proportion (less than 1% by the fourth transfer). The results of the coculture of K12 and K12ΔthiE in thiamine-free medium indicated that intraspecific competition between them may be one of the main reasons for the extinction of K12ΔthiE in the three-strain (ZM07, K12, and K12ΔthiE) system without exogenous thiamine. Furthermore, we found that ZM07 could cooperate with K12 through extracellular metabolites exchanges without physical contact. This study provides novel insight into how microbes cooperate and compete with one another during THF degradation.
Collapse
Affiliation(s)
- Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiyang Qiu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Chen J, Ruan JW, Ye JX, Cheng ZW, Chen DZ. Removal of gaseous tetrahydrofuran via a three-phase airlift bioreactor loaded with immobilized cells of GFP-tagged Pseudomonas oleovorans GDT4. CHEMOSPHERE 2020; 258:127148. [PMID: 32535434 DOI: 10.1016/j.chemosphere.2020.127148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Tetrahydrofuran (THF) is a common highly toxic cyclic aliphatic ether that frequently exists in waste gases. Removal of gaseous THF is a serious issue with important environmental ramifications. A novel three-phase airlift bioreactor (TPAB) loaded with immobilized cells was developed for efficient THF removal from gas streams. An effective THF-degrading transformant, Pseudomonas oleovorans GDT4, which contains the pTn-Mod-OTc-gfp plasmid and was tagged with a green fluorescent protein (GFP), was constructed. Continuous treatment of THF-containing waste gases was succeeded by the GFP-labelled cells immobilized with calcium alginate and activated carbon fiber in the TPAB for 60 days with >90% removal efficiency. The number of fluorescent cells in the beads reached 1.7 × 1011 cells·g-1 of bead on day 10, accounting for 83.3% of the total number of cells. The amount further increased to 3.0 × 1011 cells·g-1 of bead on day 40. However, it decreased to 2.5 × 1011 cells·g-1 of bead with a substantial increase in biomass in the liquid because of cell leakage and hydraulic shock. PCR-DGGE revealed that P. oleovorans was the dominant microorganism throughout the entire operation. The maximum elimination capacity was affected by empty bed residence time (EBRT). The capacity was only 25.9 g m-3·h-1 at EBRT of 80 s, whereas it reached 37.8 g m-3·h-1 at EBRT of 140 s. This work provides an alternative method for full-scale removal of gaseous THF and presents a useful tool for determining the biomass of a specific degrader in immobilized beads.
Collapse
Affiliation(s)
- Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jing-Wen Ruan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jie-Xu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhuo-Wei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dong-Zhi Chen
- College of Petrochemical and Environment, Zhejiang Ocean University, Zhoushan, 316004, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
12
|
Ren H, Li H, Wang H, Huang H, Lu Z. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus Pseudallescheria boydii ZM01. Microorganisms 2020; 8:microorganisms8081190. [PMID: 32764240 PMCID: PMC7464125 DOI: 10.3390/microorganisms8081190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Tetrahydrofuran (THF) is widely used as a precursor for polymer syntheses and a versatile solvent in industries. THF is an environmental hazard and carcinogenic to humans. In the present study, a new THF-degrading filamentous fungus, Pseudallescheria boydii ZM01, was isolated and characterized. Strain ZM01 can tolerate a maximum THF concentration of 260 mM and can completely degrade 5 mM THF in 48 h, with a maximum THF degradation rate of 133.40 mg THF h−1 g−1 dry weight. Growth inhibition was not observed when the initial THF concentration was below 150 mM, and the maximum THF degradation rate was still maintained at 118.21 mg THF h−1 g−1 dry weight at 50 mM THF, indicating the great potential of this strain to degrade THF at high concentrations. The initial key metabolic intermediate 2-hydroxytetrahydrofuran was detected and identified by gas chromatography (GC) analyses for the first time during the THF degradation process. Analyses of the effects of initial pH, incubation temperature, and heavy metal ions on THF degradation revealed that strain ZM01 can degrade THF under a relatively wide range of conditions and has good degradation ability under low pH and Cu2+ stress, suggesting its adaptability and applicability for industrial wastewater treatment.
Collapse
|
13
|
da Silva MLB, He Y, Mathieu J, Alvarez PJJ. Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation 2020; 31:201-211. [PMID: 32468172 DOI: 10.1007/s10532-020-09903-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Long term natural attenuation of 1,4-dioxane (dioxane) and its enhanced biodegradation after bioaugmentation with Pseudonocardia dioxanivorans CB1190 were assessed using flow-through aquifer columns. Natural attenuation of dioxane was not observed even after 2 years of acclimation. However, dioxane removal was observed in the bioaugmented columns (34% when the influent was 200 µg/L and 92% for 5 mg/L). The thmA gene that encodes the tetrahydrofuran monooxygenase that initiates dioxane degradation by CB1190 was only detected at the inoculation port and persisted for months after inoculation, implying the resiliency of bioaugmentation and its potential to offer long-term enhanced biodegradation capabilities. However, due to extensive clumping and limited mobility of CB1190, the augmented catabolic potential may be restricted to the immediate vicinity of the inoculation port. Accordingly, bioaugmentation with CB1190 seems more appropriate for the establishment of biobarriers. Bioaugmentation efficiency was associated with the availability of oxygen. Aeration of the column influent to increase dissolved oxygen significantly improved dioxane removal (p < 0.05), suggesting that (for sites with oxygen-limiting conditions) bioaugmentation can benefit from engineered approaches for delivering additional oxygen.
Collapse
Affiliation(s)
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
14
|
Xiong Y, Mason OU, Lowe A, Zhang Z, Zhou C, Chen G, Villalonga MJ, Tang Y. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation 2020; 31:171-182. [PMID: 32361902 DOI: 10.1007/s10532-020-09901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e., C1-C4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders-Mycobacterium, Flavobacterium and Bradyrhizobiaceae-were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Olivia U Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Ashlee Lowe
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Chao Zhou
- Geosyntec Consultants Inc., Huntington Beach, CA, 92648, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Michael J Villalonga
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
15
|
Li F, Deng D, Li M. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1898-1908. [PMID: 31877031 DOI: 10.1021/acs.est.9b05671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitored natural attenuation (MNA) and engineered bioremediation have been recognized as effective and cost-efficient in situ treatments to mitigate 1,4-dioxane (dioxane) contamination. Dioxane metabolism can be initiated by two catabolic enzymes, propane monooxygenase (PRM) and tetrahydrofuran monooxygenase (THM), belonging to the group-6 and 5 of soluble di-iron monooxygenase family, respectively. In this study, we comprehensively compared catalytic behaviors of PRM and THM when individually expressed in the heterologous host, Mycobacterium smegmatis mc2-155. Kinetic results revealed a half-saturation coefficient (Km) of 53.0 ± 13.1 mg/L for PRM, nearly 4 times lower than that of THM (235.8 ± 61.6 mg/L), suggesting that PRM has a higher affinity to dioxane. Exposure with three common co-contaminants (1,1-dichloroethene, trichloroethene, and 1,1,1-trichloroethane) demonstrated that PRM was also more resistant to their inhibition than THM. Thus, dioxane degraders expressing PRM may be more physiologically and ecologically advantageous than those with THM at impacted sites, where dioxane concentration is relatively low (e.g., 250 to 1000 μg/L) with co-occurrence of chlorinated solvents (e.g., 0.5 to 8 mg/L), underscoring the need of surveying both PRM and THM-encoding genes for MNA potential assessment. PRM is also highly versatile, which breaks down cyclic molecules (dioxane, tetrahydrofuran, and cyclohexane), as well as chlorinated and aromatic pollutants, including vinyl chloride, 1,2-dichloroethane, benzene, and toluene. This is the first report regarding the ability of PRM to degrade a variety of short-chain alkanes and ethene in addition to dioxane, unraveling its pivotal role in aerobic biostimulation that utilizes propane, isobutane, or other gaseous alkanes/alkenes (e.g., ethane, butane, and ethene) to select and fuel indigenous microorganisms to tackle the commingled contamination of dioxane and chlorinated compounds.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Daiyong Deng
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
16
|
Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula. Appl Microbiol Biotechnol 2020; 104:2255-2269. [DOI: 10.1007/s00253-020-10376-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
17
|
Inoue D, Tsunoda T, Sawada K, Yamamoto N, Sei K, Ike M. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. CHEMOSPHERE 2020; 238:124606. [PMID: 31446278 DOI: 10.1016/j.chemosphere.2019.124606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effects of various metals on 1,4-dioxane degradation by the following four bacteria: Pseudonocardia sp. D17; Pseudonocardia sp. N23; Mycobacterium sp. D6; and Rhodococcus aetherivorans JCM 14343. Eight transition metals [Co(II), Cu(II), Fe(II), Fe(III), Mn(II), Mo(VI), Ni(II), and Zn(II)] were used as the test metals. Results revealed, for the first time, that metals had not only inhibitory but also stimulatory effects on 1,4-dioxane biodegradation. Cu(II) had the most severe inhibitory effects on 1,4-dioxane degradation by all of the test strains, with significant inhibition at concentrations as low as 0.01-0.1 mg/L. This inhibition was probably caused by cellular toxicity at higher concentrations, and by inhibition of degradative enzymes at lower concentrations. In contrast, Fe(III) enhanced 1,4-dioxane degradation by Mycobacterium sp. D6 and R. aetherivorans JCM 14343 the most, while degradation by the two Pseudonocardia strains was stimulated most notably in the presence of Mn(II), even at concentrations as low as 0.001 mg/L. Enhanced degradation is likely caused by the stimulation of soluble di-iron monooxygenases (SDIMOs) involved in the initial oxidation of 1,4-dioxane. Differences in the stimulatory effects of the tested metals were likely associated with the particular SDIMO types in the test strains.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan; Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress. Appl Environ Microbiol 2019; 85:AEM.01196-19. [PMID: 31375492 DOI: 10.1128/aem.01196-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCE Rhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.
Collapse
|
19
|
Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate. Biodegradation 2019; 31:23-34. [PMID: 31520343 DOI: 10.1007/s10532-019-09891-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
1,4-Dioxane (DX) is a recalcitrant cyclic ether that has gained attention as an emerging pollutant in the aquatic environment. Enrichment of indigenous DX-degrading bacteria, which are considered to be minor populations even in DX-impacted environments, is the key for efficient biological DX removal. Therefore, this study aimed to explore carbon sources applicable for the enrichment of DX-degrading bacteria present in landfill leachate, which is a potential source of DX pollution. Microorganisms collected from landfill leachate were cultivated on six different carbon sources (DX, tetrahydrofuran (THF), 1,3,5-trioxane (TX), ethylene glycol (EG), diethylene glycol (DEG), and 1,4-butanediol (BD)) in a sequential batch mode. Consequently, enrichment cultures cultivated on THF in addition to DX improved the DX degradation ability compared to that of the original leachate sample, while those on the other test carbon sources did not. The results indicated that THF can be an alternative carbon source to enrich DX-degrading bacteria, and that TX, EG, DEG and BD are not applicable to concentrate DX-degrading bacteria in complex microbial consortia. In addition, sequencing analyses of 16S rRNA and soluble di-iron monooxygenase (SDIMO) genes revealed notable dominance of thm/dxm genes involved in group 5 SDIMO both in DX- and THF-enrichment cultures. The analysis also showed a predominance of Pseudonocardia in THF-enrichment culture, suggesting that Pseudonocardia harboring thm/dxm genes contributes to enhanced DX degradation in THF-enrichment culture.
Collapse
|
20
|
Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. CHEMOSPHERE 2019; 231:173-183. [PMID: 31129398 DOI: 10.1016/j.chemosphere.2019.05.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Our understanding of the tetrahydrofuran (THF) degradation in complex environment is limited. The majority of THF degrading genes reported are group V soluble diiron monooxygenases and share greater than 95% homology with one another. In this study, we used sole-carbon-source incubation combined with high-throughput metagenomic sequencing to investigate this contaminant's degradation in environmental samples. We identified as-yet-uncultivated microbe from the genera Pseudonocardia and fungi Scedosporium sp. (Scedosporium sp. was successfully isolated) as THF degraders as containing THF degradation genes, while microbes from the genera Bordetella, Pandoraea and Rhodanobacter functioned as main cooperators by utilizing acidic intermediates and providing anti-acid mechanisms. Furthermore, a 9387-bp THF degradation cluster designated thmX from the as-yet-uncultivated Pseudonocardia (with 6 main ORFs and with 79-93% amino acid sequence identity with previously reported clusters) was discovered. We also found a THF-degrading related cytochrome P450 monooxygenase from the genus Scedosporium and predicted its cognate reductase for the first time. All the genes and clusters mentioned above were successfully amplified from samples and cloned into the suitable expression vectors. This study will provide novel insights for understanding of THF degradation mechanisms under acid stress conditions and mining new THF degradation genes.
Collapse
Affiliation(s)
- Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hanbo Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China. http://
| |
Collapse
|
21
|
Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture. Biodegradation 2019; 30:467-479. [DOI: 10.1007/s10532-019-09888-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023]
|
22
|
Inoue D, Tsunoda T, Yamamoto N, Ike M, Sei K. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343. Biodegradation 2018; 29:301-310. [PMID: 29696449 DOI: 10.1007/s10532-018-9832-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022]
Abstract
Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan.,Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| |
Collapse
|
23
|
Tupa PR, Masuda H. Genomic Analysis of Propane Metabolism in Methyl Tert-Butyl Ether-Degrading Mycobacterium Sp. Strain ENV421. J Genomics 2018; 6:24-29. [PMID: 29576806 PMCID: PMC5865082 DOI: 10.7150/jgen.24929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Methyl tert-butyl ether (MTBE) is a ground water contaminant with plausible carcinogenic properties. Mycobacterium sp. strain ENV421 cometabolically degrades MTBE and other ethers during the growth on propane as a carbon source. In this study, the 6.2 Mb genome of strain ENV421 was deciphered. The genome sequence revealed the presence of numerous putative propane catabolic genes including genes encoding hydrocarbon oxygenases and short chain alcohol dehydrogenases. These data provide the basis for the elucidation of propane metabolic pathways in strain ENV421 and its application for the remediation of ground water contaminated with toxic ethers.
Collapse
Affiliation(s)
- Peter Robert Tupa
- School of Sciences, Indiana University Kokomo, Kokomo, Indiana, 46902, United States of America
| | - Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, Indiana, 46902, United States of America
| |
Collapse
|
24
|
Liu Z, He Z, Huang H, Ran X, Oluwafunmilayo AO, Lu Z. pH Stress-Induced Cooperation between Rhodococcus ruber YYL and Bacillus cereus MLY1 in Biodegradation of Tetrahydrofuran. Front Microbiol 2017; 8:2297. [PMID: 29209303 PMCID: PMC5702389 DOI: 10.3389/fmicb.2017.02297] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Microbial consortia consisting of cooperational strains exhibit biodegradation performance superior to that of single microbial strains and improved remediation efficiency by relieving the environmental stress. Tetrahydrofuran (THF), a universal solvent widely used in chemical and pharmaceutical synthesis, significantly affects the environment. As a refractory pollutant, THF can be degraded by some microbial strains under suitable conditions. There are often a variety of stresses, especially pH stress, that inhibit the THF-degradation efficiency of microbial consortia. Therefore, it is necessary to study the molecular mechanisms of microbial cooperational degradation of THF. In this study, under conditions of low pH (initial pH = 7.0) stress, a synergistic promotion of the THF degradation capability of the strain Rhodococcus ruber YYL was found in the presence of a non-THF degrading strain Bacillus cereus MLY1. Metatranscriptome analysis revealed that the low pH stress induced the strain YYL to up-regulate the genes involved in anti-oxidation, mutation, steroid and bile acid metabolism, and translation, while simultaneously down-regulating the genes involved in ATP production. In the co-culture system, strain MLY1 provides fatty acids, ATP, and amino acids for strain YYL in response to low pH stress during THF degradation. In return, YYL shares the metabolic intermediates of THF with MLY1 as carbon sources. This study provides the preliminary mechanism to understand how microbial consortia improve the degradation efficiency of refractory furan pollutants under environmental stress conditions.
Collapse
Affiliation(s)
- Zubi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhixing He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuebin Ran
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Zhenmei Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Draft Genome Sequence of Pseudonocardia sp. Strain N23, a 1,4-Dioxane-Degrading Bacterium. GENOME ANNOUNCEMENTS 2017; 5:5/44/e01240-17. [PMID: 29097474 PMCID: PMC5668550 DOI: 10.1128/genomea.01240-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudonocardia sp. strain N23 is a 1,4-dioxane-degrading bacterium that is capable of utilizing 1,4-dioxane as the sole carbon and energy source. Here, we report the draft genome sequence of strain N23, with a size of 6.5 Mbp, to identify the genes associated with 1,4-dioxane degradation.
Collapse
|
26
|
Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 2017; 28:453-468. [PMID: 29022194 DOI: 10.1007/s10532-017-9808-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.
Collapse
|
27
|
Li M, Liu Y, He Y, Mathieu J, Hatton J, DiGuiseppi W, Alvarez PJJ. Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. WATER RESEARCH 2017; 112:217-225. [PMID: 28161562 DOI: 10.1016/j.watres.2017.01.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A microcosm study was conducted to assess two biostimulation strategies (relative to natural attenuation) to bioremediate 1,4-dioxane contamination at a site in west Texas. Dioxane concentrations were relatively low (<300 μg/L), which represents a potential challenge to sustain and induce specific degraders. Thus, biostimulation was attempted with an auxiliary substrate known to induce dioxane-degrading monooxygenases (i.e., tetrahydrohyran [THF]) or with a non-inducing growth substrate (1-butanol [1-BuOH]). Amendment of 1-BuOH (100 mg/L) to microcosms that were not oxygen-limited temporarily enhanced dioxane biodegradation by the indigenous microorganisms. However, this stimulatory effect was not sustained by repeated amendments, which might be attributed to i) the inability of 1-BuOH to induce dioxane-degrading enzymes, ii) curing of catabolic plasmids, iii) metabolic flux dilution and catabolite repression, and iv) increased competition by commensal bacteria that do not degrade dioxane. Experiments with the archetype dioxane degrader Pseudonocardia dioxanivorans CB1190 repeatedly amended with 1-BuOH (500 mg/L added weekly for 4 weeks) corroborated the partial curing of catabolic plasmids (9.5 ± 7.4% was the plasmid retention ratio) and proliferation of derivative segregants that lost their ability to degrade dioxane. Addition of THF (300 μg/L) also had limited benefit due to competitive inhibition; significant dioxane degradation occurred only when the THF concentration decreased below approximately 160 μg/L. Overall, these results illustrate the importance of considering the possibility of unintentional hindrance of catabolism associated with the addition of auxiliary carbon sources to bioremediate aquifers impacted with trace concentrations of dioxane.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA; Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
28
|
Gedalanga P, Madison A, Miao Y(R, Richards T, Hatton J, DiGuiseppi WH, Wilson J, Mahendra S. A Multiple Lines of Evidence Framework to Evaluate Intrinsic Biodegradation of 1,4‐Dioxane. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phillip Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California
| | | | | | | | - James Hatton
- CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| | | | | | | |
Collapse
|
29
|
DiGuiseppi W, Walecka-Hutchison C, Hatton J. 1,4-Dioxane Treatment Technologies. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Jim Hatton
- CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| |
Collapse
|
30
|
Zhang S, Gedalanga PB, Mahendra S. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9599-9607. [PMID: 27486928 DOI: 10.1021/acs.est.6b02797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the impacts of individual chlorinated solvents and their mixtures on aerobic 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190. The established association of these co-occurring compounds suggests important considerations for their respective biodegradation processes. Our kinetics and mechanistic studies demonstrated that individual solvents inhibited biodegradation of 1,4-dioxane in the following order: 1,1-dichloroethene (1,1-DCE) > cis-1,2-diochloroethene (cDCE) > trichloroethene (TCE) > 1,1,1-trichloroethane (TCA). The presence of 5 mg L(-1) 1,1-DCE completely inhibited 1,4-dioxane biodegradation. Subsequently, we determined that 1,1-DCE was the strongest inhibitor of 1,4-dioxane biodegradation by bacterial pure cultures exposed to chlorinated solvent mixtures as well as in environmental samples collected from a site contaminated with chlorinated solvents and 1,4-dioxane. Inhibition of 1,4-dioxane biodegradation rates by chlorinated solvents was attributed to delayed ATP production and down-regulation of both 1,4-dioxane monooxygenase (dxmB) and aldehyde dehydrogenase (aldH) genes. Moreover, increasing concentrations of 1,1-DCE and cis-1,2-DCE to 50 mg L(-1) respectively increased 5.0-fold and 3.5-fold the expression of the uspA gene encoding a universal stress protein. In situ natural attenuation or enhanced biodegradation of 1,4-dioxane is being considered for contaminated groundwater and industrial wastewater, so these results will have implications for selecting 1,4-dioxane bioremediation strategies at sites where chlorinated solvents are present as co-contaminants.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
31
|
He Z, Zhang K, Wang H, Lv Z. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress. Front Microbiol 2015; 6:438. [PMID: 26029182 PMCID: PMC4429620 DOI: 10.3389/fmicb.2015.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions.
Collapse
Affiliation(s)
- Zhixing He
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haixia Wang
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Zhenmei Lv
- College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
32
|
Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 2014; 98:6583-97. [PMID: 24866947 DOI: 10.1007/s00253-014-5826-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Collapse
Affiliation(s)
- Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, 54296, Trier, Germany,
| | | |
Collapse
|
33
|
Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol 2014; 80:3209-18. [PMID: 24632253 DOI: 10.1128/aem.04162-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment.
Collapse
|
34
|
Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 2014; 80:2656-64. [PMID: 24532074 DOI: 10.1128/aem.04131-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although tetrahydrofuran-degrading Rhodococcus sp. strain YYL possesses tetrahydrofuran (THF) degradation genes similar to those of other tetrahydrofuran-degrading bacteria, a much higher degradation efficiency has been observed in strain YYL. In this study, nuclear magnetic resonance (NMR)-based metabolomics analyses were performed to explore the metabolic profiling response of strain YYL to exposure to THF. Exposure to THF slightly influenced the metabolome of strain YYL when yeast extract was present in the medium. The metabolic profile of strain YYL over time was also investigated using THF as the sole carbon source to identify the metabolites associated with high-efficiency THF degradation. Lactate, alanine, glutarate, glutamate, glutamine, succinate, lysine, trehalose, trimethylamine-N-oxide (TMAO), NAD(+), and CTP were significantly altered over time in strain YYL grown in 20 mM THF. Real-time quantitative PCR (RT-qPCR) revealed changes in the transcriptional expression levels of 15 genes involved in THF degradation, suggesting that strain YYL could accumulate several disturbances in osmoregulation (trehalose, glutamate, glutamine, etc.), with reduced glycolysis levels, an accelerated tricarboxylic acid cycle, and enhanced protein synthesis. The findings obtained through (1)H NMR metabolomics analyses and the transcriptional expression of the corresponding genes are complementary for exploring the dynamic metabolic profile in organisms.
Collapse
|
35
|
Stepien DK, Diehl P, Helm J, Thoms A, Püttmann W. Fate of 1,4-dioxane in the aquatic environment: from sewage to drinking water. WATER RESEARCH 2014; 48:406-19. [PMID: 24200013 DOI: 10.1016/j.watres.2013.09.057] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 05/12/2023]
Abstract
Potential health effects of 1,4-dioxane and the limited data on its occurrence in the water cycle command for more research. In the current study, mobility and persistence of 1,4-dioxane in the sewage-, surface-, and drinking water was investigated. The occurrence of 1,4-dioxane was determined in wastewater samples from four domestic sewage treatment plants (STP). The influent and effluent samples were collected during weekly campaigns. The average influent concentrations in all four plants ranged from 262 ± 32 ng L(-1) to 834 ± 480 ng L(-1), whereas the average effluent concentrations were between 267 ± 35 ng L(-1) and 62,260 ± 36,000 ng L(-1). No removal of 1,4-dioxane during water treatment was observed. Owing to its strong internal chemical bonding, 1,4-dioxane is considered non-biodegradable under conventional bio-treatment technologies. The source of increased 1,4-dioxane concentrations in the effluents was identified to originate from impurities in the methanol used in the postanoxic denitrification process in one of the STPs. In view of poor biodegradation in STPs, surface water samples were collected to establish an extent of 1,4-dioxane pollution. Spatial and temporal distribution of 1,4-dioxane in the Rivers Main, Rhine, and Oder was examined. Concentrations reaching 2200 ng L(-1) in the Oder River, and 860 ng L(-1) in both Main and Rhine River were detected. The average monthly load of 1,4-dioxane in the Rhine River was calculated to equal to 172 kg d(-1). In all rivers, concentration of 1,4-dioxane increased with distance from the spring and was found to negatively correlate with the discharge of the river. Additionally, bank filtration and drinking water samples from two drinking water facilities were analyzed for the presence of 1,4-dioxane. The raw water contained 650 ng L(-1)-670 ng L(-1) of 1,4-dioxane, whereas the concentration in the drinking water fell only to 600 ng L(-1) and 490 ng L(-1), respectively. Neither of the purification processes employed was able to reduce the presence of 1,4-dioxane below the precautionary guideline limit of 100 ng L(-1) set by the German Federal Environmental Agency.
Collapse
Affiliation(s)
- Daria K Stepien
- Department of Environmental Analytical Chemistry, Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhoeferallee 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
36
|
Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 2013; 79:7702-8. [PMID: 24096414 DOI: 10.1128/aem.02418-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite β-hydroxyethoxyacetic acid (HEAA) and on THF. Comparison of the transcriptomes of CB1190 grown on THF and succinate (an intermediate of THF degradation) permitted the identification of other genes involved in THF metabolism. Dioxane and THF oxidation activity of the THF MO was verified in Rhodococcus jostii RHA1 cells heterologously expressing the CB1190 thmADBC gene cluster. Interestingly, these thmADBC expression clones accumulated HEAA as a dead-end product of dioxane transformation, indicating that despite its genes being transcriptionally upregulated during growth on HEAA, the THF MO enzyme is not responsible for degradation of HEAA in CB1190. Similar activities were also observed in RHA1 cells heterologously expressing the thmADBC gene cluster from Pseudonocardia tetrahydrofuranoxydans K1.
Collapse
|