1
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
2
|
Jin Z, Wang J, Chen Y. Estrogen Regulates Scribble Localization in Endometrial Epithelial Cells Through Acyl Protein Thioesterase (APT)-Mediated S-Palmitoylation in Adenomyosis. Reprod Sci 2024; 31:128-138. [PMID: 37603234 DOI: 10.1007/s43032-023-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Despite its prevalence and the severity of symptoms, little is known about the pathogenesis and etiology of adenomyosis. In our previous study, Scribble localization has been found to be partially translocated to cytoplasm; however, its regulatory mechanism is known. In consideration of the important role of supraphysiologic estrogen production in the endometrium in the development of adenomyosis, we analyzed the effect and mechanism of estrogen on Scribble localization in vivo and in vitro. Firstly, we found Scribble translocation from the basolateral membrane to the cytoplasm was easily to be seen in women and mice with adenomyosis (68% vs 27%, 60% vs 10% separately). After treatment with the S-palmitoylation inhibitor 2-bromopalmitate for 48H, cytoplasmic enrichment of Scribble and the reduced level of palm-Scribble was observed by immunofluorescence, Western blot, and acyl-biotin exchange palmitoylation assay. High estrogen exposure could not only induce partially cytoplasmic translocation of Scribble but also decrease the expression level of palm-Scribble, which can be recovered by estrogen receptor inhibitor ICI182,780. Based on following experiments, we found that estrogen regulated Scribble localization by APT through S-palmitoylation of Scribble protein. At last, IHC was performed to verify the expression of APT1 and APT2 in human clinical tissue specimens and found that they were all increased dramatically. Furthermore, positive correlations were found between APT1 or APT2 and aromatase P450. Therefore, our research may provide a new understanding of the pathogenesis of adenomyosis.
Collapse
Affiliation(s)
- Zhixing Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Thüring EM, Hartmann C, Maddumage JC, Javorsky A, Michels BE, Gerke V, Banks L, Humbert PO, Kvansakul M, Ebnet K. Membrane recruitment of the polarity protein Scribble by the cell adhesion receptor TMIGD1. Commun Biol 2023; 6:702. [PMID: 37430142 DOI: 10.1038/s42003-023-05088-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Scribble (Scrib) is a multidomain polarity protein and member of the leucine-rich repeat and PDZ domain (LAP) protein family. A loss of Scrib expression is associated with disturbed apical-basal polarity and tumor formation. The tumor-suppressive activity of Scrib correlates with its membrane localization. Despite the identification of numerous Scrib-interacting proteins, the mechanisms regulating its membrane recruitment are not fully understood. Here, we identify the cell adhesion receptor TMIGD1 as a membrane anchor of Scrib. TMIGD1 directly interacts with Scrib through a PDZ domain-mediated interaction and recruits Scrib to the lateral membrane domain in epithelial cells. We characterize the association of TMIGD1 with each Scrib PDZ domain and describe the crystal structure of the TMIGD1 C-terminal peptide complexed with PDZ domain 1 of Scrib. Our findings describe a mechanism of Scrib membrane localization and contribute to the understanding of the tumor-suppressive activity of Scrib.
Collapse
Affiliation(s)
- Eva-Maria Thüring
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Janesha C Maddumage
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Airah Javorsky
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Birgitta E Michels
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marc Kvansakul
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
4
|
Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers (Basel) 2021; 13:cancers13174461. [PMID: 34503271 PMCID: PMC8430552 DOI: 10.3390/cancers13174461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The process of HPV-mediated oncogenesis in HNSCCs is not fully understood. DLG1 and SCRIB protein expression levels and localization changes were evaluated in a number of HPV16-positive and HPV-negative OPSCCs and seem to be associated with malignant transformation. Moreover, loss of SCRIB expression inversely correlates with higher grade tumors, and this is much more evident in the presence of HPV16 E6. This could serve as a potential marker in predicting development of OPSCCs. Abstract The major causative agents of head and neck squamous cell carcinomas (HNSCCs) are either environmental factors, such as tobacco and alcohol consumption, or infection with oncogenic human papillomaviruses (HPVs). An important aspect of HPV-induced oncogenesis is the targeting by the E6 oncoprotein of PDZ domain-containing substrates for proteasomal destruction. Tumor suppressors DLG1 and SCRIB are two of the principal PDZ domain-containing E6 targets. Both have been shown to play critical roles in the regulation of cell growth and polarity and in maintaining the structural integrity of the epithelia. We investigated how modifications in the cellular localization and protein expression of DLG1 and SCRIB in HPV16-positive and HPV-negative histologic oropharyngeal squamous cell carcinomas (OPSCC) might reflect disease progression. HPV presence was determined by p16 staining and HPV genotyping. Whilst DLG1 expression levels did not differ markedly between HPV-negative and HPV16-positive OPSCCs, it appeared to be relocated from cell–cell contacts to the cytoplasm in most samples, regardless of HPV16 positivity. This indicates that alterations in DLG1 distribution could contribute to malignant progression in OPSCCs. Interestingly, SCRIB was also relocated from cell–cell contacts to the cytoplasm in the tumor samples in comparison with normal tissue, regardless of HPV16 status, but in addition there was an obvious reduction in SCRIB expression in higher grade tumors. Strikingly, loss of SCRIB was even more pronounced in HPV16-positive OPSCCs. These alterations in SCRIB levels may contribute to transformation and loss of tissue architecture in the process of carcinogenesis and could potentially serve as markers in the development of OPSCCs.
Collapse
|
5
|
Catterall R, Lelarge V, McCaffrey L. Genetic alterations of epithelial polarity genes are associated with loss of polarity in invasive breast cancer. Int J Cancer 2019; 146:1578-1591. [PMID: 31577845 DOI: 10.1002/ijc.32691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Breast cancer remains a leading cause of cancer-related death for women. The stepwise development of breast cancer through preinvasive to invasive disease is associated with progressive disruption of cellular and tissue organization. Apical-basal polarity is thought to be a barrier to breast cancer development, but the extent and potential mechanisms that contribute to disrupted polarity are incompletely understood. To investigate the cell polarity status of invasive breast cancers, we performed multiplex imaging of polarity markers on tissue cores from 432 patients from a spectrum of grades, stages and molecular subtypes. Apical-basal cell polarity was lost in 100% of cells in all cases studied, indicating that loss of epithelial polarity may be a universal feature of invasive breast cancer. We then analyzed genomic events from the TCGA dataset for an 18-gene set of core polarity genes. Coamplification of polarity genes with established breast oncogenes was found, which is consistent with functional cooperation within signaling amplicons. Gene-expression levels of several polarity genes were significantly associated with survival, and protein localization of Par6 correlated with higher grade, nodal metastasis and molecular subtype. Finally, multiple hotspot mutations in protein-protein interaction domains critical for cell polarity were identified. Our data indicate that genomic events likely contribute to pervasive disruption of epithelial polarity observed in invasive breast cancer.
Collapse
Affiliation(s)
- Rachel Catterall
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Virginie Lelarge
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Saito Y, Desai RR, Muthuswamy SK. Reinterpreting polarity and cancer: The changing landscape from tumor suppression to tumor promotion. Biochim Biophys Acta Rev Cancer 2018; 1869:103-116. [DOI: 10.1016/j.bbcan.2017.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
|
7
|
Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE. The Scribble Cell Polarity Module in the Regulation of Cell Signaling in Tissue Development and Tumorigenesis. J Mol Biol 2018; 430:3585-3612. [PMID: 29409995 DOI: 10.1016/j.jmb.2018.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/22/2023]
Abstract
The Scribble cell polarity module, comprising Scribbled (Scrib), Discs-large (Dlg) and Lethal-2-giant larvae (Lgl), has a tumor suppressive role in mammalian epithelial cancers. The Scribble module proteins play key functions in the establishment and maintenance of different modes of cell polarity, as well as in the control of tissue growth, differentiation and directed cell migration, and therefore are major regulators of tissue development and homeostasis. Whilst molecular details are known regarding the roles of Scribble module proteins in cell polarity regulation, their precise mode of action in the regulation of other key cellular processes remains enigmatic. An accumulating body of evidence indicates that Scribble module proteins play scaffolding roles in the control of various signaling pathways, which are linked to the control of tissue growth, differentiation and cell migration. Multiple Scrib, Dlg and Lgl interacting proteins have been discovered, which are involved in diverse processes, however many function in the regulation of cellular signaling. Herein, we review the components of the Scrib, Dlg and Lgl protein interactomes, and focus on the mechanism by which they regulate cellular signaling pathways in metazoans, and how their disruption leads to cancer.
Collapse
Affiliation(s)
- Rebecca Stephens
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Krystle Lim
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O Humbert
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Victoria, Australia; Department of Biochemistry & Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Anatomy & Neurobiology, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
8
|
Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol 2018; 53:83-98. [PMID: 29239216 PMCID: PMC6009847 DOI: 10.1080/10409238.2017.1409191] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Protein depalmitoylation describes the removal of thioester-linked long chain fatty acids from cysteine residues in proteins. For many S-palmitoylated proteins, this process is promoted by acyl protein thioesterase enzymes, which catalyze thioester hydrolysis to solubilize and displace substrate proteins from membranes. The closely related enzymes acyl protein thioesterase 1 (APT1; LYPLA1) and acyl protein thioesterase 2 (APT2; LYPLA2) were initially identified from biochemical assays as G protein depalmitoylases, yet later were shown to accept a number of S-palmitoylated protein and phospholipid substrates. Leveraging the development of isoform-selective APT inhibitors, several studies report distinct roles for APT enzymes in growth factor and hormonal signaling. Recent crystal structures of APT1 and APT2 reveal convergent acyl binding channels, suggesting additional factors beyond acyl chain recognition mediate substrate selection. In addition to APT enzymes, the ABHD17 family of hydrolases contributes to the depalmitoylation of Ras-family GTPases and synaptic proteins. Overall, enzymatic depalmitoylation ensures efficient membrane targeting by balancing the palmitoylation cycle, and may play additional roles in signaling, growth, and cell organization. In this review, we provide a perspective on the biochemical, structural, and cellular analysis of protein depalmitoylases, and outline opportunities for future studies of systems-wide analysis of protein depalmitoylation.
Collapse
Affiliation(s)
- Sang Joon Won
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
| | | | - Brent R Martin
- a Program in Chemical Biology , University of Michigan , Ann Arbor , MI , USA
- b Department of Chemistry , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
9
|
A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3-GENES GENOMES GENETICS 2017; 7:2497-2509. [PMID: 28611255 PMCID: PMC5555457 DOI: 10.1534/g3.117.043513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.
Collapse
|
10
|
Kharfallah F, Guyot MC, El Hassan AR, Allache R, Merello E, De Marco P, Di Cristo G, Capra V, Kibar Z. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet 2017; 26:2307-2320. [DOI: 10.1093/hmg/ddx122] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/12/2023] Open
|
11
|
APT2 Inhibition Restores Scribble Localization and S-Palmitoylation in Snail-Transformed Cells. Cell Chem Biol 2017; 24:87-97. [PMID: 28065656 DOI: 10.1016/j.chembiol.2016.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 12/13/2016] [Indexed: 11/23/2022]
Abstract
The multidomain scaffolding protein Scribble (Scrib) organizes key signaling complexes to specify basolateral cell polarity and suppress aberrant growth. In many human cancers, genetically normal Scrib mislocalizes from cell-cell junctions to the cytosol, correlating with enhanced growth signaling and malignancy. Here we confirm that expression of the epithelial-to-mesenchymal transcription factor (EMT-TF) Snail in benign epithelial cells leads to Scrib displacement from the plasma membrane, mimicking the mislocalization observed in aggressive cancers. Upon further examination, Snail promotes a transcriptional program that targets genes in the palmitoylation cycle, repressing many protein acyl transferases and elevating expression and activity of protein acyl thioesterase 2 (APT2). APT2 isoform-selective inhibition or knockdown rescued Scrib membrane localization and palmitoylation while attenuating MEK activation. Overall, inhibiting APT2 restores balance to the Scrib palmitoylation cycle, promoting membrane re-localization and growth attenuation. These findings emphasize the importance of S-palmitoylation as a post-translational gatekeeper of cell polarity-mediated tumor suppression.
Collapse
|
12
|
Abstract
The spatial regulation of cellular Rho signaling by GEF and GAP proteins and the molecular mechanisms controlling the Rho regulators themselves are still incompletely understood. We previously reported that the poorly characterized RhoGAP protein DLC3 localizes to cell-cell adhesions and Rab8-positive membrane tubules. However, it was unclear how DLC3 is targeted to these subcellular sites to execute its functions. In our recent work, protein partners of DLC3 were identified by mass spectrometry, identifying the basolateral polarity protein Scribble as a scaffold for DLC3 at cell-cell contacts. We found that the PDZ-mediated interaction of DLC3 and Scribble is essential for junctional DLC3 recruitment and its role as a local regulator of RhoA-ROCK signaling controlling adherens junction integrity and Scribble localization. Furthermore, DLC3 and Scribble depletion interfered with polarized lumen formation in a 3D model of cyst morphogenesis, emphasizing the relevance of both proteins in epithelial polarity. These findings reveal a new mechanism for spatial Rho regulation at adherens junctions in polarized epithelial cells and highlight the necessity to investigate DLC3 localization and function also in cellular contexts that require cell junction remodeling.
Collapse
Affiliation(s)
- Janina Hendrick
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| | - Monilola A Olayioye
- a Institute of Cell Biology and Immunology, University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
13
|
Smith LK, Thomas DW, Simpson KJ, Humbert PO. A Phenotypic High-Content Screening Assay to Identify Regulators of Membrane Protein Localization. Assay Drug Dev Technol 2016; 14:478-488. [PMID: 27661290 DOI: 10.1089/adt.2016.733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Correct subcellular localization of proteins is a requirement for appropriate function. This is especially true in epithelial cells, which rely on the precise localization of a diverse array of epithelial polarity and cellular adhesion proteins. Loss of cell polarity and adhesion is a hallmark of cancer, and mislocalization of core polarity proteins, such as Scribble, is observed in a range of human epithelial tumors and is prognostic of poor survival. Despite this, little is known about how Scribble membrane localization is regulated. Here, we describe the development and application of a phenotypic high-content screening assay that is designed to specifically quantify membrane levels of Scribble to identify regulators of its membrane localization. A screening platform that is capable of resolving individual cells and quantifying membrane protein localization in confluent epithelial monolayers was developed by using the cytoplasm-to-cell-membrane bioapplication integrated with the Cellomics ArrayScan high-content imaging platform. Application of this method to a boutique human epithelial polarity and signaling small interfering RNA (siRNA) library resulted in highly robust coefficient-of-variance and Z' factor values. As proof of concept, we present two candidate genes whose depletion specifically reduces Scribble protein levels at the membrane. Data mining revealed that these proteins interact with components of the Scribble polarity complex, providing support for the utility of the screening approach. This method is broadly applicable to genome-wide and large-scale compound screening of membrane-bound proteins, and when coupled with pathway analysis the dataset becomes even more valuable and can provide predictive mechanistic insight.
Collapse
Affiliation(s)
- Lorey K Smith
- 1 Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre , Victoria, Australia
| | - Daniel W Thomas
- 2 The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre , Victoria, Australia
| | - Kaylene J Simpson
- 2 The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre , Victoria, Australia .,3 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia .,4 Department of Pathology, University of Melbourne , Parkville, Australia
| | - Patrick O Humbert
- 1 Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre , Victoria, Australia .,3 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia .,4 Department of Pathology, University of Melbourne , Parkville, Australia .,5 Department of Biochemistry and Molecular Biology, University of Melbourne , Parkville, Australia .,6 La Trobe Institute for Molecular Science, Department of Biochemistry and Genetics, La Trobe University , Melbourne, Australia
| |
Collapse
|
14
|
Hendrick J, Franz-Wachtel M, Moeller Y, Schmid S, Macek B, Olayioye MA. The polarity protein Scribble positions DLC3 at adherens junctions to regulate Rho signaling. J Cell Sci 2016; 129:3583-3596. [PMID: 27505894 DOI: 10.1242/jcs.190074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/01/2016] [Indexed: 12/31/2022] Open
Abstract
The spatial regulation of cellular Rho signaling by GAP proteins is still poorly understood. By performing mass spectrometry, we here identify the polarity protein Scribble as a scaffold for the RhoGAP protein DLC3 (also known as StarD8) at cell-cell adhesions. This mutually dependent interaction is mediated by the PDZ domains of Scribble and a PDZ ligand (PDZL) motif in DLC3. Both Scribble depletion and PDZL deletion abrogated DLC3 junctional localization. Using a RhoA biosensor and a targeted GAP domain, we demonstrate that DLC3 activity locally regulates RhoA-ROCK signaling at and Scribble localization to adherens junctions, and is required for their functional integrity. In a 3D model of cyst development, we furthermore show that DLC3 depletion impairs polarized morphogenesis, phenocopying the effects observed upon Scribble knockdown. We thus propose a new function for Scribble in Rho regulation that entails positioning of DLC3 GAP activity at cell junctions in polarized epithelial cells.
Collapse
Affiliation(s)
- Janina Hendrick
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Yvonne Moeller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany
| | - Simone Schmid
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany
| | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Auf der Morgenstelle 15, Tübingen 72076, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart 70569, Germany
| |
Collapse
|
15
|
Chen B, Zheng B, DeRan M, Jarugumilli GK, Fu J, Brooks YS, Wu X. ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nat Chem Biol 2016; 12:686-93. [PMID: 27380321 PMCID: PMC4990496 DOI: 10.1038/nchembio.2119] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Scribble (SCRIB) is a tumor suppressor protein, playing critical roles in establishing and maintaining epithelial cell polarity. Paradoxically, SCRIB is frequently amplified in human cancers, however, fails to localize properly to cell-cell junctions, suggesting that mislocalization of SCRIB contributes to tumorigenesis. Using chemical reporters, here we showed that SCRIB localization is regulated by S-palmitoylation at conserved cysteine residues. The palmitoylation-deficient mutants of SCRIB are mislocalized, leading to disruption of cell polarity and loss of their tumor suppressive activities to oncogenic YAP, MAPK and PI3K/Akt pathways. We further found that ZDHHC7 is the major palmitoyl acyltransferase regulating SCRIB. Knockout of ZDHHC7 led to SCRIB mislocalization and YAP activation, and disruption of SCRIB’s suppressive activities in HRasV12-induced cell invasion. In summary, we demonstrated that ZDHHC7-mediated SCRIB palmitoylation is critical for SCRIB membrane targeting, cell polarity, and tumor suppression, providing new mechanistic insights of how dynamic protein palmitoylation regulates cell polarity and tumorigenesis.
Collapse
Affiliation(s)
- Baoen Chen
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Baohui Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael DeRan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jianjun Fu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yang S Brooks
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
16
|
Gandalovičová A, Vomastek T, Rosel D, Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget 2016; 7:25022-49. [PMID: 26872368 PMCID: PMC5041887 DOI: 10.18632/oncotarget.7214] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 01/29/2016] [Indexed: 02/07/2023] Open
Abstract
Apico-basal polarity is typical of cells present in differentiated epithelium while front-rear polarity develops in motile cells. In cancer development, the transition from epithelial to migratory polarity may be seen as the hallmark of cancer progression to an invasive and metastatic disease. Despite the morphological and functional dissimilarity, both epithelial and migratory polarity are controlled by a common set of polarity complexes Par, Scribble and Crumbs, phosphoinositides, and small Rho GTPases Rac, Rho and Cdc42. In epithelial tissues, their mutual interplay ensures apico-basal and planar cell polarity. Accordingly, altered functions of these polarity determinants lead to disrupted cell-cell adhesions, cytoskeleton rearrangements and overall loss of epithelial homeostasis. Polarity proteins are further engaged in diverse interactions that promote the establishment of front-rear polarity, and they help cancer cells to adopt different invasion modes. Invading cancer cells can employ either the collective, mesenchymal or amoeboid invasion modes or actively switch between them and gain intermediate phenotypes. Elucidation of the role of polarity proteins during these invasion modes and the associated transitions is a necessary step towards understanding the complex problem of metastasis. In this review we summarize the current knowledge of the role of cell polarity signaling in the plasticity of cancer cell invasiveness.
Collapse
Affiliation(s)
- Aneta Gandalovičová
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Tomáš Vomastek
- Institute of Microbiology, Academy of Sciences of The Czech Republic, Videňská, Prague, Czech Republic
| | - Daniel Rosel
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University in Prague, Viničná, Prague, Czech Republic
| |
Collapse
|
17
|
Boëda B, Etienne-Manneville S. Spectrin binding motifs regulate Scribble cortical dynamics and polarity function. eLife 2015; 4. [PMID: 25664942 PMCID: PMC4350421 DOI: 10.7554/elife.04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/08/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor protein Scribble (SCRIB) plays an evolutionary conserved role in cell polarity. Despite being central for its function, the molecular basis of SCRIB recruitment and stabilization at the cell cortex is poorly understood. Here we show that SCRIB binds directly to the CH1 domain of β spectrins, a molecular scaffold that contributes to the cortical actin cytoskeleton and connects it to the plasma membrane. We have identified a short evolutionary conserved peptide motif named SADH motif (SCRIB ABLIMs DMTN Homology) which is necessary and sufficient to mediate protein interaction with β spectrins. The SADH domains contribute to SCRIB dynamics at the cell cortex and SCRIB polarity function. Furthermore, mutations in SCRIB SADH domains associated with spina bifida and cancer impact the stability of SCRIB at the plasma membrane, suggesting that SADH domain alterations may participate in human pathology. DOI:http://dx.doi.org/10.7554/eLife.04726.001 Proteins found in cells often have more than one role. Scribble is one such multi-tasking protein that is found in a diverse range of species, including fruit flies and humans. Although Scribble commonly helps to ensure that the components of a cell are in their correct locations, its exact roles vary between species. To perform its role well, Scribble itself must localize to the cell cortex—the inside surface of the cell membrane—at the regions where cells connect to one another. How this localization occurs is not fully understood; and defects in the human form of Scribble have been linked to diseases including spina bifida and cancer. Much of the Scribble protein is very similar across different species, but the fruit fly and human version of the protein have large differences in their ‘C-terminal region’ that makes up one end of each protein. Boëda and Etienne-Manneville now show that in humans and other animals with backbones—but not in fruit flies—the C-terminal region of Scribble contains three repeats of a sequence called the SADH motif. These motifs can bind to proteins called beta spectrins, which connect the cell's outer membrane to the scaffolding-like structure inside the cell that provides support. Mutations that alter the SADH motif interfere with Scribble's ability to bind to the scaffolding, and alters Scribble localization at cell–cell contacts or the cell cortex. Boëda and Etienne-Manneville also found that some mutations linked to spina bifida and cancer affect the SADH motif, suggesting that this motif has a wider role in disease. While the abnormal localization of Scribble inside cells is frequently observed in particularly difficult to survive cancers, the molecular mechanism that causes Scribble to fail to localize to the cell periphery is still poorly understood. Boëda and Etienne-Manneville's work establishes the beta spectrin family of proteins as regulators that stabilize Scribble at the cell cortex and suggests that Scribble-associated diseases might depend on the integrity of the spectrin network. DOI:http://dx.doi.org/10.7554/eLife.04726.002
Collapse
Affiliation(s)
- Batiste Boëda
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS UMR 3691, Paris, France
| | | |
Collapse
|
18
|
Rewiring cell polarity signaling in cancer. Oncogene 2014; 34:939-50. [PMID: 24632617 DOI: 10.1038/onc.2014.59] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical-basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical-basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.
Collapse
|
19
|
Chatterjee SJ, McCaffrey L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. BREAST CANCER-TARGETS AND THERAPY 2014; 6:15-27. [PMID: 24648766 PMCID: PMC3929326 DOI: 10.2147/bctt.s43764] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous group of diseases that frequently exhibits loss of growth control, and disrupted tissue organization and differentiation. Several recent studies indicate that apical–basal polarity provides a tumor-suppressive function, and that disrupting polarity proteins affects many stages of breast cancer progression from initiation through metastasis. In this review we highlight some of the recent advances in our understanding of the molecular mechanisms by which loss of apical–basal polarity deregulates apoptosis, proliferation, and promotes invasion and metastasis in breast cancer.
Collapse
Affiliation(s)
- Sudipa June Chatterjee
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Centre, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Elsum IA, Martin C, Humbert PO. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J Cell Sci 2013; 126:3990-9. [PMID: 23813956 DOI: 10.1242/jcs.129387] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The crucial role the Crumbs and Par polarity complexes play in tight junction integrity has long been established, however very few studies have investigated the role of the Scribble polarity module. Here, we use MCF10A cells, which fail to form tight junctions and express very little endogenous Crumbs3, to show that inducing expression of the polarity protein Scribble is sufficient to promote tight junction formation. We show this occurs through an epithelial-to-mesenchymal (EMT) pathway that involves Scribble suppressing ERK phosphorylation, leading to downregulation of the EMT inducer ZEB. Inhibition of ZEB relieves the repression on Crumbs3, resulting in increased expression of this crucial tight junction regulator. The combined effect of this Scribble-mediated pathway is the upregulation of a number of junctional proteins and the formation of functional tight junctions. These data suggests a novel role for Scribble in positively regulating tight junction assembly through transcriptional regulation of an EMT signaling program.
Collapse
Affiliation(s)
- Imogen A Elsum
- Cell Cycle and Cancer Genetics, Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | |
Collapse
|
21
|
Newgreen DF, Thompson EW. Progress in epithelial-mesenchymal transition research. Cells Tissues Organs 2013; 197:421-3. [PMID: 23774311 DOI: 10.1159/000351732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|