1
|
Deva JP, Ngeow YF, Zin T. The association between VSX1 exon3 gene variants and keratoconus in Malaysian patients. Indian J Ophthalmol 2023; 71:2443-2447. [PMID: 37322657 PMCID: PMC10418017 DOI: 10.4103/ijo.ijo_2894_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose This case-control study aims to examine possible associations of VSX1 exon3 gene variants with the development of keratoconus (KC) in Malaysian patients. Methods A case-control study was done on 42 keratoconus cases, 127 family member controls, and 96 normal controls. Results Three gene variants, p.A182A, p.P237P, and p.R217H showed significant associations with keratoconus (P < 0.05). While p.A182A and p.P227P were more prevalent than in the family and normal controls (OR 3.14-4.05), the reverse was observed with p.R217H (OR 0.086-1.59). With Haploview analysis, p.A182A and p.P237P were shown to be in linkage disequilibrium (LD) (LOD (logarithm of the odds score) score of 2.0, r2 of 0.957, and 95% confidence interval (CI) of 0.96-1.00). Conclusion The study results suggest that the p.A182A and p.P237P variants could have contributed to the development of keratoconus in some Malaysians and that these two variants are likely to be co-inherited. In contrast, the p.R217H variant appeared to confer some protection against the development of keratoconus.
Collapse
Affiliation(s)
- Jenny P Deva
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, Malaysia
| | - Yun F Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, Malaysia
| | - Thaw Zin
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg Long, Malaysia
| |
Collapse
|
2
|
Chakravarty M, Ponnam SPG, Bardoloi N, Kumar S, Saikia P. A comprehensive molecular genetic analysis of keratoconus patients from assam, a northeastern state of India. Eur J Ophthalmol 2022; 32:1361-1369. [PMID: 35296157 DOI: 10.1177/11206721221087551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Keratoconus (KC, OMIM: 148300) is a progressive corneal ectatic disorder characterized by thinning and protrusion of cornea resulting in visual decrement. MATERIALS AND METHODS In the current study, we recruited a total of 50 KC patients and 100 case-controls domiciles of Assam, based on preset inclusion and exclusion criteria. All the important and relevant signs and symptoms were recorded. Amsler-Krumeich's (AK) classification was followed to grade KC corneas. We screened for the novel as well as reported sequence variations in five candidate genes namely Lysyl oxidase (LOX), Visual system homeobox 1 (VSX1), MicroRNA 184 (MIR184), Superoxide dismutase 1 (SOD1), and exons 4 and 12 of Transforming growth factor beta-induced (TGFβ-I). RESULTS We report a novel double variant p.(Pro32Arg) and p.(Gln67Glu) in the LOX gene in a sporadic male patient with Grade I (OD) and Grade II (OS) of KC. A recurrent variant p.(His244Arg) in the VSX1 gene was also observed in a sporadic female patient with Grade I of KC in both eyes. These variants were absent in 100 unrelated ethnically matched case controls. DISCUSSION Ours is the first study on molecular genetic analysis of Keratoconus patients from Assam. The novel variants p.(Pro32Arg) and p.(Gln67Glu) observed further expand the mutational spectrum of the LOX gene associated with KC. We are also the first group to report the recurrent p.(His244Arg) variant in the VSX1 gene from India. The observed variant p.(His244Arg) in the VSX1 gene could be the result of a founder effect and may be investigated further.
Collapse
Affiliation(s)
- Mrigyanka Chakravarty
- Department of Molecular Biology & Biotechnology, 28688Tezpur University, Napaam, Sonitpur, Assam, India
| | - Surya Prakash Goud Ponnam
- Department of Molecular Biology & Biotechnology, 28688Tezpur University, Napaam, Sonitpur, Assam, India
| | - Narayan Bardoloi
- Department of Cornea and Anterior Segment Services, Chandraprabha Eye Hospital, Jorhat, Assam, India
| | - Subhash Kumar
- Department of Cornea and Anterior Segment Services, Chandraprabha Eye Hospital, Jorhat, Assam, India
| | - Prasanta Saikia
- Department of Vitreo-Retinal services, Chandraprabha Eye Hospital (CPEH), Jorhat, Assam, India
| |
Collapse
|
3
|
Hao XD, Gao H, Xu WH, Shan C, Liu Y, Zhou ZX, Wang K, Li PF. Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Front Med (Lausanne) 2022; 8:770138. [PMID: 35141241 PMCID: PMC8818795 DOI: 10.3389/fmed.2021.770138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023] Open
Abstract
Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Veerappa AM. Cascade of interactions between candidate genes reveals convergent mechanisms in keratoconus disease pathogenesis. Ophthalmic Genet 2021; 42:114-131. [PMID: 33554698 DOI: 10.1080/13816810.2020.1868013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Keratoconus is a progressive thinning, steepening and distortion of the cornea which can lead to loss of vision if left untreated. Keratoconus has a complex multifactorial etiology, with genetic and environmental components contributing to the disease pathophysiology. Studies have observed high concordance between monozygotic twins, discordance between dizygotic twins, and high familial segregation indicating the presence of a very strong genetic component in the pathogenesis of keratoconus. The use of genome-wide linkage studies on families and twins, genome-wide association studies (GWAS) on case-controls, next-generation sequencing (NGS)-based genomic screens on both familial and non-familial cohorts have led to the identification of keratoconus candidate genes with much greater success and increased resproducibility of genetic findings. This review focuses on candidate genes identified till date and attempts to understand their role in biological processes underlying keratoconus pathogenesis. In addition, using these genes I propose molecular pathways that could contribute to keratoconus pathogenesis. The pathways identified the presence of direct cross-talk between known candidate genes of keratoconus and remarkably, 28 known candidate genes have a direct relationship among themselves that involves direct protein-protein binding, regulatory activities such as activation and inhibition, chaperone, transcriptional activation/co-activation, and enzyme catalysis. This review attempts to describe these relationships and cross-talks in the context of keratoconus pathogenesis.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Department of Ophthalmology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Hashemzadeh-Chaleshtori M, Azadegan-Dehkordi F, Ashrafi K, Mobini G, Yazdanpanahi N, Shirzad M, Farrokhi E. Detection of two pathogenesis previously unreported myosin xva pathogenic variants in two large Iranian pedigrees with autosomal recessive nonsyndromic hearing loss. INDIAN JOURNAL OF OTOLOGY 2021. [DOI: 10.4103/indianjotol.indianjotol_73_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Litke AM, Samuelson S, Delaney KR, Sauvé Y, Chow RL. Investigating the Pathogenicity of VSX1 Missense Mutations and Their Association With Corneal Disease. Invest Ophthalmol Vis Sci 2019; 59:5824-5835. [PMID: 30535423 DOI: 10.1167/iovs.18-25490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Despite numerous studies associating Visual System Homeobox 1 (VSX1), with posterior polymorphous corneal dystrophy and keratoconus, its role in these diseases is unclear. Here we examine the pathogenicity of VSX1 missense mutations in vitro and in a mouse genetic model. Methods Vsx1 transcriptional repressor activity, protein stability, and subcellular localization activity, was examined using luciferase reporter-based assays, western blotting and immunolabeling, respectively, in transfected human embryonic kidney 293T cells. A genetic model for VSX1 p.P247R was generated to investigate pathogenicity of the mutation, in vivo. A wholemount confocal imaging approach on unfixed intact eyes was developed to examine corneal morphology, curvature, and thickness. Immunolabeling and electroretinography was used to examine retinal phenotype. Results A mutation corresponding to human VSX1 p.P247R led to enhanced transcriptional repressor activity, in vitro. A mouse model for VSX1 p.P247R did not have any observable corneal defect, but did exhibit an abnormal electroretinogram response characterized by a more prominent ON as opposed to OFF panretinal responsiveness. In vitro analysis of additional VSX1 missense mutations showed that they either enhanced repressor activity or did not alter activity. Conclusions Our results indicate that although VSX1 sequence variants can alter transcriptional activity, in the context of a mouse genetic model, at least one of these changes does not lead to corneal abnormalities. While we cannot exclude a role for VSX1 as a risk factor for corneal disease, on its own, it does not appear to play a major causative role.
Collapse
Affiliation(s)
| | - Sarah Samuelson
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kerry R Delaney
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yves Sauvé
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Robert L Chow
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Azadegan-Dehkordi F, Bahrami T, Shirzad M, Karbasi G, Yazdanpanahi N, Farrokhi E, Koohiyan M, Tabatabaiefar MA, Hashemzadeh-Chaleshtori M. Mutations in GJB2 as Major Causes of Autosomal Recessive Non-Syndromic Hearing Loss: First Report of c.299-300delAT Mutation in Kurdish Population of Iran. J Audiol Otol 2018; 23:20-26. [PMID: 30518198 PMCID: PMC6348308 DOI: 10.7874/jao.2018.00185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/12/2018] [Indexed: 11/22/2022] Open
Abstract
Background and Objectives Autosomal recessive non-syndromic hearing loss (ARNSHL) with genetic origin is common (1/2000 births). ARNSHL can be associated with mutations in gap junction protein beta 2 (GJB2). To this end, this cohort investigation aimed to find the contribution of GJB2 gene mutations with the genotype-phenotype correlations in 45 ARNSHL cases in the Kurdish population. Subjects and Methods Genomic DNA was extracted from a total of 45 ARNSHL families. The linkage analysis with 3 short tandem repeat markers linked to GJB2 was performed on 45 ARNSHL families. Only 9 of these families were linked to the DFNB1 locus. All the 45 families who took part were sequenced for confirmation linkage analysis (to perform a large project). Results A total of three different mutations were determined. Two of which [c.35delG and c.-23+1G>A (IVS1+1G>A)] were previously reported but (c.299-300delAT) mutation was novel in the Kurdish population. The homozygous pathogenic mutations of GJB2 gene was observed in nine out of the 45 families (20%), also heterozygous genotype (c.35delG/N)+(c.-23+1G>A/c.-23+1G>A) were observed in 4/45 families (8.8%). The degree of hearing loss (HL) in patients with other mutations was less severe than patients with c.35delG homozygous mutation (p<0.001). Conclusions Our data suggest that GJB2 mutations constitute 20% of the etiology of ARNSHL in Iran; moreover, the c.35delG mutation is the most common HL cause in the Kurdish population. Therefore, these mutations should be included in the molecular testing of HL in this population.
Collapse
Affiliation(s)
- Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tayyebe Bahrami
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Shirzad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gelareh Karbasi
- Kurdistan Provinces Social Welfare Organization, Kurdistan, Iran
| | - Nasrin Yazdanpanahi
- Department of Genetics, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Effat Farrokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahbobeh Koohiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
A novel variant of SLC26A4 and first report of the c.716T>A variant in Iranian pedigrees with non-syndromic sensorineural hearing loss. Am J Otolaryngol 2018; 39:719-725. [PMID: 30077349 DOI: 10.1016/j.amjoto.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
The autosomal recessive non-syndromic hearing loss (ARNSHL) can be associated with variants in solute carrier family 26, member 4 (SLC26A4) gene and is the second most common cause of ARNSHL worldwide. Therefore, this study aims to determine the contribution of the SLC26A4 genotype in the hearing loss (HL) of 40 ARNSHL pedigrees in Iran. A cohort of the 40 Iranian pedigrees with ARNSHL, having no mutation in the GJB2 gene, was selected. The linkage analysis with five short tandem repeat (STR) markers linked to SLC26A4 was performed for the 40 ARNSHL pedigrees. Then, two out of the 40 pedigrees with ARNSHL that linked to DFNB4 locus were further screened to determine the variants in all exons of SLC26A4 gene by direct DNA sequencing. The 21 exons of SCL26A4 were analyzed for the two pedigrees. A known variant (c.716T>A homozygote), it is the first reported incidence in Iran, a novel variant (c.493A>C homozygote) were detected in the two pedigrees and pathogenesis of c.493A>C confirmed in this study with review 100 hearing ethnically matched controls by PCR-RFLP analysis. The present study suggests that the SLC26A4 gene plays a crucial role in the HL occurring in Iranian pedigrees. Also, the results probably support the specificity and unique spectrum of SLC26A4 variants among Iranian HL patients. Molecular study of SLC26A4 gene may lead to elucidation of the profile of the population-specific variants which has importance in diagnostics of HL.
Collapse
|
9
|
da Silva DC, Gadelha BNB, Feitosa AFB, da Silva RG, Albuquerque TLPE, Santos DCPF, Gadelha DNB, Fonseca Schamber-Reis BL. Analysis of VSX1 Variations in Brazilian Subjects with Keratoconus. J Ophthalmic Vis Res 2018; 13:266-273. [PMID: 30090183 PMCID: PMC6058540 DOI: 10.4103/jovr.jovr_116_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To screen visual system homeobox 1 (VSX1) gene in Brazilian subjects affected with keratoconus (KCN). METHODS Seventy-three patients with KCN and 106 healthy controls were enrolled in this study. Patients were diagnosed with KCN based on eye examination and corneal topographic features according to Rabinowitz's criteria (K > 47.2, I-S > 1.4 and KISA > 100%). DNA from blood samples was extracted from donors, and the exons and exon-intron boundaries of VSX1 were sequenced. The potential impact of the identified amino acid changes was assessed with Poly-Phen2, SIFT, and PMUT analysis tools. Genotyping was confirmed by RLFP technique, which was also applied to genotype non-affected individuals. RESULTS We found three non-synonymous substitutions (L68H, R131S, and D105E) in VSX1 exon 1, with L68H mutation as a novel variation in this gene. In silico analysis indicated that all variations found were predicted to be probably damaging to VSX1 structure and function. Examination of R131S and L68H variations segregating in one family suggested a strong effect of these variations in increasing disease severity in the proband, which presented bilateral KCN leading to corneal grafting before the age of sixteen. We found a novel synonymous substitution (P79P) and two previously described exonic polymorphisms, with unknown roles in VSX1 pathogenesis. CONCLUSION VSX1 polymorphisms found in the Brazilian population support a genetic component in KCN pathogenesis. L68H is a novel mutation, and the phenotypic data suggest that this mutation might enhance disease severity when combined with other polymorphisms. However, further investigations are needed.
Collapse
Affiliation(s)
- Dulceria Costa da Silva
- Department of Medical Genetics, School of Medical Sciences, UNIFACISA, Campina Grande, Paraíba, Brazil
- Federal University of Paraíba, Campina Grande, Paraíba, Brazil
| | | | | | - Rafaela Gomes da Silva
- Department of Medical Genetics, School of Medical Sciences, UNIFACISA, Campina Grande, Paraíba, Brazil
| | | | | | | | | |
Collapse
|
10
|
Lucas SEM, Zhou T, Blackburn NB, Mills RA, Ellis J, Leo P, Souzeau E, Ridge B, Charlesworth JC, Lindsay R, Craig JE, Burdon KP. Rare, potentially pathogenic variants in 21 keratoconus candidate genes are not enriched in cases in a large Australian cohort of European descent. PLoS One 2018; 13:e0199178. [PMID: 29924831 PMCID: PMC6010250 DOI: 10.1371/journal.pone.0199178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many genes have been suggested as candidate genes for keratoconus based on their function, their proximity to associated polymorphisms or due to the identification of putative causative variants within the gene. However, very few of these genes have been assessed for rare variation in keratoconus more broadly. In contrast, VSX1 and SOD1 have been widely assessed, however, the vast majority of studies have been small and the findings conflicting. In a cohort of Australians of European descent, consisting of 385 keratoconus cases and 396 controls, we screened 21 keratoconus candidate genes: BANP, CAST, COL4A3, COL4A4, COL5A1, FOXO1, FNDC3B, HGF, IL1A, IL1B, ILRN, IMMP2L, MPDZ, NFIB, RAB3GAP1, RAD51, RXRA, SLC4A11, SOD1, TF and VSX1. The candidate genes were sequenced in these individuals by either whole exome sequencing or targeted gene sequencing. Variants were filtered to identify rare (minor allele frequency <1%), potentially pathogenic variants. A total of 164 such variants were identified across the two groups with no variants fulfilling these criteria in cases in IL1RN, BANP, IL1B, RAD51 or SOD1. The frequency of variants was compared between cases and controls using chi-square or Fishers' Exact tests for each gene with at least one rare potentially pathogenic variant identified in the case cohort. The number of rare potentially pathogenic variants per gene ranged from three (RXRA) to 102 (MPDZ), however for all genes, there was no difference in the frequency between the cases and controls. We conclude that rare potentially pathogenic variation in the 21 candidate genes assessed do not play a major role in keratoconus susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Sionne E. M. Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tiger Zhou
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- South Texas Diabetes and Obesity Institute, Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, Texas, United States of America
| | - Richard A. Mills
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan Ellis
- Queensland University of Technology and Translational Research Institute, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Paul Leo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Emmanuelle Souzeau
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Bronwyn Ridge
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Jac C. Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Lindsay
- Richard Lindsay and Associates, East Melbourne, Victoria, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia
| | - Kathryn P. Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- * E-mail:
| |
Collapse
|
11
|
Bykhovskaya Y, Fardaei M, Khaled ML, Nejabat M, Salouti R, Dastsooz H, Liu Y, Inaloo S, Rabinowitz YS. TSC1 Mutations in Keratoconus Patients With or Without Tuberous Sclerosis. Invest Ophthalmol Vis Sci 2017; 58:6462-6469. [PMID: 29261847 PMCID: PMC5760196 DOI: 10.1167/iovs.17-22819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To test candidate genes TSC1 and TSC2 in a family affected by tuberous sclerosis complex (TSC) where proband was also diagnosed with bilateral keratoconus (KC) and to test the hypothesis that defects in the same gene may lead to a nonsyndromic KC. Methods Next-generation sequencing of TSC1 and TSC2 genes was performed in a proband affected by TSC and KC. Identified mutation was confirmed by Sanger DNA sequencing. Whole exome sequencing (WES) was performed in patients with nonsyndromic KC. Sanger DNA sequencing was used to confirm WES results and to screen additional patients. RT-PCR was used to investigate TSC1 expression in seven normal human corneas and eight corneas from patients with KC. Various in silico tools were employed to model functional consequences of identified mutations. Results A heterozygous nonsense TSC1 mutation g.132902703C>T (c.2293C>T, p.Gln765Ter) was identified in a patient with TSC and KC. Two heterozygous missense TSC1 variants g.132896322A>T (c.3408A>T, p.Asp1136Glu) and g.132896452G>A (c.3278G>A, p.Arg1093Gln) were identified in three patients with nonsyndromic KC. Two mutations were not present in The Genome Aggregation (GnomAD), The Exome Aggregation (ExAC), and 1000 Genomes (1000G) databases, while the third one was present in GnomAD and 1000G with minor allele frequencies (MAF) of 0.00001 and 0.0002, respectively. We found TSC1 expressed in normal corneas and KC corneas, albeit with various levels. Conclusions Here for the first time we found TSC1 gene to be involved in bilateral KC and TSC as well as with nonsyndromic KC, supporting the hypothesis that diverse germline mutations of the same gene can cause genetic disorders with overlapping clinical features.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Department of Surgery and Board of the Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States.,Cornea Genetic Eye Institute, Beverly Hills, California, United States
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mariam Lotfy Khaled
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Salouti
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Soroor Inaloo
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaron S Rabinowitz
- Department of Surgery and Board of the Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States.,Cornea Genetic Eye Institute, Beverly Hills, California, United States.,The Jules Stein Eye Institute, University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
12
|
Valgaeren H, Koppen C, Van Camp G. A new perspective on the genetics of keratoconus: why have we not been more successful? Ophthalmic Genet 2017; 39:158-174. [DOI: 10.1080/13816810.2017.1393831] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanne Valgaeren
- Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
- Department of Ophthalmology, Visual Optics and Visual Rehabilitation, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp & Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
13
|
Analysis of the VSX1 gene in sporadic keratoconus patients from China. BMC Ophthalmol 2017; 17:173. [PMID: 28950846 PMCID: PMC5615802 DOI: 10.1186/s12886-017-0567-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
Background Keratoconus normally presents as a sporadic disease. Although different studies have found sequence variants of the visual system homeobox 1 (VSX1) gene associated with keratoconus in humans, no research has detected such variants in sporadic keratoconus patients from China. To investigate the possibility of VSX1 being a candidate susceptibility gene for Chinese patients with sporadic keratoconus, we performed sequence screening of this gene in such patients. Methods Whole DNA was obtained from the leukocytes in the peripheral venous blood of 50 patients with sporadic keratoconus and 50 control subjects without this ocular disorder. Polymerase chain reaction single-strand conformation polymorphism analysis and direct DNA sequencing technology were used to detect sequence variation in the five exons and splicing regions of the introns of the VSX1 gene. The sequencing results were analyzed using DNAstar software. Results One novel missense heterozygous sequence variant (p.Arg131Pro) was found in the first exon of the VSX1 gene in one keratoconus patient. Another heterozygous sequence variant (p.Gly160Val) in the second exon was found in two keratoconus patients. These variants were not detected in the control subjects. In the third intron of the VSX1 gene, c.8326G > A nucleotide substitution (including heterozygous and homozygous change) was also discovered. The frequency of this variation did not differ significantly between patients and controls, it should belong to single-nucleotide polymorphism of the VSX1 gene. Bioinformatic analysis also predicted that one missense sequence variation (p.Arg131Pro) may not cause a pathogenic change. Conclusions In this study, we added one novel missense sequence variation (p.Arg131Pro) in the coding region of the VSX1 gene to the range of VSX1 coding region variations observed in patients with sporadic keratoconus from China. Our work suggests that VSX1 sequence variants might be involved in the pathogenesis of sporadic keratoconus, but their precise role in disease causation requires further investigation.
Collapse
|
14
|
Karolak JA, Gajecka M. Genomic strategies to understand causes of keratoconus. Mol Genet Genomics 2016; 292:251-269. [PMID: 28032277 PMCID: PMC5357269 DOI: 10.1007/s00438-016-1283-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
Keratoconus (KTCN) is a degenerative disorder of the eye characterized by the conical shape and thinning of the cornea. The abnormal structure of KTCN-affected cornea results in loss of visual acuity. While many studies examine how environmental factors influence disease development, finding the genetic triggers has been a major emphasis of KTCN research. This paper focuses on genomic strategies that were implemented for finding candidate genes, including linkage and association studies, and presents different approaches of mutation screening. The advantages and limitations of particular tools are discussed based on literature and personal experience. Since etiology underlying KTCN is complex, numerous findings indicating heterogeneity of genetic factors involved KTCN etiology are presented.
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, Poznan, 60-781, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan, 60-479, Poland
| | - Marzena Gajecka
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, Poznan, 60-781, Poland. .,Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, Poznan, 60-479, Poland.
| |
Collapse
|
15
|
Jalilian N, Tabatabaiefar MA, Farhadi M, Bahrami T, Emamdjomeh H, Noori-Daloii MR. Molecular and clinical characterization of Waardenburg syndrome type I in an Iranian cohort with two novel PAX3 mutations. Gene 2015; 574:302-7. [PMID: 26275939 DOI: 10.1016/j.gene.2015.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 11/15/2022]
Abstract
Waardenburg syndrome (WS) is a disease of abnormal neural-crest derived melanocyte development characterized by hearing loss and pigmentary disturbances in hair, eyes and skin. WS is subdivided into four major types, WS1-WS4, where WS1 is recognized by the presence of dystopia canthorum, with PAX3 being the only known gene involved. This study aimed at investigating PAX3 mutations and clinical characteristics of WS1 in a group of Iranian patients. A total of 12 WS1 patients from four unrelated Iranian families were enrolled. Waardenburg consortium guidelines were used for WS1 diagnosis. A detailed family history was traced and a thorough clinical examination was performed for all participants. Furthermore, WS1 patients underwent screening for PAX3 mutations using PCR-sequencing. Dystopia canthorum, broad high nasal root and synophrys were observed in all patients. Early graying, hair discoloration, hypoplastic blue eyes (characteristic brilliant blue iris) and hearing loss were the most common features observed, while heterochromia iridis was the least frequently observed sign among the studied Iranian WS1 patients. Genetic analysis of PAX3 revealed four mutations including c.667C>T, c.784C>T, c.951delT and c.451+3A>C. Two of the four mutations reported here (c.951delT and c.451+3A>C) are being reported for the first time in this study. Our data provide insight into genotypic and phenotypic spectrum of WS1 in an Iranian series of patients. Our results expand the spectrum of PAX3 mutations and may have implications for the genetic counseling of WS in Iran.
Collapse
Affiliation(s)
- Nazanin Jalilian
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University Of Medical Sciences, Isfahan, Iran
| | - Mohammad Farhadi
- Department and Research Center of Otolaryngology, Head and Neck Surgery, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, IR Iran
| | - Tayeb Bahrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesam Emamdjomeh
- Department and Research Center of Otolaryngology, Head and Neck Surgery, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Reza Noori-Daloii
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Shetty R, Nuijts RMMA, Nanaiah SG, Anandula VR, Ghosh A, Jayadev C, Pahuja N, Kumaramanickavel G, Nallathambi J. Two novel missense substitutions in the VSX1 gene: clinical and genetic analysis of families with Keratoconus from India. BMC MEDICAL GENETICS 2015; 16:33. [PMID: 25963163 PMCID: PMC4630895 DOI: 10.1186/s12881-015-0178-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/30/2015] [Indexed: 01/07/2023]
Abstract
Background Visual system homeobox gene (VSX1) plays a major role in the early development of craniofacial and ocular tissues including cone opsin gene in the human retina. To date, few disease-causing mutations of VSX1 have been linked to familial and sporadic keratoconus (KC) in humans. In this study, we describe the clinical features and screening for VSX1 gene in families with KC from India. Methods Clinical data and genomic DNA were collected from patients with clinically diagnosed KC and their family members. The study was conducted on 20 subjects of eight families from India. The coding exons of VSX1 gene were amplified using PCR and amplicons were analyzed by direct sequencing. Predictive effect of the mutations was performed using Polyphen-2, SIFT and mutation assessor algorithms. Additionally, haplotypes of VSX1 gene were constructed for affected and unaffected individuals using SNPs. Results In the coding region of VSX1, one novel missense heterozygous change (p.Leu268His) was identified in five KC patients from two unrelated families. Another family of three members had a novel heterozygous change (p.Ser251Thr). These variants co-segregated with the disease phenotype in all affected individuals but not in the unaffected family members and 105 normal controls. In silico analysis suggested that p.Leu268His could have a deleterious effect on the protein coded by VSX1, while p.Ser251Thr has a neutral effect on the functional properties of VSX1. Haplotype examination revealed common SNPs around the missense change (p.Leu268His) in two unrelated KC families. Conclusions In this study, we add p.Leu268His, a novel missense variation in the coding region of VSX1 to the existing repertoire of VSX1 coding variations observed in Indian patients with the characteristic phenotype of KC. The variant p.Ser251Thr might be a benign polymorphism, but further biophysical studies are necessary to evaluate its molecular mechanism. The shared haplotype by two families with the same variant suggests the possibility of a founder effect, which requires further elucidation. We suggest that p.Leu268His might be involved in the pathogenesis of KC, which may help in the genetic counselling of patients and their family.
Collapse
Affiliation(s)
- Rohit Shetty
- Cornea and Refractive Surgery Department, Narayana Nethralaya Postgraduate Institute of Ophthalmology, Bangalore, India.
| | - Rudy M M A Nuijts
- Cornea Clinic, Department of Ophthalmology, Maastricht University Medical Center, 6211 LK, Maastricht, The Netherlands.
| | - Soumya Ganesh Nanaiah
- Cornea and Refractive Surgery Department, Narayana Nethralaya Postgraduate Institute of Ophthalmology, Bangalore, India.
| | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India.
| | - Chaitra Jayadev
- Cornea and Refractive Surgery Department, Narayana Nethralaya Postgraduate Institute of Ophthalmology, Bangalore, India.
| | - Natasha Pahuja
- Cornea and Refractive Surgery Department, Narayana Nethralaya Postgraduate Institute of Ophthalmology, Bangalore, India.
| | | | | |
Collapse
|
17
|
Aboobakar IF, Allingham RR. Developments in Ocular Genetics: 2013 Annual Review. Asia Pac J Ophthalmol (Phila) 2014; 3:181-93. [PMID: 25097799 PMCID: PMC4119463 DOI: 10.1097/apo.0000000000000063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To highlight major advancements in ocular genetics from the year 2013. DESIGN Literature review. METHODS A literature search was conducted on PubMed to identify articles pertaining to genetic influences on human eye diseases. This review focuses on manuscripts published in print or online in the English language between January 1, 2013 and December 31, 2013. A total of 120 papers from 2013 were included in this review. RESULTS Significant progress has been made in our understanding of the genetic basis of a broad group of ocular disorders, including glaucoma, age-related macular degeneration, cataract, diabetic retinopathy, keratoconus, Fuchs' endothelial dystrophy, and refractive error. CONCLUSIONS The latest next-generation sequencing technologies have become extremely effective tools for identifying gene mutations associated with ocular disease. These technological advancements have also paved the way for utilization of genetic information in clinical practice, including disease diagnosis, prediction of treatment response and molecular interventions guided by gene-based knowledge.
Collapse
Affiliation(s)
- Inas F Aboobakar
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|