1
|
Gurbilek M, Deniz CD, Eroglu Gunes C, Kurar E, Reisli I, Kursunel MA, Topcu C, Koc M. Anticancer activity of thymoquinone in non-small cell lung cancer and possible involvement of PPAR- γ pathway. Int J Radiat Biol 2025; 101:370-381. [PMID: 39946226 DOI: 10.1080/09553002.2025.2449953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 03/29/2025]
Abstract
PURPOSE Thymoquinone (TQ) is an ingredient of Nigella sativa and Cisplatin (CDDP) is the most active chemotherapeutic agent in lung cancer. The objective of this study was to assess the anticancer effects of TQ in non-small cell lung cancer (NSCLC) cells, and its effect on the peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway. METHODS Annexin-V FITC assay was used in the NCI-H460 cell line for apoptosis. The mRNA expression of PPAR-γ, P53, BCL-2, Retinoblastoma (Rb), Cyclin-D1, RELA, Tumor necrosis Factor alpha and in a dose-dependent manner TQ activated caspases 9, 8, 7, and 3 were examined using quantitative real-time reverse transcriptase polymerase chain reaction. RESULTS PPAR-γ protein levels elevated in all treatment groups, especially in the CDDP + TQ group as observed in mRNA results. In the CDDP + TQ + IR group, the reduction of NF-κB pathway, which provides survival and growth signaling, confirms the potential of this treatment in lung cancer treatment approach similar to p53, Rb, and PPAR-γ results. When the effect of treatment on the viability of NSCLC cells was assessed with flow cytometry analyzes, TQ alone supported death compared to control, cell viability also decreased in the CDDP or IR groups to which TQ was added. CONCLUSION As a result, combined therapy of TQ, CDDP, and IR have been shown to increase apoptosis by sensitizing NSCLC cells to IR. These in vitro results are the basis because they demonstrate that it may be useful to include TQ in combined NSCLC cell treatments to reduce tumor progression.
Collapse
Affiliation(s)
- Mehmet Gurbilek
- Department of Medical Biochemistry, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Cigdem D Deniz
- Department of Medical Biochemistry, Health Sciences University, Konya City Hospital, Konya, Turkey
| | - Canan Eroglu Gunes
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Muammer A Kursunel
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Cemile Topcu
- Department of Medical Biochemistry, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Mehmet Koc
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
2
|
Guo Y, Khan B, Shi J, Hou Y. PPARδ Antagonist Inhibited CD47 Expression and Phagocytosis. J Cell Biochem 2025; 126:e30685. [PMID: 39632616 DOI: 10.1002/jcb.30685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Increasing evidence suggests that CD47 is highly expressed in multiple types of cancer, which could bind to SIRPα on macrophage, leading to inhibition of macrophage phagocytosis and promotion of tumor growth. However, the regulatory mechanism of CD47 gene expression is not completely clear. Our results indicated that colon cancer cells treated with GSK0660 drug, which is one of the PPARδ antagonists, significantly reduced CD47 gene and protein expression levels in a time and dose-dependent manner. CD47 reporter plasmid was constructed and dual-luciferase analysis was performed. The results suggest that GSK0660 treatment markedly reduced CD47 gene transcriptional activity. Moreover, co-cultured analysis showed that GSK0660 treatment increased phagocytosis. BALB/C mice implanted with CT-26 colon cancer cells were treated with GSK0660, and the results showed that GSK0660 significantly inhibited tumor growth. Moreover, the combination of CD47 monoclonal antibody with GSK0660 drug significantly inhibited tumor growth compared to GSK0660 or CD47 antibody treatment alone. These findings suggest that GSK0660 synergized with CD47 antibody to enhance antitumor immunotherapy.
Collapse
Affiliation(s)
- Yilei Guo
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bibimaryam Khan
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital of Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, Jiangsu, China
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Forooghi Pordanjani T, Dabirmanesh B, Choopanian P, Mirzaie M, Mohebbi S, Khajeh K. Extracting Potential New Targets for Treatment of Adenoid Cystic Carcinoma using Bioinformatic Methods. IRANIAN BIOMEDICAL JOURNAL 2023; 27:294-306. [PMID: 37873683 PMCID: PMC10707816 DOI: 10.61186/ibj.27.5.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/25/2023] [Indexed: 12/17/2023]
Abstract
Background Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods. Methods We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification. Results After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies. Conclusion In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.
Collapse
Affiliation(s)
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleh Mohebbi
- ENT and Head & Neck Research Center, the Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR. Targeting the retinoic acid signaling pathway as a modern precision therapy against cancers. Front Cell Dev Biol 2023; 11:1254612. [PMID: 37645246 PMCID: PMC10461636 DOI: 10.3389/fcell.2023.1254612] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
Retinoic acid (RA) is a vital metabolite derived from vitamin A. RA plays a prominent role during development, which helps in embryological advancement and cellular differentiation. Mechanistically, RA binds to its definite nuclear receptors including the retinoic acid receptor and retinoid X receptor, thus triggering gene transcription and further consequences in gene regulation. This functional heterodimer activation later results in gene activation/inactivation. Several reports have been published related to the detailed embryonic and developmental role of retinoic acids and as an anti-cancer drug for specific cancers, including acute promyelocytic leukemia, breast cancer, and prostate cancer. Nonetheless, the other side of all-trans retinoic acid (ATRA) has not been explored widely yet. In this review, we focused on the role of the RA pathway and its downstream gene activation in relation to cancer progression. Furthermore, we explored the ways of targeting the retinoic acid pathway by focusing on the dual role of aldehyde dehydrogenase (ALDH) family enzymes. Combination strategies by combining RA targets with ALDH-specific targets make the tumor cells sensitive to the treatment and improve the progression-free survival of the patients. In addition to the genomic effects of ATRA, we also highlighted the role of ATRA in non-canonical mechanisms as an immune checkpoint inhibitor, thus targeting the immune oncological perspective of cancer treatments in the current era. The role of ATRA in activating independent mechanisms is also explained in this review. This review also highlights the current clinical trials of ATRA in combination with other chemotherapeutic drugs and explains the future directional insights related to ATRA usage.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shreya Madhav Nuguri
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Zianne Olverson
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Anantha Krishna Dhanabalan
- Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Rekha Rani Kokkanti
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
5
|
Xu L, Che S, Chen H, Liu Q, Shi J, Jin J, Hou Y. PPARγ agonist inhibits c-Myc-mediated colorectal cancer tumor immune escape. J Cell Biochem 2023; 124:1145-1154. [PMID: 37393598 DOI: 10.1002/jcb.30437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
As a master transcription factor, c-Myc plays an important role in promoting tumor immune escape. In addition, PPARγ (peroxisome proliferator-activated receptor γ) regulates cell metabolism, inflammation, and tumor progression, while the effect of PPARγ on c-Myc-mediated tumor immune escape is still unclear. Here we found that cells treated with PPARγ agonist pioglitazone (PIOG) reduced c-Myc protein expression in a PPARγ-dependent manner. qPCR analysis showed that PIOG had no significant effect on c-Myc gene levels. Further analysis showed that PIOG decreased c-Myc protein half-life. Moreover, PIOG increased the binding of c-Myc to PPARγ, and induced c-Myc ubiquitination and degradation. Importantly, c-Myc increased PD-L1 and CD47 immune checkpoint protein expression and promoted tumor immune escape, while PIOG inhibited this event. These findings suggest that PPARγ agonist inhibited c-Myc-mediated tumor immune escape by inducing its ubiquitination and degradation.
Collapse
Affiliation(s)
- Liuqian Xu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- Department of Oncology, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, People's Republic of China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, People's Republic of China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Ding J, Gou Q, Jia X, Liu Q, Jin J, Shi J, Hou Y. AMPK phosphorylates PPARδ to mediate its stabilization, inhibit glucose and glutamine uptake and colon tumor growth. J Biol Chem 2021; 297:100954. [PMID: 34270958 PMCID: PMC8397901 DOI: 10.1016/j.jbc.2021.100954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a nuclear receptor transcription factor that plays an important role in the regulation of metabolism, inflammation, and cancer. In addition, the nutrient-sensing kinase 5'AMP-activated protein kinase (AMPK) is a critical regulator of cellular energy in coordination with PPARδ. However, the molecular mechanism of the AMPK/PPARδ pathway on cancer progression is still unclear. Here, we found that activated AMPK induced PPARδ-S50 phosphorylation in cancer cells, whereas the PPARδ/S50A (nonphosphorylation mimic) mutant reversed this event. Further analysis showed that the PPARδ/S50E (phosphorylation mimic) but not the PPARδ/S50A mutant increased PPARδ protein stability, which led to reduced p62/SQSTM1-mediated degradation of misfolded PPARδ. Furthermore, PPARδ-S50 phosphorylation decreased PPARδ transcription activity and alleviated PPARδ-mediated uptake of glucose and glutamine in cancer cells. Soft agar and xenograft tumor model analysis showed that the PPARδ/S50E mutant but not the PPARδ/S50A mutant inhibited colon cancer cell proliferation and tumor growth, which was associated with inhibition of Glut1 and SLC1A5 transporter protein expression. These findings reveal a new mechanism of AMPK-induced PPARδ-S50 phosphorylation, accumulation of misfolded PPARδ protein, and inhibition of PPARδ transcription activity contributing to the suppression of colon tumor formation.
Collapse
Affiliation(s)
- Jiajun Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Gou
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Xiao Jia
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Liu
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| |
Collapse
|
8
|
Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2020; 122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenbo Zhang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
PPARδ is a regulator of autophagy by its phosphorylation. Oncogene 2020; 39:4844-4853. [PMID: 32439863 DOI: 10.1038/s41388-020-1329-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
In response to nutrient deficiency, autophagy degrades cytoplasmic materials and organelles in lysosomes, which is nutrient recycling, whereas activation of EGFR mediates autophagy suppression in response to growth factors. It is unclear whether PPARδ could be the regulator of autophagy in response to active EGFR. Here we found that EGFR induced PPARδ phosphorylation at tyrosine-108 leading to increased binding of LC3 to PPARδ by its LIR (LC3 interacting region) motif, consequently, inhibited autophagic flux. Conversely, EGFR inhibitor treatment reversed this event. Furthermore, EGFR-mediated PPARδ phosphorylation at tyrosine-108 led to autophagy inhibition and tumor growth. These findings suggest that PPARδ serves as a regulator of autophagy by its phosphorylation.
Collapse
|
10
|
Gou Q, Dong C, Jin J, Liu Q, Lu W, Shi J, Hou Y. PPARα agonist alleviates tumor growth and chemo-resistance associated with the inhibition of glucose metabolic pathway. Eur J Pharmacol 2019; 863:172664. [PMID: 31539552 DOI: 10.1016/j.ejphar.2019.172664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
As a nuclear receptor, peroxisome-proliferator-activated receptor α (PPARα) plays a critical role in regulation of metabolism and cancer, while the effect of PPARα agonist on cancer cell glucose metabolism-linked tumor growth is still unclear. Here we found that PPARα agonist (Wy14,643) decreased Glut1 (Glucose transporter 1) gene and protein expressions of colorectal cancer cell lines in response to normoxia or hypoxia. Dual-luciferase analysis showed that Wy14,643 inhibited Glut1 transcription activity. Importantly, ChIP-qPCR analysis showed that Wy14,643 increased the binding of PPARα to Glut1 promoter region. Wy14,643 suppressed Glut1 transcription activity resulting in reduced influx of glucose in cancer cells in response to normoxia or hypoxia. Further analysis showed that Wy14,643-mediated inhibition of tumor growth and chemo-resistance was associated with inhibition of mTOR pathway. Taken together, PPARα agonist Wy14,643 suppressed Glut1 transcription activity, glucose uptake and mTOR pathway in colorectal cancer cells, which was involved in reduced tumor growth and chemo-resistance. These findings provided a novel therapy strategy for cancer progression.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, Jiangsu Province. 213162, People's Republic of China; Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212000, People's Republic of China
| | - Chen Dong
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212000, People's Republic of China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, Jiangsu Province. 213162, People's Republic of China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, Jiangsu Province. 213162, People's Republic of China
| | - Wenbin Lu
- Department of Oncology, The Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, Jiangsu Province. 213162, People's Republic of China.
| | - Juanjuan Shi
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212000, People's Republic of China.
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, Jiangsu Province. 213162, People's Republic of China; Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212000, People's Republic of China.
| |
Collapse
|
11
|
TNBG-5602, a novel derivative of quinoxaline, inhibits liver cancer growth via upregulating peroxisome proliferator-activated receptor γ in vitro and in vivo. J Pharm Pharmacol 2019; 71:1684-1694. [DOI: 10.1111/jphp.13159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
TNBG-5602 is a newly synthesized compound with an isoquinoline structure. In the present study, we demonstrated the anticancer effect of TNBG-5602 in in-vitro and in-vivo models and investigated its possible anticancer mechanism.
Methods
The antiproliferation effect of TNBG-5602 in vitro was evaluated in human liver cancer cell line QGY-7701. The acute toxicity of TNBG-5602 was evaluated in mice. The anticancer activity of TNBG-5602 in vivo was assessed in a xenograft model of human liver cancer cell line QGY-7701.
Key findings
The results of CCK-8 assay showed that TNBG-5602 can effectively inhibit the proliferation of liver cancer cells in vitro. The acute toxicity test in mice showed that the LD50 of TNBG-5602 was 172 mg/kg. In a xenograft liver cancer model, TNBG-5602 could remarkably inhibit the growth of tumours. During in-vitro and in-vivo studies, we noted that TNBG-5602 could induce lipid accumulation in cancer cells and tissues. Further study indicated that the anticancer effect of TNBG-5602 may be exerted through activating peroxisome proliferator-activated receptor γ (PPARγ) and downregulating proliferating cell nuclear antigen (PCNA).
Conclusions
Our results suggested that TNBG-5602 might exert potent anticancer activity through increasing the expression of PPARγ.
Collapse
|
12
|
Ding J, Gou Q, Jin J, Shi J, Liu Q, Hou Y. Metformin inhibits PPARδ agonist-mediated tumor growth by reducing Glut1 and SLC1A5 expressions of cancer cells. Eur J Pharmacol 2019; 857:172425. [DOI: 10.1016/j.ejphar.2019.172425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
13
|
Wu K, Hu Y, Yan K, Qi Y, Zhang C, Zhu D, Liu D, Zhao S. microRNA-10b confers cisplatin resistance by activating AKT/mTOR/P70S6K signaling via targeting PPARγ in esophageal cancer. J Cell Physiol 2019; 235:1247-1258. [PMID: 31267531 DOI: 10.1002/jcp.29040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
Abstract
It is well known that the acquisition of chemoresistance is a major obstacle for the effective treatment of human cancers. It is reported that microRNAs (miRNAs) are implicated in chemotherapy resistance of various malignancies. miR-10b was previously proved as an oncogene in multiple malignancies, including esophageal cancer. However, its biological significance in regulating cisplatin (DDP) resistance in esophageal cancer is still elusive. Here, we observed that miR-10b expression was upregulated and peroxisome proliferator-activated receptor-γ (PPARγ) expression was downregulated in esophageal cancer tumor tissues and cells. PPARγ was proved as a functional target of miR-10b. Moreover, suppression of miR-10b enhanced the chemosensitivity of esophageal cancer cells to DDP in vitro and in vivo. In addition, PPARγ-mediated DDP sensitivity was weakened by miR-10b overexpression. Furthermore, miR-10b-activated AKT/mTOR/p70S6K signaling pathway through targeting PPARγ. Inactivation of AKT/mTOR/p70S6K by AKT inhibitor (GSK690693) attenuated miR-10b-induced DDP resistance in esophageal cancer cells. Taken together these observation, miRNA-10b-mediated PPARγ inhibition enhanced DDP resistance by activating the AKT/mTOR/P70S6K signaling in esophageal cancer, suggesting a potential target to improve therapeutic response of patients with esophageal cancer to DDP.
Collapse
Affiliation(s)
- Kai Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Yamei Hu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Kanglu Yan
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, China
| | | |
Collapse
|
14
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
15
|
Zhou D, Jin J, Liu Q, Shi J, Hou Y. PPARδ agonist enhances colitis-associated colorectal cancer. Eur J Pharmacol 2019; 842:248-254. [DOI: 10.1016/j.ejphar.2018.10.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
|
16
|
Differential Expression of Prostaglandin I2 Synthase Associated with Arachidonic Acid Pathway in the Oral Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2018; 2018:6301980. [PMID: 30532780 PMCID: PMC6250001 DOI: 10.1155/2018/6301980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Introduction Differential expression of genes encoding cytochrome P450 (CYP) and other oxygenases enzymes involved in biotransformation mechanisms of endogenous and exogenous compounds can lead to oral tumor development. Objective We aimed to identify the expression profile of these genes, searching for susceptibility biomarkers in oral squamous cell carcinoma. Patients and Methods Sixteen oral squamous cell carcinoma samples were included in this study (eight tumor and eight adjacent non-tumor tissues). Gene expression quantification was performed using TaqMan Array Human CYP450 and other Oxygenases 96-well plate (Applied Biosystems) by real time qPCR. Protein quantification was performed by ELISA and IHC methods. Bioinformatics tools were used to find metabolic pathways related to the enzymes encoded by differentially expressed genes. Results. CYP27B1, CYP27A1, CYP2E1, CYP2R1, CYP2J2, CYP2U1, CYP4F12, CYP4X1, CYP4B1, PTGIS, ALOX12, and MAOB genes presented differential expression in the oral tumors. After correction by multiple tests, only the PTGIS (Prostaglandin I2 Synthase) gene presented significant differential expression (P < 0.05). The PTGIS gene and protein were reduced in oral tumors. Conclusion PTGIS presents downexpression in oral tumors. PTGIS play an important role in the arachidonic acid metabolism. Arachidonic acid and/or metabolites are derived from this pathway, which can influence the regulation of important physiological mechanisms in tumorigenesis process.
Collapse
|
17
|
PPAR α Enhances Cancer Cell Chemotherapy Sensitivity by Autophagy Induction. JOURNAL OF ONCOLOGY 2018; 2018:6458537. [PMID: 30519260 PMCID: PMC6241347 DOI: 10.1155/2018/6458537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 10/28/2018] [Indexed: 12/23/2022]
Abstract
PPARα (peroxisome-proliferator-activated receptor α) plays a critical role in regulation of inflammation and cancer, while the regulatory mechanism of PPARα on cancer cell autophagy is still unclear. Here we found that PPARα enhanced autophagy in HEK293T, SW480, and Hela cell lines, which was independent of PPARα transcription activity. PPARα induced antiapoptotic Bcl2 protein degradation resulting in release of the Beclin-1/VPS34 complex. Consistently, silenced PPARα reversed this event. PPARα-induced autophagy significantly inhibited tumor growth and enhanced SW480 cancer cell sensitivity to chemotherapy drugs. Moreover, PPARα agonist increased SW480 cancer cell chemotherapy sensitivity. These findings revealed a novel mechanism of PPARα/Bcl2/autophagy pathway suppressed tumor progression and enhanced chemotherapy sensitivity, which is a potential drug target for cancer treatment.
Collapse
|
18
|
Han M, Gao H, Ju P, Gao MQ, Yuan YP, Chen XH, Liu KL, Han YT, Han ZW. Hispidulin inhibits hepatocellular carcinoma growth and metastasis through AMPK and ERK signaling mediated activation of PPARγ. Biomed Pharmacother 2018; 103:272-283. [PMID: 29656183 DOI: 10.1016/j.biopha.2018.04.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
Hispidulin, a phenolic flavonoid, exerts potent cytotoxicity towards a variety of human cancers. However, the effects of hispidulin on hepatocellular carcinoma (HCC) and underlying molecular mechanisms of its action remain elusive. The present study investigated the effect of hispidulin on HCC in experimental models, including tumor cell lines and mouse tumor xenograft. Results demonstrated that hispidulin was cytotoxic and anti-proliferative to HCC cell lines (SMMC7721 and Bel7402). Hispidulin activated caspase-3 and triggered apoptosis in HCC cells. Moreover, hispidulin inhibited cell migration and invasion by inhibiting the expression of matrix metalloproteinases (MMP-2, MMP-9) and by inducing tissue inhibitor of metalloproteinase-3 (TIMP-3) expression. Hispidulin activated peroxisome proliferator-activated receptor γ (PPARγ) signaling which mainly contributed to its cytotoxicity in HCC cells. Remarkably, GW9662 (a PPARγ inhibitor) or PPARγ targeting siRNA significantly abrogated the anti-proliferative, pro-apoptotic, and anti-metastatic effects of hispidulin in HCC cells. Furthermore, hispidulin induced activation of PPARγ which was associated with increased phosphorylation of AMPK, ERK, JNK in HCC cells. Compound C (an AMPK inhibitor) or PD98059 (a MEK inhibitor) partly reversed the effects of hispidulin on PPARγ signaling in HCC cells. In contrast, no significant changes in PPARγ signaling were observed in HCC cells pretreated with SP600125 (a JNK inhibitor), while SP6000125 significantly inhibited the anti-cancer effects of hispidulin in HCC cells. Hispidulin administration effectively suppressed Bel7402 xenograft tumor growth and lung metastasis in vivo. Our findings indicate that PPARγ activation by hispidulin effectively suppressed HCC cell growth and metastasis both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei Han
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | - Ping Ju
- Qingdao Fifth People's Hospital (Shandong Qingdao Hospital of Integrated Traditional and Western Medicine), Qingdao, 266002, China
| | - Ming-Quan Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yin-Ping Yuan
- Shandong Cancer Hospital Affiliated to Shandong University, Jinan, 250117, China; Shandong Academy of Medical Sciences, Jinan, 250001, China
| | - Xue-Hong Chen
- Medical College, Qingdao University, Qingdao, 266071, China
| | - Kai-Li Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan-Tao Han
- Medical College, Qingdao University, Qingdao, 266071, China
| | - Zhi-Wu Han
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| |
Collapse
|
19
|
PPAR α Regulates the Proliferation of Human Glioma Cells through miR-214 and E2F2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3842753. [PMID: 29862267 PMCID: PMC5976971 DOI: 10.1155/2018/3842753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear hormone receptor superfamily and functions as a transcription factor. Previous work showed that PPARα plays multiple roles in lipid metabolism in tissues such as cardiac and skeletal muscle, liver, and adipose tissue. Recent studies have discovered additional roles for PPARα in cell proliferation and metabolism, as well as tumor progression. PPARα is aberrantly expressed in various cancers, and activated PPARα inhibits the proliferation of some tumor cells. However, there have been no studies of PPARα in human gliomas. Here, we show that PPARα is expressed at lower levels in anaplastic gliomas and glioblastoma multiforme (GBM) tissue compared with low-grade gliomas tissue, and low expression is associated with poor patient prognosis. PPARα activates transcription of dynamin-3 opposite strand (DNMO3os), which encodes a cluster of miR-214, miR-199a-3p, and miR-199a-5p microRNAs. Of these, miR-214 is transcribed at particularly high levels. PPARα-induced miR-214 expression causes downregulation of its target E2F2. Finally, miR-214 overexpression inhibits glioma cell growth in vitro and in vivo by inducing cell cycle arrest in G0/G1. Collectively, these data uncover a novel role for a PPARα-miR-214-E2F2 pathway in controlling glioma cell proliferation.
Collapse
|
20
|
Zhu D, Lyu L, Shen P, Wang J, Chen J, Sun X, Chen L, Zhang L, Zhou Q, Duan Y. rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b. FASEB J 2018; 32:4798-4803. [PMID: 29608331 DOI: 10.1096/fj.201700520rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
miR-27b is reported to participate in the proliferation and differentiation of hepatic stellate cells (HSCs) and to regulate fat metabolism of rat HSCs by targeting retinoid X receptor α. Our previous study also indicated that the recombinant P40 protein from Schistosoma japonicum (rSjP40) inhibited the activation of HSCs. In this study, we observed the expression of miR-27b in rSjP40-treated LX-2 cells and explored its potential mechanisms. Quantitative real-time PCR showed that rSjP40 inhibits the expression of miR-27b in LX-2 cells. Further results obtained by Western blot and dual-luciferase reporter assay confirmed that miR-27b regulates peroxisome proliferator-activated receptor γ (PPARγ) expression in rSjP40-treated LX-2 cells by targeting the 3'-UTR of PPARγ. 5-AZA-2'-deoxycytidine (5-AZA-dC), which inhibits methylation of HSCs, partially reversed rSjP40-induced down-regulation expression of miR-27b in LX-2 cells. 5-AZA-dC also partially reversed rSjP40-induced up-regulation expression of PPARγ in LX-2 cells. The increased expression of PPARγ in rSjP40-treated LX-2 cells may be partially due to miR-27b methylation. Therefore, our study provides further insight into the mechanism by which rSjP40 inhibits HSC activation and provides a basis for future study of the blocking effect of rSjP40 in liver fibrosis.-Zhu, D., Lyu, L., Shen, P., Wang, J., Chen, J., Sun, X., Chen, L., Zhang, L., Zhou, Q., Duan, Y. rSjP40 protein promotes PPARγ expression in LX-2 cells through microRNA-27b.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Lei Lyu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China.,Nanjing Red Cross Blood Center, Nanjing, China; and
| | - Pei Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Li Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Qi Zhou
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
21
|
Colin C, Meyer M, Cerella C, Kleinclauss A, Monard G, Boisbrun M, Diederich M, Flament S, Grillier-Vuissoz I, Kuntz S. Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells. Int J Oncol 2018; 52:1991-2000. [PMID: 29620161 DOI: 10.3892/ijo.2018.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/05/2022] Open
Abstract
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
| | - Maxime Meyer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Claudia Cerella
- Laboratory for Molecular and Cellular Biology of Cancer, Kirchberg Hospital, L‑2540 Luxembourg, Luxembourg
| | | | - Gérald Monard
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | | | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | | | | | - Sandra Kuntz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
22
|
Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 2017; 8:60704-60709. [PMID: 28948004 PMCID: PMC5601172 DOI: 10.18632/oncotarget.19610] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors including PPARα, PPARδ and PPARγ, which play an important role in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. In this review, we summarized the regulative mechanism of PPARs on cancer progression.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xin Gong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
23
|
Zhang W, Xu Y, Xu Q, Shi H, Shi J, Hou Y. PPARδ promotes tumor progression via activation of Glut1 and SLC1-A5 transcription. Carcinogenesis 2017; 38:748-755. [PMID: 28419191 DOI: 10.1093/carcin/bgx035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Wenbo Zhang
- Department of General Surgery, The Affiliated People’s Hospital, Jiangsu University, Zhen Jiang, Jiangsu 212002, People’s Republic of China
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province 212002, People’s Republic of China and
| | - Ying Xu
- Department of Central Laboratory, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu 212000, People’s Republic of China
| | - Qinggang Xu
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province 212002, People’s Republic of China and
| | - Haifeng Shi
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province 212002, People’s Republic of China and
| | - Juanjuan Shi
- Department of General Surgery, The Affiliated People’s Hospital, Jiangsu University, Zhen Jiang, Jiangsu 212002, People’s Republic of China
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province 212002, People’s Republic of China and
| | - Yongzhong Hou
- Department of General Surgery, The Affiliated People’s Hospital, Jiangsu University, Zhen Jiang, Jiangsu 212002, People’s Republic of China
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province 212002, People’s Republic of China and
| |
Collapse
|
24
|
Naoxintong/PPAR γ Signaling Inhibits Cardiac Hypertrophy via Activation of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3801976. [PMID: 28293264 PMCID: PMC5331281 DOI: 10.1155/2017/3801976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
As a traditional Chinese medicine, Naoxintong capsule (NXT) has been approved by China Food and Drug Administration (CFDA), which is used for cardiocerebrovascular disease treatment. Here we found that NXT extract significantly promoted H9c2 cardiomyocyte cell autophagy involved in increased autophagy-associated gene expression leading to inhibition of mTOR signaling. Moreover, NXT extract increased PPARγ protein expression and transcription activity of H9c2 cell. Consistent with this, in PPARγ gene silenced H9c2 cells, NXT had no effect on autophagy and mTOR signaling. Furthermore, NXT/PPARγ-mediated H9c2 autophagy led to inhibition of cardiomyocyte cell hypertrophy. These findings suggest that the extract of NXT inhibited H9c2 cardiomyocyte cell hypertrophy via PPARγ-mediated cell autophagy.
Collapse
|
25
|
You M, Jin J, Liu Q, Xu Q, Shi J, Hou Y. PPARα Promotes Cancer Cell Glut1 Transcription Repression. J Cell Biochem 2017; 118:1556-1562. [DOI: 10.1002/jcb.25817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mengli You
- Department of Oncology, The Affiliated Wujin People's HospitalJiangsu UniversityChangzhou 213162Jiangsu ProvincePeople's Republic of China
- Institute of Life ScienceJiangsu UniversityZhenjiang 212000Jiangsu ProvincePeople's Republic of China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin People's HospitalJiangsu UniversityChangzhou 213162Jiangsu ProvincePeople's Republic of China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin People's HospitalJiangsu UniversityChangzhou 213162Jiangsu ProvincePeople's Republic of China
| | - QingGang Xu
- Institute of Life ScienceJiangsu UniversityZhenjiang 212000Jiangsu ProvincePeople's Republic of China
| | - Juanjuan Shi
- Institute of Life ScienceJiangsu UniversityZhenjiang 212000Jiangsu ProvincePeople's Republic of China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin People's HospitalJiangsu UniversityChangzhou 213162Jiangsu ProvincePeople's Republic of China
- Institute of Life ScienceJiangsu UniversityZhenjiang 212000Jiangsu ProvincePeople's Republic of China
| |
Collapse
|
26
|
Naoxintong/PPARα Signaling Inhibits H9c2 Cell Apoptosis and Autophagy in Response to Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4370381. [PMID: 27668004 PMCID: PMC5030446 DOI: 10.1155/2016/4370381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022]
Abstract
Naoxintong (NXT) is an empirical formula based on the principle of traditional Chinese medicine, which has been approved by China Food and Drug Administration (CFDA) and is widely used for treatment of patients with cerebrovascular and cardiovascular diseases in China. The aim of this study is to investigate the protective mechanism of NXT on H9c2 cells (cardiogenic cell line) in response to H2O2. MTT, Western blot, and flow cytometry (FCM) methods were used to identify the protective effect of NXT extract on H2O2-induced H9c2 cells. Here we found that NXT extract significantly increased H9c2 cell viability and reduced H2O2-induced cell apoptosis and autophagy. More importantly, NXT inhibited H2O2-induced H9c2 cell apoptosis and autophagy by increasing PPARα protein levels. In contrast, silenced PPARα terminated NXT protective effect on H2O2-induced H9c2 cells. These findings suggest that NXT/PPARα signaling suppressed H2O2-induced H9c2 cell apoptosis and autophagy.
Collapse
|
27
|
Savic D, Ramaker RC, Roberts BS, Dean EC, Burwell TC, Meadows SK, Cooper SJ, Garabedian MJ, Gertz J, Myers RM. Distinct gene regulatory programs define the inhibitory effects of liver X receptors and PPARG on cancer cell proliferation. Genome Med 2016; 8:74. [PMID: 27401066 PMCID: PMC4940857 DOI: 10.1186/s13073-016-0328-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma (PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly, recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking. Methods To better define the underlying molecular processes governing the genetic control of cellular growth in response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis, we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin state dynamics, and nuclear receptor binding patterns. Results Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct. PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene regulatory activities at late time points. Conclusions Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome. These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets for the treatment of various cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0328-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Emma C Dean
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Todd C Burwell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Michael J Garabedian
- Departments of Microbiology and Urology, New York University, New York, NY, 10016, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| |
Collapse
|
28
|
Kozako T, Soeda S, Yoshimitsu M, Arima N, Kuroki A, Hirata S, Tanaka H, Imakyure O, Tone N, Honda SI, Soeda S. Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells. FEBS Open Bio 2016; 6:442-60. [PMID: 27419050 PMCID: PMC4856423 DOI: 10.1002/2211-5463.12055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL), an aggressive T‐cell malignancy that develops after long‐term infection with human T‐cell leukemia virus (HTLV‐1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator‐activated receptor‐γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV‐1 carriers (ACs) or via caspase‐independent cell death in acute‐type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3‐II‐enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase‐dependent and ‐independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth‐inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shuhei Soeda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Immunology Kagoshima University Hospital Japan; Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Naomichi Arima
- Department of Hematology and Immunology Kagoshima University Hospital Japan; Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Ayako Kuroki
- Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan
| | - Shinya Hirata
- Department of Rheumatology and Clinical Immunology Kumamoto University Hospital Japan
| | - Hiroaki Tanaka
- Faculty of Sports and Health Science Fukuoka University Japan
| | - Osamu Imakyure
- Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Nanako Tone
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| | - Shinji Soeda
- Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan
| |
Collapse
|
29
|
Xu Y, Jin J, Zhang W, Zhang Z, Gao J, Liu Q, Zhou C, Xu Q, Shi H, Hou Y, Shi J. EGFR/MDM2 signaling promotes NF-κB activation via PPARγ degradation. Carcinogenesis 2015; 37:215-222. [PMID: 26718225 DOI: 10.1093/carcin/bgv252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
Dysregulated expression of epidermal growth factor receptor (EGFR) has been implicated in many cancer events, while peroxisome proliferator-activated receptor γ (PPARγ) negatively regulates cancer progression. The molecular mechanism of EGFR interaction with PPARγ is still unclear. Here, we found that nuclear EGFR induced phosphorylation of PPARγ at Tyr-74 leading to PPARγ ubiquitination and degradation by mouse double minute 2 (MDM2) ubiquitin ligase. PPARγ degradation by EGFR/MDM2 signaling resulted in accumulation of nuclear factor-kappaB (NF-κB)/p65 protein levels and increasing NF-κB activation. In contrast, PPARγ-Y74A mutant reversed this event. Moreover, PPARγ-Y74A mutant suppressed cell proliferation and increased chemotherapeutic agent-induced cancer cell sensitivity. Importantly, the clinical findings show that the nuclear phosphorylation of PPARγ-Y74 and EGFR expression in colonic cancer tissues was higher than that in control normal tissues. Thus, our study revealed a novel molecular mechanism that nuclear EGFR/NF-κB signaling promoted cell proliferation by destructing PPARγ function, which provides a novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Ying Xu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu 213037, People's Republic of China.,Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China.,Department of Central Laboratory and
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University , Changzhou, Jiangsu 213037 , People's Republic of China
| | - Wenbo Zhang
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China.,Department of General Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, People's Republic of China
| | - Zhi Zhang
- Institute of Life Science, Jiangsu University , Zhenjiang, Jiangsu 212013 , People's Republic of China
| | - Jiaming Gao
- Institute of Life Science, Jiangsu University , Zhenjiang, Jiangsu 212013 , People's Republic of China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University , Changzhou, Jiangsu 213037 , People's Republic of China
| | - Chenglin Zhou
- Jiangsu Taizhou People's Hospital , Jiangsu 225309 , People's Republic of China
| | - Qinggang Xu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University , Changzhou, Jiangsu 213037 , People's Republic of China
| | - Haifeng Shi
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University , Changzhou, Jiangsu 213037 , People's Republic of China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu 213037, People's Republic of China.,Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Juanjuan Shi
- Institute of Life Science, Jiangsu University , Zhenjiang, Jiangsu 212013 , People's Republic of China
| |
Collapse
|
30
|
Xu H, You M, Shi H, Hou Y. Ubiquitin-mediated NFκB degradation pathway. Cell Mol Immunol 2015; 12:653-5. [PMID: 25345807 PMCID: PMC4716629 DOI: 10.1038/cmi.2014.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/13/2014] [Accepted: 09/14/2014] [Indexed: 12/28/2022] Open
Abstract
The nuclear factor κB (NFκB) transcription factor plays critical roles in inflammation and immunity. The dysregulation of NFκB is associated with inflammatory and autoimmune diseases and cancer. NFκB activation is negatively regulated by the ubiquitin-dependent proteasomal degradation pathway. In the present review, we discuss recent advances in our understanding of how ubiquitin ligases regulate the NFκB degradation pathway.
Collapse
|
31
|
PPARα regulates tumor progression, foe or friend? Eur J Pharmacol 2015; 765:560-4. [PMID: 26409040 DOI: 10.1016/j.ejphar.2015.09.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/21/2022]
Abstract
PPARα belongs to the peroxisome-proliferator-activated receptors (PPARs) family that consists of PPARα, PPARδ, and PAPRγ. Activation of PPARα by ligands including fatty acids and their derivatives as well as some synthetic compounds regulates tumor progression in various tissues. Activated PPARα inhibits or promotes tumorigenesis depending on the specific tissues, but the molecular mechanism is still unclear. In this review, the recent progress of PPARα regulating tumorigenesis is discussed.
Collapse
|
32
|
Zhou X, Hao W, Shi H, Hou Y, Xu Q. Calcium homeostasis disruption - a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis. Oncol Res Treat 2015; 38:311-5. [PMID: 26045029 DOI: 10.1159/000431032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/30/2015] [Indexed: 11/19/2022]
Abstract
Calcium and cadmium are divalent metals and have similar chemical properties. Both can enter cells through, albeit different, channels, or through protein-dependent permeation. However, cadmium disturbs the calcium homeostasis by inhibiting calcium channels and/or related proteins. Cadmium can also alter membrane phospholipid concentrations, and so induce a calcium homeostasis disorder. The altered calcium homeostasis induced by cadmium results in cell apoptosis, autophagy or tumorigenesis. In this review, calcium homeostasis disruption is summarized as a bridge connecting cadmium-induced apoptosis, autophagy, and tumorigenesis.
Collapse
Affiliation(s)
- Xuehai Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | | | | | | | | |
Collapse
|