1
|
Hemati S, Ghiasi M, Salimi A. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review. Curr Stem Cell Res Ther 2025; 20:33-49. [PMID: 38315659 DOI: 10.2174/011574888x263333231218065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
El-Nablaway M, Rashed F, Taher ES, Abdeen A, Taymour N, Soliman MM, Shalaby HK, Fericean L, Ioan BD, El-Sherbiny M, Ebrahim E, Abdelkader A, Abdo M, Alexandru CC, Atia GA. Prospective and challenges of locally applied repurposed pharmaceuticals for periodontal tissue regeneration. Front Bioeng Biotechnol 2024; 12:1400472. [PMID: 39605747 PMCID: PMC11600316 DOI: 10.3389/fbioe.2024.1400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontitis is a persistent inflammatory condition that causes periodontal ligament degradation, periodontal pocket development, and alveolar bone destruction, all of which lead to the breakdown of the teeth's supporting system. Periodontitis is triggered by the accumulation of various microflora (especially anaerobes) in the pockets, which release toxic substances and digestive enzymes and stimulate the immune system. Periodontitis can be efficiently treated using a variety of techniques, both regional and systemic. Effective therapy is dependent on lowering microbial biofilm, minimizing or eradicating pockets. Nowadays, using local drug delivery systems (LDDSs) as an adjuvant therapy to phase I periodontal therapy is an attractive option since it controls drug release, resulting in improved efficacy and lesser adverse reactions. Choosing the right bioactive agent and mode of delivery is the foundation of an efficient periodontal disease management approach. The objective of this paper is to shed light on the issue of successful periodontal regeneration, the drawbacks of currently implemented interventions, and describe the potential of locally delivered repurposed drugs in periodontal tissue regeneration. Because of the multiple etiology of periodontitis, patients must get customized treatment with the primary goal of infection control. Yet, it is not always successful to replace the lost tissues, and it becomes more challenging as the defect gets worse. Pharmaceutical repurposing offers a viable, economical, and safe alternative for non-invasive, and predictable periodontal regeneration. This article clears the way in front of researchers, decision-makers, and pharmaceutical companies to explore the potential, effectiveness, and efficiency of the repurposed pharmaceuticals to generate more economical, effective, and safe topical pharmaceutical preparations for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Magdalen M. Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Badr City, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Bănățean-Dunea Ioan
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Saudi Arabia
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Cucui-Cozma Alexandru
- Second Department of Surgery Victor Babeș, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Kim JH, Lee HJ, Song HJ, Park JB. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:60. [PMID: 38256321 PMCID: PMC10817649 DOI: 10.3390/medicina60010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Mesenchymal stem cells hold promise for tissue regeneration, given their robust growth and versatile differentiation capabilities. An analysis of bone marrow-sourced mesenchymal stem cell proliferation showed that 17β-estradiol could enhance their growth. This study aims to investigate the influence of 17β-estradiol on the shape, survival, osteogenic differentiation, and mineralization of human mesenchymal stem cells. Materials and Methods: Spheroids made from human gingiva-derived stem cells were cultivated with varying concentrations of 17β-estradiol: 0, 0.01, 0.1, 1, and 10 nM. Morphology was assessed on days 1, 3, and 5. The live/dead kit assay was employed on day 3 for qualitative cell viability, while cell counting kit-8 was used for quantitative viability assessments on days 1, 3, and 5. To evaluate the osteogenic differentiation of the spheroids, a real-time polymerase chain reaction assessed the expressions of RUNX2 and COL1A1 on day 7. Results: The stem cells formed cohesive spheroids, and the inclusion of 17β-estradiol did not noticeably alter their shape. The spheroid diameter remained consistent across concentrations of 0, 0.01, 0.1, 1, and 10 nM of 17β-estradiol. However, cellular viability was boosted with the addition of 1 and 10 nM of 17β-estradiol. The highest expression levels for RUNX2 and COL1A1 were observed with the introduction of 17β-estradiol at 0.1 nM. Conclusions: In conclusion, from the results obtained, it can be inferred that 17β-estradiol can be utilized for differentiating stem cell spheroids. Furthermore, the localized and controlled use, potentially through localized delivery systems or biomaterials, can be an area of active research. While 17β-estradiol holds promise for enhancing stem cell applications, any clinical use requires a thorough understanding of its mechanisms, careful control of its dosage and delivery, and extensive testing to ensure safety and efficacy.
Collapse
Affiliation(s)
- Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
5
|
Gurgul SJ, Moreira A, Xiao Y, Varma SN, Liu C, Costa PF, Williams GR. Electrosprayed Particles Loaded with Kartogenin as a Potential Osteochondral Repair Implant. Polymers (Basel) 2023; 15:polym15051275. [PMID: 36904516 PMCID: PMC10007262 DOI: 10.3390/polym15051275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The restoration of cartilage damage is a slow and not always successful process. Kartogenin (KGN) has significant potential in this space-it is able to induce the chondrogenic differentiation of stem cells and protect articular chondrocytes. In this work, a series of poly(lactic-co-glycolic acid) (PLGA)-based particles loaded with KGN were successfully electrosprayed. In this family of materials, PLGA was blended with a hydrophilic polymer (either polyethyleneglycol (PEG) or polyvinylpyrrolidone (PVP)) to control the release rate. Spherical particles with sizes in the range of 2.4-4.1 µm were fabricated. They were found to comprise amorphous solid dispersions, with high entrapment efficiencies of >93%. The various blends of polymers had a range of release profiles. The PLGA-KGN particles displayed the slowest release rate, and blending with PVP or PEG led to faster release profiles, with most systems giving a high burst release in the first 24 h. The range of release profiles observed offers the potential to provide a precisely tailored profile via preparing physical mixtures of the materials. The formulations are highly cytocompatible with primary human osteoblasts.
Collapse
Affiliation(s)
| | | | - Yi Xiao
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Swastina Nath Varma
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4AP, UK
| | | | - Gareth R. Williams
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence: ; Tel.: +44-0203-987-2817
| |
Collapse
|
6
|
Abdel Nasser Atia G, Shalaby HK, Zehravi M, Ghobashy MM, Ahmad Z, Khan FS, Dey A, Rahman MH, Joo SW, Barai HR, Cavalu S. Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review. Polymers (Basel) 2022; 14:polym14142964. [PMID: 35890740 PMCID: PMC9319147 DOI: 10.3390/polym14142964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host’s regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo 13759, Egypt;
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Piata 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (G.A.N.A.); (H.K.S.); (H.R.B.); (S.C.)
| |
Collapse
|
7
|
Irmak G, Gümüşderelioğlu M. Patients- and tissue-specific bio-inks with photoactivated PRP and methacrylated gelatin for the fabrication of osteochondral constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112092. [PMID: 33965102 DOI: 10.1016/j.msec.2021.112092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
In osteochondral tissue engineering, while the biochemical and mechanical properties of hydrogels guide stem cell proliferation and differentiation, physical and chemical stimulators also affect the differentiation of stem cells. Herein, we presented a patient and tissue-specific strategy for the development of biomimetic osteochondral constructs with gradient compositions. Osteochondral constructs were fabricated by gradually printing of bio-inks consisting of therapeutic platelet-rich plasma (PRP), adipose tissue-derived mesenchymal stem cells (AdMSCs), and extracellular matrix (ECM) mimetic hydrogel, microwave-assisted methacrylated gelatin (Gel-MA). Periodic application of light in the near infrared region (600-1200 nm wavelength) was used to induce platelet activation and also AdMSCs' differentiation. Gel-MA has the same structure as type I collagen and PRP has cartilage tissue-specific bioactive components, so they provide the appropriate environment for the differentiation of AdMSCs to osteochondral tissue. Histology, immunocytochemistry, and biochemical analyses indicated enhanced glycosaminoglycan (GAG) and calcium content, mineralization, and ECM production. Furthermore, RT-PCR results indicated the expressions of bone- and cartilage-specific genes. In conclusion, the periodically photoactivated hydrogels with relatively low degradation rate and high mechanical strength, and tissue-specific biomimetic structure promoted in-vitro osteochondral tissue formation including hyaline and hypertrophic cartilage and bone phases.
Collapse
Affiliation(s)
- Gülseren Irmak
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Hacettepe University, Bioengineering Department, 06800 Beytepe, Ankara, Turkey; Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey.
| |
Collapse
|
8
|
Safari B, Davaran S, Aghanejad A. Osteogenic potential of the growth factors and bioactive molecules in bone regeneration. Int J Biol Macromol 2021; 175:544-557. [PMID: 33571587 DOI: 10.1016/j.ijbiomac.2021.02.052] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
The growing need for treatment of the impaired bone tissue has resulted in the quest for the improvement of bone tissue regeneration strategies. Bone tissue engineering is trying to create bio-inspired systems with a coordinated combination of the cells, scaffolds, and bioactive factors to repair the damaged bone tissue. The scaffold provides a supportive matrix for cell growth, migration, and differentiation and also, acts as a delivery system for bioactive factors. Bioactive factors including a large group of cytokines, growth factors (GFs), peptides, and hormonal signals that regulate cellular behaviors. These factors stimulate osteogenic differentiation and proliferation of cells by activating the signaling cascades related to ossification and angiogenesis. GFs and bioactive peptides are significant parts of the bone tissue engineering systems. Besides, the use of the osteogenic potential of hormonal signals has been an attractive topic, particularly in osteoporosis-related bone defects. Due to the unstable nature of protein factors and non-specific effects of hormones, the engineering of scaffolds to the controlled delivery of these bioactive molecules has paramount importance. This review updates the growth factors, engineered peptides, and hormones that are used in bone tissue engineering systems. Also, discusses how these bioactive molecules may be linked to accelerating bone regeneration.
Collapse
Affiliation(s)
- Banafsheh Safari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Irmak G, Öztürk MG, Gümüşderelioğlu M. Salinomycin encapsulated PLGA nanoparticles eliminate osteosarcoma cells via inducing/inhibiting multiple signaling pathways: Comparison with free salinomycin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Wang D, Steffi C, Wang Z, Kong CH, Lim PN, Shi Z, Thian ES, Wang W. Beta-cyclodextrin modified mesoporous bioactive glass nanoparticles/silk fibroin hybrid nanofibers as an implantable estradiol delivery system for the potential treatment of osteoporosis. NANOSCALE 2018; 10:18341-18353. [PMID: 30255905 DOI: 10.1039/c8nr05268a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Osteoporosis, a systemic skeletal disease prevalent in elderly women, is associated with post-menopausal estrogen deficiency. Although systemic administration of exogenous estradiol (E2) reduced fragility fractures, the treatment has adverse effects. Localized delivery technologies of E2 could be utilized to circumvent the systemic adverse effects of systemic administration. In this study, a localized E2 delivery system is developed. Mesoporous bioactive glass nanoparticles (MBGNPs) with inherent osteogenic properties are modified with β-cyclodextrin (CD-MBGNPs) to enhance their affinity for E2. To ensure mechanical stability and integrity, E2 loaded CD-MBGNPs are further electrospun with silk fibroin (SF) to produce a nanofibrous mesh (E2@CD-MBGNPs/SF). The incorporation of MBGNPs in SF enhances in vitro apatite formation and sustains the constant release of E2. Moreover, osteoblast proliferation and differentiation markers such as alkaline phosphatase activity, collagen 1 and osteocalcin expression of MC3T3-E1 are augmented in CD-MBGNPs/SF and E2@CD-MBGNPs/SF as compared to SF nanofibers. On the other hand, osteoclast DNA, tartrate resistant acid phosphatase activity and multinucleated cell formation are reduced in E2@CD-MBGNPs/SF as compared to CD-MBGNPs/SF and SF. Hence the presence of CD-MBGNPs in SF stimulates osteoblast function whereas E2 incorporation in CD-MBGNPs/SF reduces osteoclast activity. This is the first report to develop CD-MBGNPs/SF as a localized delivery system for hydrophobic molecules such as estradiol to treat osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
17β-Estradiol Accelerated Renal Tubule Regeneration in Male Rats After Ischemia/Reperfusion-Induced Acute Kidney Injury. Shock 2018; 46:158-63. [PMID: 26849629 DOI: 10.1097/shk.0000000000000586] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ischemic/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI). Murine studies report that pretreatment with 17β-estradiol protects against AKI using multiple mechanisms, but how 17β-estradiol is involved in regenerating tubular cells is unknown. To visualize the kidney injury and repair, we used 17β-estradiol to treat rats with postischemic acute kidney injury. AKI was induced by clamping the renal pedicle for 90 minutes 2 weeks after a unilateral nephrectomy. Rats were treated with an intravenous injection of 17β-estradiol or vehicle immediately after reperfusion. Kidney injury was assessed by measuring biochemical and histopathological changes. Immunohistochemical staining of vimentin, proliferating cell nuclear antigen (PCNA), and E-cadherin were used to assess dedifferentiation, proliferation, and redifferentiation. Rats treated with 17β-estradiol had less kidney injury than did vehicle-treated rats post-IRI day 1. The number of PCNA-positive (PCNA) cells was significantly higher in post-IRI kidneys on day 1 in 17β-estradiol-treated rats. Moreover, vimentin and E-cadherin cells, which were interpreted as regeneration markers, were expressed earlier and significantly more copiously in 17β-estradiol-treated rats. We hypothesize that 17β-estradiol attenuates IRI-induced AKI by reducing inflammation and accelerating injured tubular cell regeneration.
Collapse
|
12
|
Ullah F, Javed F, Othman MBH, Khan A, Gul R, Ahmad Z, Md. Akil1 H. Synthesis and functionalization of chitosan built hydrogel with induced hydrophilicity for extended release of sparingly soluble drugs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:376-396. [DOI: 10.1080/09205063.2017.1421347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Faheem Ullah
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Fatima Javed
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - M. B. H. Othman
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Rukhsana Gul
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Zulkifli Ahmad
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Hazizan Md. Akil1
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
13
|
Zamani Mazdeh D, Mirshokraei P, Emami M, Mirshahi A, Karimi I. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model. Res Vet Sci 2017; 118:11-18. [PMID: 29334646 DOI: 10.1016/j.rvsc.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more qualified approach that yields in a shorter time appears to be promising for the future cell-based clinical treatments of the non-union bone fractures. Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on the radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more efficient approach that yields in a shorter time appears to be promising for future cell-based clinical treatments of the non-union bone fractures.
Collapse
Affiliation(s)
- Delaram Zamani Mazdeh
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammadreza Emami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Mirshahi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iraj Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
14
|
Pence JC, Clancy KBH, Harley BAC. Proangiogenic Activity of Endometrial Epithelial and Stromal Cells in Response to Estradiol in Gelatin Hydrogels. ACTA ACUST UNITED AC 2017; 1. [PMID: 29230433 DOI: 10.1002/adbi.201700056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biomaterial vascularization remains a major focus in the field of tissue engineering. Biomaterial culture of endometrial cells is described as a platform to inform the design of proangiogenic biomaterials. The endometrium undergoes rapid growth and shedding of dense vascular networks during each menstrual cycle mediated via estradiol and progesterone in vivo. Cocultures of endometrial epithelial and stromal cells encapsulated within a methacrylamide-functionalized gelatin hydrogel are employed. It is reported that proangiogenic gene expression profiles and vascular endothelial growth factor production are hormone dependent in endometrial epithelial cells, but that hormone signals have no effect on human telomerase reverse transcriptase (hTERT)-immortalized endometrial stromal cells. This study subsequently examines whether the magnitude of epithelial cell response is sufficient to induce changes in human umbilical vein endothelial cell network formation. Incorporation of endometrial stromal cells improves vessel formation, but co-culture with endometrial epithelial cells leads to a decrease in vascular formation, suggesting the need for stratified cocultures of endometrial epithelial and stromal cells with endothelial cells. Given the transience of hormonal signals within 3D biomaterials, the inclusion of sex hormone binding globulin (SHBG) to alter the bioavailability of estradiol within the hydrogel is reported, demonstrating a strategy to reduce diffusive losses via SHBG-mediated estradiol sequestration.
Collapse
Affiliation(s)
- Jacquelyn C Pence
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL 61801, USA
| | - Kathryn B H Clancy
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews St, Urbana IL 61801, USA
| | - Brendan A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017. [PMID: 28639943 DOI: 10.1088/1758-5090/aa7b1d] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bioprinting can be defined as 3D patterning of living cells and other biologics by filling and assembling them using a computer-aided layer-by-layer deposition approach to fabricate living tissue and organ analogs for tissue engineering. The presence of cells within the ink to use a 'bio-ink' presents the potential to print 3D structures that can be implanted or printed into damaged/diseased bone tissue to promote highly controlled cell-based regeneration and remineralization of bone. In this study, it was shown for the first time that chitosan solution and its composite with nanostructured bone-like hydroxyapatite (HA) can be mixed with cells and printed successfully. MC3T3-E1 pre-osteoblast cell laden chitosan and chitosan-HA hydrogels, which were printed with the use of an extruder-based bioprinter, were characterized by comparing these hydrogels to alginate and alginate-HA hydrogels. Rheological analysis showed that all groups had viscoelastic properties. It was also shown that under simulated physiological conditions, chitosan and chitosan-HA hydrogels were stable. Also, the viscosity values of the bio-solutions were in an applicable range to be used in 3D bio-printers. Cell viability and proliferation analyses documented that after printing with bio-solutions, cells continued to be viable in all groups. It was observed that cells printed within chitosan-HA composite hydrogel had peak expression levels for early and late stages osteogenic markers. It was concluded that cells within chitosan and chitosan-HA hydrogels had mineralized and differentiated osteogenically after 21 days of culture. It was also discovered that chitosan is superior to alginate, which is the most widely used solution preferred in bioprinting systems, in terms of cell proliferation and differentiation. Thus, applicability and printability of chitosan as a bio-printing solution were clearly demonstrated. Furthermore, it was proven that the presence of bone-like nanostructured HA in alginate and chitosan hydrogels improved cell viability, proliferation and osteogenic differentiation.
Collapse
|
16
|
Transplanted adipose-derived stem cells can be short-lived yet accelerate healing of acid-burn skin wounds: a multimodal imaging study. Sci Rep 2017; 7:4644. [PMID: 28680144 PMCID: PMC5498606 DOI: 10.1038/s41598-017-04484-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
The incidence of accidental and intentional acid skin burns is rising. Current treatment strategies are mostly inadequate, leaving victims disfigured and without treatment options. Here, we have shown that transplantation of adipose-derived stem cells (ASCs) accelerates the process of acid burn wound-healing. Pre-conditioning of ASCs using ascorbic acid (AA) or hypoxic conditions provided additional benefit. While the wounds were ultimately healed in all mice, histological analysis revealed that, in non-transplanted animals, the number of hair follicles was reduced. Bioluminescent imaging (BLI) of transplanted ASCs revealed a gradual loss of transplanted cells, with a similar rate of cell death for each treatment group. The signal of fluorinated cells detected by a clinically applicable 19F MRI method correlated with the BLI findings, which points to 19F MRI as a reliable method with which to track ASCs after transplantation to skin wounds. No difference in therapeutic effect or cell survival was observed between labeled and non-labeled cells. We conclude that, despite being short-lived, transplanted ASCs can accelerate wound-healing and reduce hair loss in acid-burn skin injury. The fluorine nanoemulsion is a clinically applicable cell label capable of reporting on the survival of transplanted cells.
Collapse
|
17
|
Prakapenka AV, Bimonte-Nelson HA, Sirianni RW. Engineering poly(lactic-co-glycolic acid) (PLGA) micro- and nano-carriers for Controlled Delivery of 17β-Estradiol. Ann Biomed Eng 2017; 45:1697-1709. [PMID: 28634732 PMCID: PMC5599155 DOI: 10.1007/s10439-017-1859-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
With menopause, circulating levels of 17β-estradiol (E2) markedly decrease. E2-based hormone therapy is prescribed to alleviate symptoms associated with menopause. E2 is also recognized for its beneficial effects in the central nervous system (CNS), such as enhanced cognitive function following abrupt hormonal loss associated with ovariectomy. For women with an intact uterus, an opposing progestogen component is required to decrease the risk of developing endometrial hyperplasia. While adding an opposing progestogen attenuates these detrimental effects on the uterus, it can attenuate the beneficial effects of E2 in the CNS. Poly(lactic-co-glycolic acid) (PLGA) micro- and nano- carriers (MNCs) have been heavily investigated for their ability to enhance the therapeutic activity of hydrophobic agents following exogenous administration, including E2. Multiple PLGA MNC formulation parameters, such as composition, molecular weight, and type of solvent used, can be altered to systematically manipulate the pharmacokinetic and pharmacodynamic profiles of encapsulated agents. Thus, there is an opportunity to enhance the therapeutic activity of E2 in the CNS through controlled delivery from PLGA MNCs. The aim of this review is to consider the fate of exogenously administered E2 and discuss how PLGA MNCs and route of administration can be used as strategies for controlled E2 delivery.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W Thomas Rd., Phoenix, AZ, 85013, USA
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, 950 S. McAllister Ave., Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ, 85014, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, 350 W Thomas Rd., Phoenix, AZ, 85013, USA.
| |
Collapse
|
18
|
Polychromatic light-induced osteogenic activity in 2D and 3D cultures. Lasers Med Sci 2016; 31:1665-1674. [DOI: 10.1007/s10103-016-2036-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
19
|
McKenna NJ. Research Resources for Nuclear Receptor Signaling Pathways. Mol Pharmacol 2016; 90:153-9. [PMID: 27216565 PMCID: PMC4959089 DOI: 10.1124/mol.116.103713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research.
Collapse
Affiliation(s)
- Neil J McKenna
- Department of Molecular and Cellular Biology and Nuclear Receptor Signaling Atlas Bioinformatics Resource, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
20
|
Mohanty S, Alm M, Hemmingsen M, Dolatshahi-Pirouz A, Trifol J, Thomsen P, Dufva M, Wolff A, Emnéus J. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties. Biomacromolecules 2016; 17:1321-9. [DOI: 10.1021/acs.biomac.5b01722] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Soumyaranjan Mohanty
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Martin Alm
- BioModics ApS, Gregersensvej 7, DK-2630 Taastrup, Denmark
| | - Mette Hemmingsen
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Alireza Dolatshahi-Pirouz
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
- Technical
University of Denmark, DTU Nanotech, Center for Nanomedicine and Theranostics, 2800 Kgs, Denmark
| | - Jon Trifol
- Danish Polymer Centre, Department of Chemical and
Biochemical Engineering, Søltofts Plads, Building 229, DK-2800, Kgs, Lyngby, Denmark
| | - Peter Thomsen
- BioModics ApS, Gregersensvej 7, DK-2630 Taastrup, Denmark
| | - Martin Dufva
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Anders Wolff
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Jenny Emnéus
- DTU
Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
21
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
22
|
Altındal DÇ, Gümüşderelioğlu M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J Microencapsul 2015; 33:53-63. [PMID: 26605784 DOI: 10.3109/02652048.2015.1115901] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melatonin loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles and microparticles in the diameter of ∼200 nm and 3.5 μm, respectively, were prepared by emulsion-diffusion-evaporation method. Melatonin entrapment into the particles was significantly improved with the addition of 0.2% (w/v) melatonin into the aqueous phase and encapsulation efficiencies were found as 14 and 27% for nanoparticles and microparticles, respectively. At the end of 40 days, ∼70% of melatonin was released from both of particles, with high burst release. Both blank and melatonin loaded PLGA nanoparticles caused toxic effect on the MG-63 cells due to their uptake by the cells. However, when 0.05 mg microparticle that is carrying ∼1.7 μg melatonin was added to the cm(2) of culture, inhibitory effect of melatonin on the cells were obviously observed. The results would provide an expectation about the usage of melatonin as an adjunct to the routine chemotherapy of osteosarcoma by encapsulating it into a polymeric carrier system.
Collapse
Affiliation(s)
- Damla Çetin Altındal
- a Chemical Engineering Department , Hacettepe University , Beytepe , Ankara , Turkey
| | | |
Collapse
|
23
|
Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 2015; 94:77-95. [PMID: 26415888 DOI: 10.1016/j.addr.2015.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as improper scaffold stability, and insufficient cell adhesion, proliferation, differentiation, and mineralization with less growth factor expression. Therefore, the use of engineered nanoparticles has been rapidly increasing in bone tissue engineering (BTE) applications. The electrospray technique is advantageous over other conventional methods as it generates nanomaterials of particle sizes in the micro/nanoscale range. The size and charge of the particles are controlled by regulating the polymer solution flow rate and electric voltage. The unique properties of nanoparticles such as large surface area-to-volume ratio, small size, and higher reactivity make them promising candidates in the field of biomedical engineering. These nanomaterials are extensively used as therapeutic agents and for drug delivery, mimicking ECM, and restoring and improving the functions of damaged organs. The controlled and sustained release of encapsulated drugs, proteins, vaccines, growth factors, cells, and nucleotides from nanoparticles has been well developed in nanomedicine. This review provides an insight into the preparation of nanoparticles by electrospraying technique and illustrates the use of nanoparticles in drug delivery for promoting bone tissue regeneration.
Collapse
|
24
|
2015 4(th) TERMIS World Congress Boston, Massachusetts September 8-11, 2015. Tissue Eng Part A 2015; 21 Suppl 1:S1-S413. [PMID: 26317531 DOI: 10.1089/ten.tea.2015.5000.abstracts] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|