1
|
Rodina N, Hornung S, Sarkar R, Suladze S, Peters C, Schmid PWN, Niu Z, Haslbeck M, Buchner J, Kapurniotu A, Reif B. Modulation of Alzheimer's Disease Aβ40 Fibril Polymorphism by the Small Heat Shock Protein αB-Crystallin. J Am Chem Soc 2024; 146:19077-19087. [PMID: 38973199 PMCID: PMC11258688 DOI: 10.1021/jacs.4c03504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Deposition of amyloid plaques in the brains of Alzheimer's disease (AD) patients is a hallmark of the disease. AD plaques consist primarily of the beta-amyloid (Aβ) peptide but can contain other factors such as lipids, proteoglycans, and chaperones. So far, it is unclear how the cellular environment modulates fibril polymorphism and how differences in fibril structure affect cell viability. The small heat-shock protein (sHSP) alpha-B-Crystallin (αBC) is abundant in brains of AD patients, and colocalizes with Aβ amyloid plaques. Using solid-state NMR spectroscopy, we show that the Aβ40 fibril seed structure is not replicated in the presence of the sHSP. αBC prevents the generation of a compact fibril structure and leads to the formation of a new polymorph with a dynamic N-terminus. We find that the N-terminal fuzzy coat and the stability of the C-terminal residues in the Aβ40 fibril core affect the chemical and thermodynamic stability of the fibrils and influence their seeding capacity. We believe that our results yield a better understanding of how sHSP, such as αBC, that are part of the cellular environment, can affect fibril structures related to cell degeneration in amyloid diseases.
Collapse
Affiliation(s)
- Natalia Rodina
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Simon Hornung
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Riddhiman Sarkar
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Saba Suladze
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Carsten Peters
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Philipp W. N. Schmid
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Zheng Niu
- School
of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Martin Haslbeck
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Johannes Buchner
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
| | - Aphrodite Kapurniotu
- Division
of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, Freising 85354, Germany
| | - Bernd Reif
- Bayerisches
NMR Zentrum (BNMRZ) at the Department of Biosciences,
School of Natural SciencesCenter for Functional Protein Assemblies
(CPA), Department of Biosciences, Technische
Universität München, Lichtenbergstr. 4, Garching 85747, Germany
- Helmholtz-Zentrum
München (HMGU), Deutsches Forschungszentrum für Gesundheit
und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| |
Collapse
|
2
|
Friesen M, Meyer-Luehmann M. Aβ Seeding as a Tool to Study Cerebral Amyloidosis and Associated Pathology. Front Mol Neurosci 2019; 12:233. [PMID: 31632238 PMCID: PMC6783493 DOI: 10.3389/fnmol.2019.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Misfolded proteins can form aggregates and induce a self-perpetuating process leading to the amplification and spreading of pathological protein assemblies. These misfolded protein assemblies act as seeds of aggregation. In an in vivo exogenous seeding model, both the features of seeds and the position at which seeding originates are precisely defined. Ample evidence from studies on intracerebal injection of amyloid-beta (Aβ)-rich brain extracts suggests that Aβ aggregation can be initiated by prion-like seeding. In this mini-review article, we will summarize the past and current literature on Aβ seeding in mouse models of AD and discuss its implementation as a tool to study cerebral amyloidosis and associated pathology.
Collapse
Affiliation(s)
- Marina Friesen
- Department of Neurology/Neurodegeneration, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Meyer-Luehmann
- Department of Neurology/Neurodegeneration, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Chen M, Schafer NP, Wolynes PG. Surveying the Energy Landscapes of Aβ Fibril Polymorphism. J Phys Chem B 2018; 122:11414-11430. [PMID: 30215519 DOI: 10.1021/acs.jpcb.8b07364] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many unrelated proteins and peptides have been found spontaneously to form amyloid fibers above a critical concentration. Even for a single sequence, however, the amyloid fold is not a single well-defined structure. Although the cross-β hydrogen bonding pattern is common to all amyloids, all other aspects of amyloid fiber structures are sensitive to both the sequence of the aggregating peptides and the solvent conditions under which the aggregation occurs. Amyloid fibers are easy to identify and grossly characterize using microscopy, but their insolubility and aperiodicity along the dimensions transverse to the fiber axis have complicated detailed experimental structural characterization. In this paper, we explore the landscape of possibilities for amyloid protofilament structures that are made up of a single stack of peptides associated in a parallel in-register manner. We view this landscape as a two-dimensional version of the usual three-dimensional protein folding problem: the survey of the two-dimensional folds of protein ribbons. Adopting this view leads to a practical method of predicting stable protofilament structures of arbitrary sequences. We apply this scheme to variants of Aβ, the amyloid forming peptide that is characteristically associated with Alzheimer's disease. Consistent with what is known from experiment, we find that Aβ protofibrils are polymorphic. To our surprise, however, the ribbon-folding landscape of Aβ turned out to be strikingly simple. We confirm that, at the level of the monomeric protofilament, the landscape for the Aβ sequence is reasonably well funneled toward structures that are similar to those that have been determined by experiment. The landscape has more distinct minima than does a typical globular protein landscape but fewer and deeper minima than the landscape of a randomly shuffled sequence having the same overall composition. It is tempting to consider the possibility that the significant degree of funneling of Aβ's ribbon-folding landscape has arisen as a result of natural selection. More likely, however, the intermediate complexity of Aβ's ribbon-folding landscape has come from the post facto selection of the Aβ sequence as an object of study by researchers because only by having a landscape with some degree of funneling can ordered aggregation of such a peptide occur at in vivo concentrations. In addition to predicting polymorph structures, we show that predicted solubilities of polymorphs correlate with experiment and with their elongation free energies computed by coarse-grained molecular dynamics.
Collapse
Affiliation(s)
- Mingchen Chen
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Bioengineering , Rice University , Houston , Texas 77005 , United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States.,Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
4
|
Abstract
Senile plaques and neurofibrillary tangles are the principal histopathologic hallmarks of Alzheimer disease. The essential constituents of these lesions are structurally abnormal variants of normally generated proteins: Aβ protein in plaques and tau protein in tangles. At the molecular level, both proteins in a pathogenic state share key properties with classic prions, i.e., they consist of alternatively folded, β-sheet-rich forms of the proteins that autopropagate by the seeded corruption and self-assembly of like proteins. Other similarities with prions include the ability to manifest as polymorphic and polyfunctional strains, resistance to chemical and enzymatic destruction, and the ability to spread within the brain and from the periphery to the brain. In Alzheimer disease, current evidence indicates that the pathogenic cascade follows from the endogenous, sequential corruption of Aβ and then tau. Therapeutic options include reducing the production or multimerization of the proteins, uncoupling the Aβ-tauopathy connection, or promoting the inactivation or removal of anomalous assemblies from the brain. Although aberrant Aβ appears to be the prime mover of Alzheimer disease pathogenesis, once set in motion by Aβ, the prion-like propagation of tauopathy may proceed independently of Aβ; if so, Aβ might be solely targeted as an early preventive measure, but optimal treatment of Alzheimer disease at later stages of the cascade could require intervention in both pathways.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
5
|
Candelise N, Schmitz M, Da Silva Correia SM, Arora AS, Villar-Piqué A, Zafar S, Llorens F, Cramm M, Zerr I. Applications of the real-time quaking-induced conversion assay in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies. Expert Rev Mol Diagn 2017; 17:897-904. [PMID: 28817974 DOI: 10.1080/14737159.2017.1368389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The development of in vitro protein misfolding amplification assays for the detection and analysis of abnormally folded proteins, such as proteinase K resistant prion protein (PrPres) was a major innovation in the prion field. In prion diseases, these types of assays imitate the pathological conversion of the cellular PrP (PrPC) into a proteinase resistant associated conformer or amyloid, called PrPres. Areas covered: The most prominent protein misfolding amplification assays are the protein misfolding cyclic amplification (PMCA), which is based on sonication and the real-time quaking-induced conversion (RT-QuIC) technique based on shaking. The more recently established RT-QuIC is fully automatic and enables the monitoring of misfolded protein aggregates in real-time by using a fluorescent dye. Expert commentary: RT-QuIC is a very robust and highly reproducible test system which is applicable in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies.
Collapse
Affiliation(s)
- Niccolò Candelise
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Matthias Schmitz
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Susana Margarida Da Silva Correia
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Amandeep Singh Arora
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Anna Villar-Piqué
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Franc Llorens
- b Department of Neuropathology , Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Barcelona , Spain
| | - Maria Cramm
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Inga Zerr
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| |
Collapse
|
6
|
Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017; 140:176-192. [PMID: 28751216 DOI: 10.1016/j.biochi.2017.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia.
| | - Filips Oleskovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) & Oslo University Hospital (OUS), Norway; LIED, University of Lübeck Uzl, Germany; Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Henrik Biverstål
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.
Collapse
Affiliation(s)
- Jay Rasmussen
- a Department of Cellular Neurology , Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany.,c Graduate Training Center of Neuroscience, University of Tübingen , Tübingen , Germany
| | - Mathias Jucker
- a Department of Cellular Neurology , Hertie Institute for Clinical Brain Research, University of Tübingen , Tübingen , Germany.,b German Center for Neurodegenerative Diseases (DZNE) , Tübingen , Germany
| | - Lary C Walker
- d Department of Neurology and Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| |
Collapse
|
8
|
Abstract
Most age-related neurodegenerative diseases are associated with the misfolding and aberrant accumulation of specific proteins in the nervous system. The proteins self-assemble and spread by a prion-like process of corruptive molecular templating, whereby abnormally folded proteins induce the misfolding and aggregation of like proteins into characteristic lesions. Despite the apparent simplicity of this process at the molecular level, diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and others display remarkable phenotypic heterogeneity, both clinically and pathologically. Evidence is growing that this variability is mediated, at least in part, by the acquisition of diverse molecular architectures by the misfolded proteins, variants referred to as proteopathic strains. The structural and functional diversity of the assemblies is influenced by genetic, epigenetic, and local contextual factors. Insights into proteopathic strains gleaned from the classical prion diseases can be profitably incorporated into research on other neurodegenerative diseases. Their potentially wide-ranging influence on disease phenotype also suggests that proteopathic strains should be considered in the design and interpretation of diagnostic and therapeutic approaches to these disorders.
Collapse
Affiliation(s)
- Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
9
|
Sharma J, Wisniewski BT, Paulson E, Obaoye JO, Merrill SJ, Manogaran AL. De novo [PSI +] prion formation involves multiple pathways to form infectious oligomers. Sci Rep 2017; 7:76. [PMID: 28250435 PMCID: PMC5427932 DOI: 10.1038/s41598-017-00135-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Prion and other neurodegenerative diseases are associated with misfolded protein assemblies called amyloid. Research has begun to uncover common mechanisms underlying transmission of amyloids, yet how amyloids form in vivo is still unclear. Here, we take advantage of the yeast prion, [PSI +], to uncover the early steps of amyloid formation in vivo. [PSI +] is the prion form of the Sup35 protein. While [PSI +] formation is quite rare, the prion can be greatly induced by overexpression of the prion domain of the Sup35 protein. This de novo induction of [PSI +] shows the appearance of fluorescent cytoplasmic rings when the prion domain is fused with GFP. Our current work shows that de novo induction is more complex than previously thought. Using 4D live cell imaging, we observed that fluorescent structures are formed by four different pathways to yield [PSI +] cells. Biochemical analysis of de novo induced cultures indicates that newly formed SDS resistant oligomers change in size over time and lysates made from de novo induced cultures are able to convert [psi -] cells to [PSI +] cells. Taken together, our findings suggest that newly formed prion oligomers are infectious.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Brett T Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Joanna O Obaoye
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
10
|
Hu ZW, Ma MR, Chen YX, Zhao YF, Qiang W, Li YM. Phosphorylation at Ser 8 as an Intrinsic Regulatory Switch to Regulate the Morphologies and Structures of Alzheimer's 40-residue β-Amyloid (Aβ40) Fibrils. J Biol Chem 2017; 292:2611-2623. [PMID: 28031462 PMCID: PMC5314160 DOI: 10.1074/jbc.m116.757179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Polymorphism of amyloid-β (Aβ) fibrils, implying different fibril structures, may play important pathological roles in Alzheimer's disease (AD). Morphologies of Aβ fibrils were found to be sensitive to fibrillation conditions. Herein, the Ser8-phosphorylated Aβ (pAβ), which is assumed to specially associate with symptomatic AD, is reported to modify the morphology, biophysical properties, cellular toxicity, and structures of Aβ fibrils. Under the same fibrillation conditions, pAβ favors the formation of fibrils (Fpβ), which are different from the wild-type Aβ fibrils (Fβ). Both Fβ and Fpβ fibrils show single predominant morphologies. Compared with Fβ, Fpβ exhibits higher propagation efficiency and higher neuronal cell toxicity. The residue-specific structural differences between the Fβ- and Fpβ-seeded Aβ fibrils were identified using magic angle spin NMR. Our results suggest a potential regulatory mechanism of phosphorylation on Aβ fibril formation in AD and imply that the post-translationally modified Aβ, especially the phosphorylated Aβ, may be an important target for the diagnosis or treatment of AD at specific stages.
Collapse
Affiliation(s)
- Zhi-Wen Hu
- From the Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Meng-Rong Ma
- From the Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- From the Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Fen Zhao
- From the Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, and
| | - Yan-Mei Li
- From the Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China,
- Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
11
|
Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, Lee JH, Ryu YH, Lee MS, Lyoo CH. In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol 2016; 80:247-58. [PMID: 27323247 DOI: 10.1002/ana.24711] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the in vivo cortical spreading pattern of tau and amyloid and to establish positron emission tomography (PET) image-based tau staging in the Alzheimer disease (AD) spectrum. METHODS We included 195 participants (53 AD, 52 amnestic mild cognitive impairment [MCI], 23 nonamnestic MCI, and 67 healthy controls) who underwent 2 PET scans ((18) F-florbetaben for amyloid-β and (18) F-AV-1451 for tau). We assumed that regions with earlier appearances of pathology may show increased binding in a greater number of participants and acquired spreading order of tau accumulation by sorting the regional frequencies of involvement. We classified each participant into image-based tau stage based on the Z score of the composite region for each stage. RESULTS Tau accumulation was most frequently observed in the medial temporal regions and spread stepwise to the basal and lateral temporal, inferior parietal, posterior cingulate, and other association cortices, and then ultimately to the primary cortical regions. In contrast, amyloid accumulation was found with similar frequency in the diffuse neocortical areas and then finally spread to the medial temporal regions. The image-based tau stage correlated with the general cognitive status, whereas cortical thinning was found only in the advanced tau stages: medial temporal region in stage V and widespread cortex in stage VI. INTERPRETATION Our PET study replicated postmortem spreading patterns of tau and amyloid-β pathologies. Unlike the diffuse accumulation of amyloid throughout the neocortex, tau spreading occurred in a stepwise fashion through the networks. Image-based tau staging may be useful for the objective assessment of AD progression. Ann Neurol 2016;80:247-258.
Collapse
Affiliation(s)
- Hanna Cho
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Jae Yong Choi
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Mi Song Hwang
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - You Jin Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Hye Mi Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hoon Lee
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Myung Sik Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine
| |
Collapse
|
12
|
Walker LC, Schelle J, Jucker M. The Prion-Like Properties of Amyloid-β Assemblies: Implications for Alzheimer's Disease. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a024398. [PMID: 27270558 DOI: 10.1101/cshperspect.a024398] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the discovery that prion diseases can be transmitted to experimental animals by inoculation with afflicted brain matter, researchers have speculated that the brains of patients suffering from other neurodegenerative diseases might also harbor causative agents with transmissible properties. Foremost among these disorders is Alzheimer's disease (AD), the most common cause of dementia in the elderly. A growing body of research supports the concept that the pathogenesis of AD is initiated and sustained by the endogenous, seeded misfolding and aggregation of the protein fragment amyloid-β (Aβ). At the molecular level, this mechanism of nucleated protein self-assembly is virtually identical to that of prions consisting of the prion protein (PrP). The formation, propagation, and spread of Aβ seeds within the brain can thus be considered a fundamental feature of AD pathogenesis.
Collapse
Affiliation(s)
- Lary C Walker
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia 30322
| | - Juliane Schelle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076 Tübingen, Germany German Center for Neurodegenerative Diseases (DZNE), D-72076 Tübingen, Germany
| |
Collapse
|
13
|
Xi W, Wang W, Abbott G, Hansmann UHE. Stability of a Recently Found Triple-β-Stranded Aβ1–42 Fibril Motif. J Phys Chem B 2016; 120:4548-57. [DOI: 10.1021/acs.jpcb.6b01724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhui Xi
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Wenhua Wang
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Gabrielle Abbott
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry and
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
LeVine H, Walker LC. What amyloid ligands can tell us about molecular polymorphism and disease. Neurobiol Aging 2016; 42:205-12. [PMID: 27143437 DOI: 10.1016/j.neurobiolaging.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/19/2022]
Abstract
Brain-penetrant positron emission tomography imaging ligands selective for amyloid pathology in living subjects have sparked a revolution in presymptomatic biomarkers for Alzheimer's disease progression. As additional chemical structures were investigated, the heterogeneity of ligand-binding sites became apparent, as did discrepancies in binding of some ligands between human disease and animal models. These differences and their implications have received little attention. This review discusses the impact of different ligand-binding sites and misfolded protein conformational polymorphism on the interpretation of imaging data acquired with different ligands. Investigation of the differences in binding in animal models may identify pathologic processes informing improvements to these models for more faithful recapitulation of this uniquely human disease. The differential selectivity for binding of particular ligands to different conformational states could potentially be harnessed to better define disease progression and improve the prediction of clinical outcomes.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY, USA.
| | - Lary C Walker
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
15
|
Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, Geng J, Py B, Zhou W, Amin P, Berlink Lima J, Qi C, Yu Q, Trapp B, Yuan J. Activation of necroptosis in multiple sclerosis. Cell Rep 2015; 10:1836-49. [PMID: 25801023 DOI: 10.1016/j.celrep.2015.02.051] [Citation(s) in RCA: 415] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 01/14/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS), a common neurodegenerative disease of the CNS, is characterized by the loss of oligodendrocytes and demyelination. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine implicated in MS, can activate necroptosis, a necrotic cell death pathway regulated by RIPK1 and RIPK3 under caspase-8-deficient conditions. Here, we demonstrate defective caspase-8 activation, as well as activation of RIPK1, RIPK3, and MLKL, the hallmark mediators of necroptosis, in the cortical lesions of human MS pathological samples. Furthermore, we show that MS pathological samples are characterized by an increased insoluble proteome in common with other neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson’s disease (PD), and Huntington's disease (HD). Finally, we show that necroptosis mediates oligodendrocyte degeneration induced by TNF-α and that inhibition of RIPK1 protects against oligodendrocyte cell death in two animal models of MS and in culture. Our findings demonstrate that necroptosis is involved in MS and suggest that targeting RIPK1 may represent a therapeutic strategy for MS.
Collapse
|
16
|
Abstract
Single amino acid mutations in amyloid-beta (Aβ) peptides can lead to early onset and increased severity of Alzheimer's disease. An example is the Osaka mutation (Aβ1-40E22D), which is more toxic than wild-type Aβ1-40. This mutant quickly forms early stage fibrils, one of the hallmarks of the disease, and these fibrils can even seed fibrilization of wild-type monomers. Using molecular dynamic simulations, we show that because of formation of various intra- and intermolecular salt bridges the Osaka mutant fibrils are more stable than wild-type fibrils. The mutant fibril also has a wider water channel with increased water flow than the wild type. These two observations can explain the higher toxicity and aggregation rate of the Osaka mutant over the wild type.
Collapse
Affiliation(s)
- Workalemahu M Berhanu
- Department of Chemistry & Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Erik J Alred
- Department of Chemistry & Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Ulrich H E Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
17
|
C-Terminal Threonine Reduces Aβ43 Amyloidogenicity Compared with Aβ42. J Mol Biol 2015; 428:274-291. [PMID: 26122432 DOI: 10.1016/j.jmb.2015.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 04/19/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
Aβ43, a product of the proteolysis of the amyloid precursor protein APP, is related to Aβ42 by an additional Thr residue at the C-terminus. Aβ43 is typically generated at low levels compared with the predominant Aβ42 and Aβ40 forms, but it has been suggested that this longer peptide might have an impact on amyloid-β aggregation and Alzheimer's disease that is out of proportion to its brain content. Here, we report that both Aβ42 and Aβ43 spontaneously aggregate into mature amyloid fibrils via sequential appearance of the same series of oligomeric and protofibrillar intermediates, the earliest of which appears to lack β-structure. In spite of the additional β-branched amino acid at the C-terminus, Aβ43 fibrils have fewer strong backbone H-bonds than Aβ42 fibrils, some of which are lost at the C-terminus. In contrast to previous reports, we found that Aβ43 spontaneously aggregates more slowly than Aβ42. In addition, Aβ43 fibrils are very inefficient at seeding Aβ42 amyloid formation, even though Aβ42 fibrils efficiently seed amyloid formation by Aβ43 monomers. Finally, mixtures of Aβ42 and Aβ43 aggregate more slowly than Aβ42 alone. Both in this Aβ42/Aβ43 co-aggregation reaction and in cross-seeding by Aβ42 fibrils, the structure of the Aβ43 in the product fibrils is influenced by the presence of Aβ42. The results provide new details of amyloid structure and assembly pathways, an example of structural plasticity in prion-like replication, and data showing that low levels of Aβ43 in the brain are unlikely to favorably impact the aggregation of Aβ42.
Collapse
|
18
|
Schütz AK, Vagt T, Huber M, Ovchinnikova OY, Cadalbert R, Wall J, Güntert P, Böckmann A, Glockshuber R, Meier BH. Atomic-resolution three-dimensional structure of amyloid β fibrils bearing the Osaka mutation. Angew Chem Int Ed Engl 2015; 54:331-5. [PMID: 25395337 PMCID: PMC4502972 DOI: 10.1002/anie.201408598] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 11/23/2022]
Abstract
Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid β-peptide (Aβ) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the Aβ1-40 peptide with the Osaka mutation (E22Δ), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints.
Collapse
Affiliation(s)
- Anne K Schütz
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 28093 Zurich (Switzerland)
| | - Toni Vagt
- Institute of Molecular Biology and Biophysics, ETH ZurichOtto-Stern-Weg 5, 8093 Zurich (Switzerland)
| | - Matthias Huber
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 28093 Zurich (Switzerland)
| | - Oxana Y Ovchinnikova
- Institute of Molecular Biology and Biophysics, ETH ZurichOtto-Stern-Weg 5, 8093 Zurich (Switzerland)
| | - Riccardo Cadalbert
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 28093 Zurich (Switzerland)
| | - Joseph Wall
- Brookhaven National Laboratory, 50 Bell AvenueBuilding 463,Upton, NY 11973-5000 (USA)
| | - Peter Güntert
- Institute of Biophysical ChemistryCenter for Biomolecular Magnetic Resonance and Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main (Germany)
| | - Anja Böckmann
- Institut de Biologie et Chimie des ProtéinesBases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon (France)
| | - Rudi Glockshuber
- Institute of Molecular Biology and Biophysics, ETH ZurichOtto-Stern-Weg 5, 8093 Zurich (Switzerland)
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 28093 Zurich (Switzerland)
| |
Collapse
|