1
|
Patergnani S, Giattino A, Bianchi N, Giorgi C, Pinton P, Aguiari G. The inhibition of MDM2 slows cell proliferation and activates apoptosis in ADPKD cell lines. Biol Cell 2023; 115:e2200037. [PMID: 36165233 DOI: 10.1111/boc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Autosomal dominant polycystic kidney disease (ADPKD) is characterised by progressive cysts formation and renal enlargement that in most of cases leads to end stage of renal disease (ESRD). This pathology is caused by mutations of either PKD1 or PKD2 genes that encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. These proteins function as receptor-channel complex able to regulate calcium homeostasis. PKD1/2 loss of function impairs different signalling pathways including cAMP and mTOR that are considered therapeutic targets for this disease. In fact, Tolvaptan, a vasopressin-2 antagonist that reduces cAMP levels, is the only drug approved for ADPKD treatment. Nevertheless, some ADPKD patients developed side effects in response to Tolvaptan including liver damage. Conversely, mTOR inhibitors that induced disease regression in ADPKD animal models failed the clinical trials. RESULTS Here, we show that the inhibition of mTOR causes the activation of autophagy in ADPKD cells that could reduce therapy effectiveness by drug degradation through the autophagic vesicles. Consistently, the combined treatment with rapamycin and chloroquine, an autophagy inhibitor, potentiates the decrease of cell proliferation induced by rapamycin. To overcome the dangerous activation of autophagy by mTOR inhibition, we targeted MDM2 (a downstream effector of mTOR signalling) that is involved in TP53 degradation by using RG7112, a small-molecule MDM2 inhibitor used for the treatment of haematologic malignancies. The inhibition of MDM2 by RG7112 prevents TP53 degradation and increases p21 expression leading to the decrease of cell proliferation and the activation of apoptosis. CONCLUSION The targeting of MDM2 by RG7112 might represent a new therapeutic option for the treatment of ADPKD.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonino Giattino
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R. Autosomal dominant polycystic kidney disease: Disrupted pathways and potential therapeutic interventions. J Cell Physiol 2019; 234:12451-12470. [PMID: 30644092 DOI: 10.1002/jcp.28094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic inherited renal cystic disease that occurs in different races worldwide. It is characterized by the development of a multitude of renal cysts, which leads to massive enlargement of the kidney and often to renal failure in adulthood. ADPKD is caused by a mutation in PKD1 or PKD2 genes encoding the proteins polycystin-1 and polycystin-2, respectively. Recent studies showed that cyst formation and growth result from deregulation of multiple cellular pathways like proliferation, apoptosis, metabolic processes, cell polarity, and immune defense. In ADPKD, intracellular cyclic adenosine monophosphate (cAMP) promotes cyst enlargement by stimulating cell proliferation and transepithelial fluid secretion. Several interventions affecting many of these defective signaling pathways have been effective in animal models and some are currently being tested in clinical trials. Moreover, the stem cell therapy can improve nephropathies and according to studies were done in this field, can be considered as a hopeful therapeutic approach in future for PKD. This study provides an in-depth review of the relevant molecular pathways associated with the pathogenesis of ADPKD and their implications in development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Talieh Malekshahabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Andreas L Serra
- Department of Internal Medicine and Nephrology, Klinik Hirslanden, Zurich, Switzerland
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
3
|
de Castro-Suárez N, Rodríguez-Vera L, Villegas C, Dávalos-Iglesias JM, Bacallao-Mendez R, Llerena-Ferrer B, Leyva-de la Torre C, Lorenzo-Luaces P, Troche-Concepción M, Ramos-Suzarte M. Pharmacokinetic Evaluation of Nimotuzumab in Patients With Autosomal Dominant Polycystic Kidney Disease. J Clin Pharmacol 2019; 59:863-871. [PMID: 30633365 DOI: 10.1002/jcph.1376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/19/2018] [Indexed: 01/05/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disease characterized by an overexpression and mislocalization of epidermal growth factor receptor (EGFR) to the apical membranes of cystic epithelial cells. Nimotuzumab is a humanized antibody that recognizes an extracellular domain III of human EGFR. The aim of this study was to assess the pharmacokinetic behavior of nimotuzumab in patients with ADPKD given as a single dose. A phase I, single-center, and noncontrolled open clinical study was conducted. Five patients were enrolled at each of the following fixed-dose levels: 50, 100, 200, and 400 mg. Intravenous continuous infusions of nimotuzumab were administered every 14 days during a year, except the first administration, when blood samples were drawn during 28 days for pharmacokinetic assessments. Subjects were closely monitored during the trial and at completion of the administration of nimotuzumab, including the anti-idiotypic response. For the first time, nimotuzumab was used for treating a nononcological disease. The administration of nimotuzumab showed dose-dependent kinetics. Nimotuzumab does not develop anti-idiotypic response against the murine portion present in the hypervariable region of the antibody present in the serum of the patients treated. No significant differences were found in the systemic clearance between the 100- and 400-mg dose, which indicates that the optimal biological dose is in this range of dose.
Collapse
Affiliation(s)
- Niurys de Castro-Suárez
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Leyanis Rodríguez-Vera
- Laboratory of Biopharmaceutics, Department of Pharmacology & Toxicology, Institute of Pharmacy & Foods, University of Havana, Havana, Cuba
| | - Carlos Villegas
- National Institute of Oncology and Radiobiology, Havana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Comparative transcriptomics of shear stress treated Pkd1−/− cells and pre-cystic kidneys reveals pathways involved in early polycystic kidney disease. Biomed Pharmacother 2018; 108:1123-1134. [DOI: 10.1016/j.biopha.2018.07.178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 02/08/2023] Open
|
5
|
Elisakova V, Merta M, Reiterova J, Baxova A, Kotlas J, Hirschfeldova K, Obeidova L, Tesar V, Stekrova J. Bilineal inheritance of pathogenic PKD1 and PKD2 variants in a Czech family with autosomal dominant polycystic kidney disease - a case report. BMC Nephrol 2018; 19:163. [PMID: 29973168 PMCID: PMC6032778 DOI: 10.1186/s12882-018-0978-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder, leading to end stage renal failure and kidney transplantation in its most serious form. The severity of the disease's manifestation depends on the genetic determination of ADPKD. The huge variability of different phenotypes (even within a single family) is not only modulated by the two main ADPKD genes (PKD1 and PKD2) but also by modifier genes and the whole genetic background. CASE PRESENTATION This is a report of an ADPKD family with co-inheritance of PKD1 and PKD2 pathogenic variants. The proband, with an extremely serious manifestation of ADPKD (the man was diagnosed in early childhood, and with end stage renal disease aged 23), underwent genetic analysis of PKD1 and PKD2, which revealed the presence of pathogenic mutations in both of these genes. The missense PKD2 mutation p.Arg420Gly came from the proband's father, with a mild ADPKD phenotype. The same mutation of the PKD2 gene and similar mild disease presentation were found in the proband's aunt (father's sister) and her son. The nonsense mutation p.Gln2196* within the PKD1 gene was probably inherited from the proband's mother, who died at the age of 45. It was only discovered post mortem, that the real cause of her death was kidney failure as a consequence of untreated ADPKD. Unfortunately, neither the DNA of the proband's mother nor the DNA of any other family members from this side of the pedigree were available for further examination. The proband underwent successful cadaveric kidney transplantation at the age of 24, and this replacement therapy lasted for the next 15 years. CONCLUSIONS Here, we present a first case of bilineal ADPKD inheritance in the Czech Republic. This report highlights the significant role of modifier genes in genetic determination of ADPKD, especially in connection with seriously deteriorated disease phenotypes. In our case, the modifying role is probably mediated by the PKD2 gene.
Collapse
Affiliation(s)
- Veronika Elisakova
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Miroslav Merta
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Jana Reiterova
- Department of Nephrology, First Faculty of Medicine Charles University and General University Hospital in Prague, U Nemocnice 2, 128 00, Prague, Czech Republic
| | - Alica Baxova
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Jaroslav Kotlas
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Katerina Hirschfeldova
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Lena Obeidova
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Vladimir Tesar
- Department of Nephrology, First Faculty of Medicine Charles University and General University Hospital in Prague, U Nemocnice 2, 128 00, Prague, Czech Republic
| | - Jitka Stekrova
- Institute of Biology and Medical Genetics, First Faculty of Medicine Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
6
|
Wang R, Wang N, Tang J, Chen Y, Gao J. The safety and efficacy of MPR-CTU combined with precise intraoperative ultrasonography guided flexible ureteroscope in the treatment of renal cystic disease. Exp Ther Med 2017; 15:283-287. [PMID: 29375688 PMCID: PMC5763662 DOI: 10.3892/etm.2017.5379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022] Open
Abstract
The safety and efficacy of multi-planar reconstruction (MPR) image post-processing technique-computed tomography (CT) urography (CTU) combined with precise intraoperative ultrasonography guided flexible ureteroscope in renal cyst incision and drainage in the treatment of cystic diseases of kidney were evaluated. A total of 68 patients were randomly divided into control and observation group (n=34). All the patients were treated with renal cyst incision and drainage under flexible ureteroscope. The control group was under ultrasound guidance. The observation group was combined with MPR-CTU, the safety and efficacy was compared. There was no significant difference between the two groups in the success rate and the time of cyst treatment (P>0.05). The incidence of intraoperative and postoperative complications of the observation group was significantly lower than that of the control group. After 1 month follow-up, the total effective rate of the observation group was significantly higher than that of the control group, the difference was statistically significant (P<0.05). Conclusion MPR-CTU technique combined with intraoperative ultrasonography to guide cyst incision and drainage under flexible ureteroscope for renal cystic disease has a high safety and efficacy, and it is worthy of clinical application.
Collapse
Affiliation(s)
- Rongjiang Wang
- Department of Urology, The First Affiliated Hospital of Huzhou Teacher's College, Huzhou, Zhejiang 313000, P.R. China
| | - Ning Wang
- Department of Urology, The First Affiliated Hospital of Huzhou Teacher's College, Huzhou, Zhejiang 313000, P.R. China
| | - Jianer Tang
- Department of Urology, The First Affiliated Hospital of Huzhou Teacher's College, Huzhou, Zhejiang 313000, P.R. China
| | - Yu Chen
- Department of Urology, The First Affiliated Hospital of Huzhou Teacher's College, Huzhou, Zhejiang 313000, P.R. China
| | - Jianguo Gao
- Department of Urology, The First Affiliated Hospital of Huzhou Teacher's College, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
7
|
Makhlough A, Shekarchian S, Moghadasali R, Einollahi B, Hosseini SE, Jaroughi N, Bolurieh T, Baharvand H, Aghdami N. Safety and tolerability of autologous bone marrow mesenchymal stromal cells in ADPKD patients. Stem Cell Res Ther 2017; 8:116. [PMID: 28535817 PMCID: PMC5442691 DOI: 10.1186/s13287-017-0557-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is a genetic ciliopathy disease characterized by progressive formation and enlargement of cysts in multiple organs. The kidneys are particularly affected and patients may eventually develop end-stage renal disease (ESRD). We hypothesize that bone marrow mesenchymal stromal cells (BMMSCs) are renotropic and may improve kidney function via anti-apoptotic, anti-fibrotic, and anti-inflammatory effects. In this study, we aim to assess the safety and tolerability of a BMMSC infusion in ADPKD patients. Methods We performed a single-arm phase I clinical trial with a 12-month follow-up. This study enrolled six eligible ADPKD patients with an estimated glomerular filtration rate (eGFR) of 25–60 ml/min/1.73 m2. Patients received autologous cultured BMMSCs (2 × 106 cells/kg) through the cubital vein according to our infusion protocol. We investigated safety issues and kidney function during the follow-up visits, and compared the findings to baseline and 1 year prior to the intervention. Results There were no patients lost to follow-up. We observed no cell-related adverse events (AE) and serious adverse events (SAE) after 12 months of follow-up. The mean eGFR value of 33.8 ± 5.3 ml/min/1.73 m2 1 year before cell infusion declined to 26.7 ± 3.1 ml/min/1.73 m2 at baseline (P = 0.03) and 25.8 ± 6.2 ml/min/1.73 m2 at the 12-month follow-up visit (P = 0.62). The mean serum creatinine (SCr) level of 2 ± 0.3 mg/dl 1 year before the infusion increased to 2.5 ± 0.4 mg/dl at baseline (P = 0.04) and 2.5 ± 0.6 mg/dl at the 12-month follow-up (P = 0.96). This indicated significant changes between the differences of these two periods (12 months before infusion to baseline, and 12 months after infusion to baseline) in SCr (P = 0.05), but not eGFR (P = 0.09). Conclusions This trial demonstrated the safety and tolerability of an intravenous transplantation of autologous BMMSCs. BMMSC efficacy in ADPKD patients should be investigated in a randomized placebo-controlled trial with a larger population, which we intend to perform. Trial registration ClinicalTrials.gov, NCT02166489. Registered on June 14, 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0557-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atieh Makhlough
- Department of Nephrology, Molecular and Cell Biology Research Center, Sari University of Medical Sciences, Sari, Iran
| | - Soroosh Shekarchian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Baqiyatallah Hospital, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Neda Jaroughi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tina Bolurieh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
8
|
Reddy BV, Chapman AB. The spectrum of autosomal dominant polycystic kidney disease in children and adolescents. Pediatr Nephrol 2017; 32:31-42. [PMID: 27034070 DOI: 10.1007/s00467-016-3364-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder. It is characterized by the development of renal cysts and kidney enlargement and ultimately leads to renal failure typically in the sixth decade of life. Although most patients are asymptomatic until well into adulthood, renal cysts develop much earlier, often in utero. Significant renal anatomic and cystic expansion typically occurs before clinical manifestations in children and young adults with AKPKD. The cyst burden detected by imaging represents the minority of cyst burden, and renal and cardiovascular abnormalities are the most common manifestations in children with ADPKD. Here we review the molecular pathogenesis of ADPKD, discuss the screening, diagnosis and clinical manifestations of this renal disorder in childhood and adolescents and review treatment options and potential therapies currently being tested.
Collapse
Affiliation(s)
- Bharathi V Reddy
- University of Chicago, 5841, S. Maryland Avenue Suite S-511, MC 5100, Chicago, IL, 60637, USA.
| | - Arlene B Chapman
- University of Chicago, 5841, S. Maryland Avenue Suite S-511, MC 5100, Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Mallett A, Lee VW, Mai J, Lopez-Vargas P, Rangan GK. KHA-CARI Autosomal Dominant Polycystic Kidney Disease Guideline: Pharmacological Management. Semin Nephrol 2016; 35:582-589.e17. [PMID: 26718162 DOI: 10.1016/j.semnephrol.2015.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrew Mallett
- Kidney Health Service and Conjoint Kidney Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Centre for Kidney Disease Research, Centre for Chronic Disease and CKD, School of Medicine and Centre for Rare Diseases Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Vincent W Lee
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia; Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia
| | - Jun Mai
- Department of Nephrology, Liverpool and Bankstown Hospital, South Western Sydney Local Health District, Sydney, Australia
| | - Pamela Lopez-Vargas
- KHA-CARI Guidelines, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Sydney, Australia; Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Sydney, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
10
|
Tamma G, Valenti G. Evaluating the Oxidative Stress in Renal Diseases: What Is the Role for S-Glutathionylation? Antioxid Redox Signal 2016; 25:147-64. [PMID: 26972776 DOI: 10.1089/ars.2016.6656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) have long been considered as toxic derivatives of aerobic metabolism displaying a harmful effect to living cells. Deregulation of redox homeostasis and production of excessive free radicals may contribute to the pathogenesis of kidney diseases. In line, oxidative stress increases in patients with renal dysfunctions due to a general increase of ROS paralleled by impaired antioxidant ability. RECENT ADVANCES Emerging evidence revealed that physiologically, ROS can act as signaling molecules interplaying with several transduction pathways such as proliferation, differentiation, and apoptosis. ROS can exert signaling functions by modulating, at different layers, protein oxidation since proteins have "cysteine switches" that can be reversibly reduced or oxidized, supporting the dynamic signaling regulation function. In this scenario, S-glutathionylation is a posttranslational modification involved in oxidative cellular response. CRITICAL ISSUES Although it is widely accepted that renal dysfunctions are often associated with altered redox signaling, the relative role of S-glutathionylation on the pathogenesis of specific renal diseases remains unclear and needs further investigations. In this review, we discuss the impact of ROS in renal health and diseases and the role of selective S-glutathionylation proteins potentially relevant to renal physiology. FUTURE DIRECTIONS The paucity of studies linking the reversible protein glutathionylation with specific renal disorders remains unmet. The growing number of S-glutathionylated proteins indicates that this is a fascinating area of research. In this respect, further studies on the association of reversible glutathionylation with renal diseases, characterized by oxidative stress, may be useful to develop new pharmacological molecules targeting protein S-glutathionylation. Antioxid. Redox Signal. 25, 147-164.
Collapse
Affiliation(s)
- Grazia Tamma
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy
| | - Giovanna Valenti
- 1 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari , Bari, Italy .,2 Istituto Nazionale di Biostrutture e Biosistemi (I.N.B.B.) , Rome, Italy .,3 Centro di Eccellenza di Genomica in campo Biomedico ed Agrario (CEGBA) , Bari, Italy
| |
Collapse
|
11
|
de Stephanis L, Bonon A, Varani K, Lanza G, Gafà R, Pinton P, Pema M, Somlo S, Boletta A, Aguiari G. Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clin Exp Nephrol 2016; 21:203-211. [PMID: 27278932 DOI: 10.1007/s10157-016-1289-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients. METHODS The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting. RESULTS The activation of A3AR by the specific agonist Cl-IB-MECA causes a marked reduction of CREB, mTOR, and ERK phosphorylation in kidney tissues of Pkd1 flox/-: Ksp-Cre polycystic mice and reduces cell growth in ADPKD cell lines, but not affects the kidney weight. The combined sequential treatment with rapamycin and Cl-IB-MECA in ADPKD cells potentiates the reduction of cell proliferation compared with the individual compound by the inhibition of CREB, mTOR, and ERK kinase activity. Conversely, the simultaneous application of these drugs counteracts their effect on cell growth, because the inhibition of ERK kinase activity is lost. CONCLUSION The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.
Collapse
Affiliation(s)
- Lucia de Stephanis
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Anna Bonon
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy
| | - Katia Varani
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Roberta Gafà
- Section of Pathological Anatomy and Molecular Diagnostic, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, via Fossato di Mortara 64/b, 44121, Ferrara, Italy
| | - Monika Pema
- Dibit 1 San Raffaele, via Olgettina 60, 20132, Milan, Italy
| | - Stefan Somlo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Gianluca Aguiari
- Section of Biochemistry, Molecular Biology and Medical Genetics, Department of Biomedical and Surgical Specialty Sciences, University of Ferrara, via Fossato di Mortara, 74, 44121, Ferrara, Italy.
| |
Collapse
|
12
|
Abstract
Increased tubular epithelial cell proliferation with fluid secretion is a key hallmark of autosomal dominant polycystic kidney disease (ADPKD). With disruption of either PKD1 or PKD2, the main causative genes of ADPKD, intracellular calcium homeostasis and cAMP accumulation are disrupted, which in turn leads to altered signaling in the pathways that regulate cell proliferation. These dysregulations finally stimulate the development of fluid-filled cysts originating from abnormally proliferating renal tubular cells. In addition, dysregulated apoptosis is observed in dilated cystic tubules. An imbalance between cell proliferation and apoptosis seems to contribute to cyst growth and renal tissue remodeling in ADPKD. In this section, the mechanisms through which cell proliferation and apoptosis are involved in disease progression, and further, how those signaling pathways impinge on each other in ADPKD will be discussed.
Collapse
|
13
|
Akoh JA. Current management of autosomal dominant polycystic kidney disease. World J Nephrol 2015; 4:468-479. [PMID: 26380198 PMCID: PMC4561844 DOI: 10.5527/wjn.v4.i4.468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most frequent cause of genetic renal disease affecting approximately 4 to 7 million individuals worldwide and accounting for 7%-15% of patients on renal replacement therapy, is a systemic disorder mainly involving the kidney but cysts can also occur in other organs such as the liver, pancreas, arachnoid membrane and seminal vesicles. Though computed tomography and magnetic resonance imaging (MRI) were similar in evaluating 81% of cystic lesions of the kidney, MRI may depict septa, wall thickening or enhancement leading to upgrade in cyst classification that can affect management. A screening strategy for intracranial aneurysms would provide 1.0 additional year of life without neurological disability to a 20-year-old patient with ADPKD and reduce the financial impact on society of the disease. Current treatment strategies include reducing: cyclic adenosine monophosphate levels, cell proliferation and fluid secretion. Several randomised clinical trials (RCT) including mammalian target of rapamycin inhibitors, somatostatin analogues and a vasopressin V2 receptor antagonist have been performed to study the effect of diverse drugs on growth of renal and hepatic cysts, and on deterioration of renal function. Prophylactic native nephrectomy is indicated in patients with a history of cyst infection or recurrent haemorrhage or to those in whom space must be made to implant the graft. The absence of large RCT on various aspects of the disease and its treatment leaves considerable uncertainty and ambiguity in many aspects of ADPKD patient care as it relates to end stage renal disease (ESRD). The outlook of patients with ADPKD is improving and is in fact much better than that for patients in ESRD due to other causes. This review highlights the need for well-structured RCTs as a first step towards trying newer interventions so as to develop updated clinical management guidelines.
Collapse
|