1
|
Cattane N, Courtin C, Mombelli E, Maj C, Mora C, Etain B, Bellivier F, Marie-Claire C, Cattaneo A. Transcriptomics and miRNomics data integration in lymphoblastoid cells highlights the key role of immune-related functions in lithium treatment response in Bipolar disorder. BMC Psychiatry 2022; 22:665. [PMID: 36303132 PMCID: PMC9615157 DOI: 10.1186/s12888-022-04286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex mental disease characterized by recurrent episodes of mania and depression. Lithium (Li) represents the mainstay of BD pharmacotherapy, despite the narrow therapeutic index and the high variability in treatment response. However, although several studies have been conducted, the molecular mechanisms underlying Li therapeutic effects remain unclear. METHODS In order to identify molecular signatures and biological pathways associated with Li treatment response, we conducted transcriptome and miRNome microarray analyses on lymphoblastoid cell lines (LCLs) from 20 patients diagnosed with BD classified as Li responders (n = 11) or non-responders (n = 9). RESULTS We found 335 mRNAs and 77 microRNAs (miRNAs) significantly modulated in BD responders versus non-responders. Interestingly, pathway and network analyses on these differentially expressed molecules suggested a modulatory effect of Li on several immune-related functions. Indeed, among the functional molecular nodes, we found NF-κB and TNF. Moreover, networks related to these molecules resulted overall inhibited in BD responder patients, suggesting anti-inflammatory properties of Li. From the integrative analysis between transcriptomics and miRNomics data carried out using miRComb R package on the same samples from patients diagnosed with BD, we found 97 significantly and negatively correlated mRNA-miRNA pairs, mainly involved in inflammatory/immune response. CONCLUSIONS Our results highlight that Li exerts modulatory effects on immune-related functions and that epigenetic mechanisms, especially miRNAs, can influence the modulation of different genes and pathways involved in Li response. Moreover, our data suggest the potentiality to integrate data coming from different high-throughput approaches as a tool to prioritize genes and pathways.
Collapse
Affiliation(s)
- Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cindie Courtin
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Elisa Mombelli
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Maj
- grid.411097.a0000 0000 8852 305XInstitute for Genomic Statistics and Bioinformatics, University Hospital, Bonn, Germany
| | - Cristina Mora
- grid.419422.8Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bruno Etain
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Frank Bellivier
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France ,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP Nord_Université Paris Cité, F-75010 Paris, France ,grid.484137.d0000 0005 0389 9389Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- grid.7429.80000000121866389Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, F-75006 Paris, France
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
2
|
Global DNA methylation changes in adults with attention deficit-hyperactivity disorder and its comorbidity with bipolar disorder: links with polygenic scores. Mol Psychiatry 2022; 27:2485-2491. [PMID: 35256746 DOI: 10.1038/s41380-022-01493-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Genetic and environmental factors contribute to the etiology of Attention Deficit-Hyperactivity Disorder (ADHD). In this sense, the study of epigenetic mechanisms could contribute to the understanding of the disorder's neurobiology. Global DNA methylation (GMe) evaluated through 5-methylcytosine levels could be a promising epigenetic biomarker to capture long-lasting biological effects in response to environmental and hormonal changes. We conducted the first assessment of GMe levels in subjects with ADHD (n = 394) and its main comorbidities in comparison to populational controls (n = 390). Furthermore, given the high genetic contribution to ADHD (heritability of 80%), polygenic risk scores (PRS) were calculated to verify the genetic contribution to GMe levels in ADHD and the comorbidities associated with GMe levels. The GMe levels observed in patients were lower than controls (P = 1.1e-8), with women being significantly less globally methylated than men (P = 0.002). Regarding comorbidities, the presence of bipolar disorder (BD) among patients with ADHD was associated with higher methylation levels compared to patients with ADHD without BD (P = 0.031). The results did not change when pharmacological treatment was accounted for in the analyses. The ADHD and BD most predictive PRSs were negatively (P = 0.0064) and positively (P = 0.0042) correlated with GMe, respectively. This study is the first to report an association between GMe, ADHD, and its comorbidity with BD and associations between PRSs for specific psychiatric disorders and GMe. Our findings add to previous evidence that GMe may be a relevant piece in the psychiatric disorders' etiological landscape.
Collapse
|
3
|
Pisanu C, Meloni A, Severino G, Squassina A. Genetic and Epigenetic Markers of Lithium Response. Int J Mol Sci 2022; 23:1555. [PMID: 35163479 PMCID: PMC8836013 DOI: 10.3390/ijms23031555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
The mood stabilizer lithium represents a cornerstone in the long term treatment of bipolar disorder (BD), although with substantial interindividual variability in clinical response. This variability appears to be modulated by genetics, which has been significantly investigated in the last two decades with some promising findings. In addition, recently, the interest in the role of epigenetics has grown significantly, since the exploration of these mechanisms might allow the elucidation of the gene-environment interactions and explanation of missing heritability. In this article, we provide an overview of the most relevant findings regarding the pharmacogenomics and pharmacoepigenomics of lithium response in BD. We describe the most replicated findings among candidate gene studies, results from genome-wide association studies (GWAS) as well as post-GWAS approaches supporting an association between high genetic load for schizophrenia, major depressive disorder or attention deficit/hyperactivity disorder and poor lithium response. Next, we describe results from studies investigating epigenetic mechanisms, such as changes in methylation or noncoding RNA levels, which play a relevant role as regulators of gene expression. Finally, we discuss challenges related to the search for the molecular determinants of lithium response and potential future research directions to pave the path towards a biomarker guided approach in lithium treatment.
Collapse
Affiliation(s)
- Claudia Pisanu
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Section of Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 75124 Uppsala, Sweden
| | - Anna Meloni
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Giovanni Severino
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
| | - Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy; (A.M.); (G.S.); (A.S.)
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
4
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
5
|
Mini review: Recent advances on epigenetic effects of lithium. Neurosci Lett 2021; 761:136116. [PMID: 34274436 DOI: 10.1016/j.neulet.2021.136116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022]
Abstract
Lithium (Li) remains the first line long-term treatment of bipolar disorders notwithstanding a high inter-individual variability of response. Significant research effort has been undertaken to understand the molecular mechanisms underlying Li cellular and clinical effects in order to identify predictive biomarkers of response. Li response has been shown to be partly heritable, however mechanisms that do not rely on DNA variants could also be involved. In recent years, modulation of epigenetic marks in relation with the level of Li response has appeared increasingly plausible. Recent results in this field of research have provided new insights into the molecular processes involved in Li effects. In this review, we examined the literature investigating the involvement of three epigenetic mechanisms (DNA methylation, noncoding RNAs and histone modifications) in Li clinical efficacy in bipolar disorder.
Collapse
|
6
|
Mini-review: The anti-aging effects of lithium in bipolar disorder. Neurosci Lett 2021; 759:136051. [PMID: 34139318 DOI: 10.1016/j.neulet.2021.136051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The medical use of lithium has grown since its initial introduction in the 1800s as a treatment for gout. Today, the divalent cation remains as the pharmacological gold standard in treatment of bipolar disorder (BD) with strong mood stabilizing effects. Lithium has demonstrated efficacy in the treatment of acute affective episodes, in the reduction of affective episode recurrence, and in significantly decreasing the risk of suicide in patients. BD has been consistently associated with clinical signs of accelerated aging, including increased rates of age-related diseases such as cardiovascular diseases, malignancies, and diabetes mellitus. This clinical scenario parallels accelerated aging mechanisms observed on a molecular basis, with studies reporting shortened telomeres, increased oxidative stress, and accelerated epigenetic aging in patients with BD compared to controls. Lithium has proved useful as a potential agent in slowing down this accelerated aging process in BD, potentially reversing effects induced by the disorder. This mini-review summarizes findings of anti-aging mechanisms associated with lithium use and provides a discussion of the clinical implications and perspectives of this evolving field. Despite many promising results, more studies are warranted in order to elucidate the exact mechanism by which lithium may act as an anti-aging agent and the extent to which these mechanisms are relevant to its mood stabilizing properties in BD.
Collapse
|
7
|
Zhou J, Li M, Wang X, He Y, Xia Y, Sweeney JA, Kopp RF, Liu C, Chen C. Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci 2021; 15:674273. [PMID: 34054421 PMCID: PMC8155631 DOI: 10.3389/fnins.2021.674273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen He
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - Richard F. Kopp
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Legrand A, Iftimovici A, Khayachi A, Chaumette B. Epigenetics in bipolar disorder: a critical review of the literature. Psychiatr Genet 2021; 31:1-12. [PMID: 33290382 DOI: 10.1097/ypg.0000000000000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) is a chronic, disabling disease characterised by alternate mood episodes, switching through depressive and manic/hypomanic phases. Mood stabilizers, in particular lithium salts, constitute the cornerstone of the treatment in the acute phase as well as for the prevention of recurrences. The pathophysiology of BD and the mechanisms of action of mood stabilizers remain largely unknown but several pieces of evidence point to gene x environment interactions. Epigenetics, defined as the regulation of gene expression without genetic changes, could be the molecular substrate of these interactions. In this literature review, we summarize the main epigenetic findings associated with BD and response to mood stabilizers. METHODS We searched PubMed, and Embase databases and classified the articles depending on the epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNAs). RESULTS We present the different epigenetic modifications associated with BD or with mood-stabilizers. The major reported mechanisms were DNA methylation, histone methylation and acetylation, and non-coding RNAs. Overall, the assessments are poorly harmonized and the results are more limited than in other psychiatric disorders (e.g. schizophrenia). However, the nature of BD and its treatment offer excellent opportunities for epigenetic research: clear impact of environmental factors, clinical variation between manic or depressive episodes resulting in possible identification of state and traits biomarkers, documented impact of mood-stabilizers on the epigenome. CONCLUSION Epigenetic is a growing and promising field in BD that may shed light on its pathophysiology or be useful as biomarkers of response to mood-stabilizer.
Collapse
Affiliation(s)
- Adrien Legrand
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
| | - Anton Iftimovici
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- Neurospin, CEA, Gif-sur-Yvette, France
| | - Anouar Khayachi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Boris Chaumette
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Varela RB, Resende WR, Dal-Pont GC, Gava FF, Nadas GB, Tye SJ, Andersen ML, Quevedo J, Valvassori SS. Role of epigenetic regulatory enzymes in animal models of mania induced by amphetamine and paradoxical sleep deprivation. Eur J Neurosci 2020; 53:649-662. [PMID: 32735698 DOI: 10.1111/ejn.14922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023]
Abstract
It is known that bipolar disorder has a multifactorial aetiology where the interaction between genetic and environmental factors is responsible for its development. Because of this, epigenetics has been largely studied in psychiatric disorders. The present study aims to evaluate the effects of histone deacetylase inhibitors on epigenetic enzyme alterations in rats or mice submitted to animal models of mania induced by dextro-amphetamine or sleep deprivation, respectively. Adult male Wistar rats were subjected to 14 days of dextro-amphetamine administration, and from the eighth to the fourteenth day, the animals were treated with valproate and sodium butyrate in addition to dextro-amphetamine injections. Adult C57BL/6 mice received 7 days of valproate or sodium butyrate administration, being sleep deprived at the last 36 hr of the protocol. Locomotor and exploratory activities of rats and mice were evaluated in the open-field test, and histone deacetylase, DNA methyltransferase, and histone acetyltransferase activities were assessed in the frontal cortex, hippocampus, and striatum. Dextro-amphetamine and sleep deprivation induced hyperactivity and increased histone deacetylase and DNA methyltransferase activities in the animal's brain. Valproate and sodium butyrate were able to reverse hyperlocomotion induced by both animal models, as well as the alterations on histone deacetylase and DNA methyltransferase activities. There was a positive correlation between enzyme activities and number of crossings for both models. Histone deacetylase and DNA methyltransferase activities also presented a positive correlation between theirselves. These results suggest that epigenetics can play an important role in BD pathophysiology as well as in its treatment.
Collapse
Affiliation(s)
- Roger B Varela
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wilson R Resende
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gustavo C Dal-Pont
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Fernanda F Gava
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriella B Nadas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
10
|
Krause BJ, Artigas R, Sciolla AF, Hamilton J. Epigenetic mechanisms activated by childhood adversity. Epigenomics 2020; 12:1239-1255. [PMID: 32706263 DOI: 10.2217/epi-2020-0042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adverse childhood experiences (ACE) impair health and life expectancy and may result in an epigenetic signature that drives increased morbidity primed during early stages of life. This literature review focuses on the current evidence for epigenetic-mediated programming of brain and immune function resulting from ACE. To address this aim, a total of 88 articles indexed in PubMed before August 2019 concerning ACE and epigenetics were surveyed. Current evidence partially supports epigenetic programming of the hypothalamic-pituitary-adrenal axis, but convincingly shows that ACE impairs immune function. Additionally, the needs and challenges that face this area are discussed in order to provide a framework that may help to clarify the role of epigenetics in the long-lasting effects of ACE.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O''Higgins, Rancagua, Chile.,CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Rocio Artigas
- CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Andres F Sciolla
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, CA 95834, USA
| | - James Hamilton
- CUIDA - Centro de Investigación del Abuso y la Adversidad Temprana, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Fundación Para la Confianza, Pérez Valenzuela 1264, Providencia, Santiago, Chile
| |
Collapse
|
11
|
Marie-Claire C, Lejeune FX, Mundwiller E, Ulveling D, Moszer I, Bellivier F, Etain B. A DNA methylation signature discriminates between excellent and non-response to lithium in patients with bipolar disorder type 1. Sci Rep 2020; 10:12239. [PMID: 32699220 PMCID: PMC7376060 DOI: 10.1038/s41598-020-69073-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lithium (Li) is the cornerstone maintenance treatment for bipolar disorders (BD), but response rates are highly variable. To date, no clinical or biological marker is available to reliably define eligibility criteria for a maintenance treatment with Li. We examined whether the prophylactic response to Li (assessed retrospectively) is associated with distinct blood DNA methylation profiles. Bisulfite-treated total blood DNA samples from individuals with BD type 1 (15 excellent-responders (LiERs) versus 11 non-responders (LiNRs)) were used for targeted enrichment of CpG rich genomic regions followed by high-resolution next-generation sequencing to identify differentially methylated regions (DMRs). After controlling for potential confounders we identified 111 DMRs that significantly differ between LiERs and LiNRs with a significant enrichment in neuronal cell components. Logistic regression and receiver operating curves identified a combination of 7 DMRs with a good discriminatory power for response to Li (Area Under the Curve 0.806). Annotated genes associated with these DMRs include Eukaryotic Translation Initiation Factor 2B Subunit Epsilon (EIF2B5), Von Willebrand Factor A Domain Containing 5B2 (VWA5B2), Ral GTPase Activating Protein Catalytic Alpha Subunit 1 (RALGAPA1). Although preliminary and deserving replication, these results suggest that biomarkers of response to Li may be identified through peripheral epigenetic measures.
Collapse
Affiliation(s)
- C Marie-Claire
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.
| | - F X Lejeune
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - E Mundwiller
- IGenSeq, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - D Ulveling
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - I Moszer
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - F Bellivier
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - B Etain
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
12
|
Skeletal muscle DNA methylation modifications and psychopharmacologic treatment in bipolar disorder. Eur Neuropsychopharmacol 2019; 29:1365-1373. [PMID: 31635791 PMCID: PMC6924624 DOI: 10.1016/j.euroneuro.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023]
Abstract
Both severe mental illness and atypical antipsychotics have been independently associated with insulin resistance and weight gain. Altered regulation of skeletal muscle DNA methylation may play a role. We aimed to evaluate DNA methylation modifications in human skeletal muscle samples to further understand its potential role in the metabolic burden observed in psychiatric patients and psychopharmacologic treatment. Subjects were included in our study if they had a bipolar diagnosis and were currently treated with a mood stabilizer or atypical antipsychotic. A healthy control group free of psychiatric or physical disease was also included for comparisons. Anthropometric, BMI and hemoglobin A1C (HbA1C%) were measured. Fasting skeletal muscle biopsies were obtained and methylation levels of 5-methycytosine (5-mC), 5-hydroxymethylcytosine (5-hmC) and 5-formylcytosine (5-fC) were measured. Skeletal muscle global methylation of 5-mC and 5-fC were significantly higher in bipolar subjects compared to healthy controls. 5-mC was significantly higher in the AAP group compared to the mood stabilizer group. Significant correlations were observed between 5-fC methylation and HbA1C%. Our findings suggest that psychiatric disease and treatment may influence some methylation measures in the skeletal muscle of patients with bipolar disorder, which may be further influenced by medication treatment.
Collapse
|
13
|
Goud Alladi C, Etain B, Bellivier F, Marie-Claire C. DNA Methylation as a Biomarker of Treatment Response Variability in Serious Mental Illnesses: A Systematic Review Focused on Bipolar Disorder, Schizophrenia, and Major Depressive Disorder. Int J Mol Sci 2018; 19:E3026. [PMID: 30287754 PMCID: PMC6213157 DOI: 10.3390/ijms19103026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
So far, genetic studies of treatment response in schizophrenia, bipolar disorder, and major depression have returned results with limited clinical utility. A gene × environment interplay has been proposed as a factor influencing not only pathophysiology but also the treatment response. Therefore, epigenetics has emerged as a major field of research to study the treatment of these three disorders. Among the epigenetic marks that can modify gene expression, DNA methylation is the best studied. We performed a systematic search (PubMed) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines for preclinical and clinical studies focused on genome-wide and gene-specific DNA methylation in the context of schizophrenia, bipolar disorders, and major depressive disorder. Out of the 112 studies initially identified, we selected 31 studies among them, with an emphasis on responses to the gold standard treatments in each disorder. Modulations of DNA methylation levels at specific CpG sites have been documented for all classes of treatments (antipsychotics, mood stabilizers, and antidepressants). The heterogeneity of the models and methodologies used complicate the interpretation of results. Although few studies in each disorder have assessed the potential of DNA methylation as biomarkers of treatment response, data support this hypothesis for antipsychotics, mood stabilizers and antidepressants.
Collapse
Affiliation(s)
- Charanraj Goud Alladi
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India.
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| | - Bruno Etain
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris CEDEX 10, France.
- Fondation Fondamental, 94000 Créteil, France.
| | - Frank Bellivier
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, 75475 Paris CEDEX 10, France.
- Fondation Fondamental, 94000 Créteil, France.
| | - Cynthia Marie-Claire
- INSERM U1144 Variabilité de réponse aux psychotropes, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
14
|
Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: Potential involvement of epigenetics. Neurosci Lett 2018; 669:24-31. [DOI: 10.1016/j.neulet.2016.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
15
|
Pisanu C, Katsila T, Patrinos GP, Squassina A. Recent trends on the role of epigenomics, metabolomics and noncoding RNAs in rationalizing mood stabilizing treatment. Pharmacogenomics 2018; 19:129-143. [DOI: 10.2217/pgs-2017-0111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mood stabilizers are the cornerstone in treatment of mood disorders, but their use is characterized by high interindividual variability. This feature has stimulated intensive research to identify predictive biomarkers of response and disentangle the molecular bases of their clinical efficacy. Nevertheless, findings from studies conducted so far have only explained a small proportion of the observed variability, suggesting that factors other than DNA variants could be involved. A growing body of research has been focusing on the role of epigenetics and metabolomics in response to mood stabilizers, especially lithium salts. Studies from these approaches have provided new insights into the molecular networks and processes involved in the mechanism of action of mood stabilizers, promoting a systems-level multiomics synergy. In this article, we reviewed the literature investigating the involvement of epigenetic mechanisms, noncoding RNAs and metabolomic modifications in bipolar disorder and the mechanism of action and clinical efficacy of mood stabilizers.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Theodora Katsila
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience & Clinical Pharmacology, University of Cagliari, Italy
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|