1
|
den Ottelander BK, Dremmen MHG, de Planque CA, van der Oest MJW, Mathijssen IMJ, van Veelen MLC. Does the association between abnormal anatomy of the skull base and cerebellar tonsillar position also exist in syndromic craniosynostosis? J Plast Reconstr Aesthet Surg 2021; 75:797-805. [PMID: 34799294 DOI: 10.1016/j.bjps.2021.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/28/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Cerebellar tonsillar herniation (TH) occurs frequently in syndromic craniosynostosis; however, the exact pathogenesis is unknown. This study evaluates the association between skull base deformities and TH in syndromic craniosynostosis. METHODS Retrospective study MRI study comparing syndromic craniosynostosis to controls. Measured parameters included clivus length, skull base angle, Boogard's angle, foramen magnum area, and cerebellar tonsillar position (TP). The association between skull base parameters and TP was evaluated with linear mixed models, correcting for age and risk factors for TH in craniosynostosis (hydrocephalus, intracranial hypertension, craniocerebral disproportion, and lambdoid synostosis). RESULTS Two hundred and eighty-two scans in 145 patients were included, and 146 scans in 146 controls. The clivus was smaller at birth, and its growth was retarded in all syndromes. The skull base angle was smaller at birth in Apert and Crouzon syndromes, and the evolution through time was normal. Boogard's angle was smaller at birth in Apert syndrome, and its evolution was disturbed in Apert and Saethre-Chotzen syndromes. The foramen magnum was smaller at birth in Crouzon and Saethre-Chotzen syndromes, and its growth was disturbed in Apert, Crouzon, and Saethre-Chotzen syndromes. TP was higher at birth in Apert syndrome, but lowered faster. In Crouzon syndrome, TP was lower at birth and throughout life. A smaller clivus and larger foramen magnum were associated with a lower TP in controls (p<0.001, p=0.007), and in Crouzon syndrome, this applied to only foramen magnum size (p=0.004). CONCLUSION The skull base and its growth are significantly different in syndromic craniosynostosis compared to controls. However, only foramen magnum area is associated with TP in Crouzon syndrome.
Collapse
Affiliation(s)
- Bianca K den Ottelander
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Marjolein H G Dremmen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Radiology, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Catherine A de Planque
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Mark J W van der Oest
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Plastic and Reconstructive Surgery and Hand Surgery, Room EE-1591, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marie-Lise C van Veelen
- Erasmus MC, University Medical Center Rotterdam, Dutch Craniofacial Center, Department of Neurosurgery, Room SK-1204, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Saletti V, Farinotti M, Peretta P, Massimi L, Ciaramitaro P, Motta S, Solari A, Valentini LG. The management of Chiari malformation type 1 and syringomyelia in children: a review of the literature. Neurol Sci 2021; 42:4965-4995. [PMID: 34591209 DOI: 10.1007/s10072-021-05565-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
In anticipation of the "Chiari and Syringomyelia Consensus Conference" held in Milan in 2019, we performed a systematic literature review on the management of Chiari malformation type 1 (CM1) and syringomyelia (Syr) in children.We aimed to summarize the available evidence and identify areas where consensus has not been reached and further research is needed.In accordance with PRISMA guidelines, we formulated seven questions in Patients-Interventions-Comparators-Outcomes (PICO) format. Six PICOs concerned CM1 children with/without additional structural anomalies (Syr, craniosynostosis, hydrocephalus, tethered cord, and cranio-vertebral junction anomalies), and one PICO Syr without CM1. We searched Medline, Embase, Cochrane, and NICE databases from January 1, 1999, to May 29, 2019. Cohort studies, controlled and randomized clinical trials (CCTs, RCTs), and systematic reviews were included, all pertinent only to patients ≤ 18 years of age.For CM1, 3787 records were found, 460 full texts were assessed and 49 studies (46 cohort studies, one RCT, and two systematic reviews) were finally included. For Syr, 376 records were found, 59 full texts were assessed, and five studies (one RCT and four cohort studies) were included. Data on each PICO were synthetized narratively due to heterogeneity in the inclusion criteria, outcome measures, and length of follow-up of the included studies.Despite decades of experience on CM1 and Syr management in children, the available evidence remains limited. Specifically, there is an urgent need for collaborative initiatives focusing on the adoption of shared inclusion criteria and outcome measures, as well as rigorous prospective designs, particularly RCTs.
Collapse
Affiliation(s)
- Veronica Saletti
- Developmental Neurology Unit, Mariani Foundation Center for Complex Disabilities, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133, Milan, Italy.
| | - Mariangela Farinotti
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Unit, Ospedale Infantile Regina Margherita, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Ciaramitaro
- Clinical Neurophysiology, Department of Neuroscience, Presidio CTO, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Saba Motta
- Scientific Library, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Grazia Valentini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Thirty Years Later: What Has Craniofacial Distraction Osteogenesis Surgery Replaced? Plast Reconstr Surg 2020; 145:1073e-1088e. [DOI: 10.1097/prs.0000000000006821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Thompson DNP. Chiari I-a 'not so' congenital malformation? Childs Nerv Syst 2019; 35:1653-1664. [PMID: 31292759 DOI: 10.1007/s00381-019-04296-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The term Chiari I malformation (CIM) is imbedded in the paediatric neurosurgical lexicon; however, the diagnostic criteria for this entity are imprecise, its pathophysiology variable, and the treatment options diverse. Until recently, CIM has been considered to be a discrete congenital malformation requiring a uniform approach to treatment. Increasingly, it is recognised that this is an oversimplification and that a more critical, etiologically based approach to the evaluation of children with this diagnosis is essential, not only to select those children who might be suitable for surgical treatment (and, of course those who might be better served by conservative management) but also to determine the most appropriate surgical strategy. Whilst good outcomes can be anticipated in the majority of children with CIM following foramen magnum decompression, treatment failures and complication rates are not insignificant. Arguably, poor or suboptimal outcomes following treatment for CIM reflect, not only a failure of surgical technique, but incorrect patient selection and failure to acknowledge the diverse pathophysiology underlying the phenomenon of CIM. The investigation of the child with 'hindbrain herniation' should be aimed at better understanding the mechanisms underlying the herniation so that these may be addressed by an appropriate choice of treatment.
Collapse
Affiliation(s)
- Dominic N P Thompson
- Department of Paediatric Neurosurgery, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
5
|
The Incidence of Chiari Malformations in Patients with Isolated Sagittal Synostosis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2090. [PMID: 30881832 PMCID: PMC6416108 DOI: 10.1097/gox.0000000000002090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022]
Abstract
Background: We report the incidence of Chiari malformation I (CMI) in a cohort of 377 patients with isolated sagittal synostosis (ISS), which is to the best of our knowledge the largest such series reported to date. Methods: A retrospective review of patients seen at a single institution from 2007 to 2017 was completed. ISS, Chiari malformations (CMI and CMII) and hydrocephalus were diagnosed by a senior neuroradiologist (G.Z.). Patients who met the inclusion criteria were divided into early (group A) and late (group B) presenting groups, as well as operated (group I) and unoperated (group II) groups. The patients were further subdivided into group AI (early operated), group AII (early unoperated), group BI (late operated), and group BII (late unoperated). Once identified, patient notes were examined for the following data sets: date of birth, age of presentation, age at last follow-up, other systemic conditions as well as molecular testing results. Surgical interventions, ophthalmological, and other relevant data were recorded. Statistical analysis was run in the form of a chi-square test to identify a significant difference between each subgroup. A literature review of the incidence of Chiari malformations in patients with ISS was conducted. Results: Three hundred seventy-seven patients constitute the study’s total cohort (272 were males and 105 females). This cohort was divided into patients who underwent surgical repair of ISS (group 1: n = 200), and patients who did not (group 2: n = 177). The entire cohort was also divided into early (group A: n = 161) and late (group B: n = 216) presenting craniosynostosis. In the total cohort, 22/377 (5.8%) patients with CMI were identified. CMI was found in 14/200 (7.0%) patients in group I, and 8/177 (4.5%) patients in group II. CMI was found in 2/161 (1%) patients in group A, and 20/216 (9.2%) patients in group B. The incidence of CMI in group AI (early operated) was 2/151 (1.3%), in group AII (early unoperated) was 0/10, in group BI (late operated) was 11/49 (21%), and in group BII (late unoperated) was 9/167 (5.4%). Chi-square analysis revealed a significant difference between the incidence of CMI in the early-presenting (group A) and late-presenting (group B) groups (P = 0.001) and between the late-presenting operated (BI) and late-presenting unoperated (BII) groups (P = 0.001). The incidence of hydrocephalus was 1.6% (6/377) in the total cohort. However, all patients diagnosed with hydrocephalus came from group II (no surgical ISS correction). The incidence of hydrocephalus in group II was 3.3% (6/177). The incidence of hydrocephalus in group BII (late unoperated ISS) was 3.0% (5/167). The incidence of hydrocephalus in group AII (early unoperated ISS) was 9.0% (1/11). Conclusions: We noted the highest incidence of CMI—21%—in group BI (late-presenting operated). We noted hydrocephalus in group II (nonoperated), with the highest incidence of hydrocephalus found in the group BII (late-presenting unoperated) subgroup. We therefore recommend patients with ISS receive funduscopic examination to screen for raised intracranial pressure (ICP) associated with CMI and hydrocephalus, especially patients with late-presenting ISS.
Collapse
|
6
|
Winston KR, French B, Bunn J. Chronic Debilitating Headache in Adults Caused by Craniocerebral Disproportion: Treatment by Cranial Vault Expansion. Cureus 2018; 10:e2187. [PMID: 29662726 PMCID: PMC5898844 DOI: 10.7759/cureus.2187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Craniocerebral disproportion is rarely considered as a cause for chronic, debilitating headache in adults. Children reported with this disorder typically suffer from headaches and lethargy for many years and have multisutural synostosis. The terms craniocerebral disproportion, craniostenosis, and slit-ventricle syndrome are used inconsistently as diagnostic designations. Three adults with craniocerebral disproportion who had been treated in infancy for two different pathologies are reported. All benefited greatly from cranial vault expansion.
Collapse
Affiliation(s)
- Ken R Winston
- Department of Neurosurgery, University of Colorado School of Medicine
| | - Brooke French
- Department of Surgery (plastic Surgery), University of Colorado School of Medicine
| | - Jason Bunn
- School of Medicine, University of Colorado School of Medicine
| |
Collapse
|
7
|
Sakamoto H, Matsusaka Y, Kunihiro N, Imai K. Physiological Changes and Clinical Implications of Syndromic Craniosynostosis. J Korean Neurosurg Soc 2016; 59:204-13. [PMID: 27226850 PMCID: PMC4877541 DOI: 10.3340/jkns.2016.59.3.204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 12/02/2022] Open
Abstract
Syndromic craniosynostosis has severe cranial stenosis and deformity, combined with hypoplastic maxillary bone and other developmental skeletal lesions. Among these various lesions, upper air way obstruction by hypoplastic maxillary bone could be the first life-threatening condition after birth. Aggressive cranial vault expansion for severely deformed cranial vaults due to multiple synostoses is necessary even in infancy, to normalize the intracranial pressure. Fronto-orbital advancement (FOA) is recommended for patients with hypoplastic anterior part of cranium induced by bicoronal and/or metopic synostoses, and posterior cranial vault expansion is recommended for those with flattening of the posterior part of the cranium by lambdoid synostosis. Although sufficient spontaneous reshaping of the cranium can be expected by expansive cranioplasty, keeping the cranial bone flap expanded sufficiently is often difficult when the initial expansion is performed during infancy. So far distraction osteogenesis (DO) is the only method to make it possible and to provide low rates of re-expansion of the cranial vault. DO is quite beneficial for both FOA and posterior cranial vault expansion, compared with the conventional methods. Associated hydrocephalus and chronic tonsillar herniation due to lambdoid synostosis can be surgically treatable. Abnormal venous drainages from the intracranial space and air way obstruction should be always considered at any surgical procedures. Neurosurgeons have to know well about the managements not only of the deformed cranial vault and the associated brain lesions but also of other multiple skeletal lesions associated with syndromic craniosynostosis, to improve treatment outcome.
Collapse
Affiliation(s)
- Hiroaki Sakamoto
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Matsusaka
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Noritsugu Kunihiro
- Department of Pediatric Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Keisuke Imai
- Department of Plastic and Reconstructive Surgery, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|