1
|
Mayer M, Fey K, Heinze E, Wick CR, Abboud MI, Yeh TL, Tumber A, Orth N, Schley G, Buchholz B, Clark T, Schofield CJ, Willam C, Burzlaff N. A Fluorescent Benzo[g]isoquinoline-Based HIF Prolyl Hydroxylase Inhibitor for Cellular Imaging. ChemMedChem 2019; 14:94-99. [PMID: 30380199 DOI: 10.1002/cmdc.201800483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/08/2018] [Indexed: 12/19/2022]
Abstract
Prolyl hydroxylation domain (PHD) enzymes catalyze the hydroxylation of the transcription factor hypoxia-inducible factor (HIF) and serve as cellular oxygen sensors. HIF and the PHD enzymes regulate numerous potentially tissue-protective target genes which can adapt cells to metabolic and ischemic stress. We describe a fluorescent PHD inhibitor (1-chloro-4-hydroxybenzo[g]isoquinoline-3-carbonyl)glycine which is suited to fluorescence-based detection assays and for monitoring PHD inhibitors in biological systems. In cell-based assays, application of the fluorescent PHD inhibitor allowed co-localization with a cellular PHD enzyme and led to live cell imaging of processes involved in cellular oxygen sensing.
Collapse
Affiliation(s)
- Marleen Mayer
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kerstin Fey
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Eva Heinze
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Christian R Wick
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
- Institute for Theoretical Physics I, PULS Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 49b, 91052, Erlangen, Germany
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Tzu-Lan Yeh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Nicole Orth
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Björn Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstraße 25, 91052, Erlangen, Germany
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Inorganic and Organometallic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Lawrence ML, Elhendawi M, Davies JA. Investigating Aspects of Renal Physiology and Pharmacology in Organ and Organoid Culture. Methods Mol Biol 2019; 1926:127-142. [PMID: 30742268 DOI: 10.1007/978-1-4939-9021-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Some aspects of renal physiology, in particular transport across tubular epithelia, are highly relevant to pharmacokinetics and to drug toxicity. The use of animals to model human renal physiology is limited, but human-derived renal organoids offer an alternative, relevant system in culture. Here, we explain how the activity of specific transport systems can be assessed in renal organoid and organ culture, using a system illustrated mainly for mouse but that can be extended to human organoids.
Collapse
Affiliation(s)
| | - Mona Elhendawi
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Medicine, Clinical Pathology Department, Mansoura University, El-Mansoura, Egypt
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Estudante M, Soveral G, Morais JG, Benet LZ. Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00188b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SLCs transport many endogenous and exogenous compounds including drugs; SLCs dysfunction has implications in pharmacokinetics, drug toxicity or lack of efficacy.
Collapse
Affiliation(s)
- Margarida Estudante
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
| | - José G. Morais
- Department of Pharmacological Sciences
- Faculty of Pharmacy
- Universidade de Lisboa
- Portugal
- Research Institute for Medicines (iMed.ULisboa)
| | - Leslie Z. Benet
- Department of Bioengineering and Therapeutic Sciences
- University of California
- San Francisco
- USA
| |
Collapse
|