1
|
Fukuda K, Matsuzaki H, Hiraishi Y, Miyashita N, Ishii T, Yuki M, Isago H, Tamiya H, Mitani A, Saito A, Jo T, Nagase T. Anti-Inflammatory Effects of Japanese Herbal Medicine Hochuekkito in a Mouse Model of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Pharmacology 2024; 109:121-126. [PMID: 38346407 PMCID: PMC11008713 DOI: 10.1159/000536348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION The traditional Japanese herbal medicine hochuekkito (TJ-41) has been reported to ameliorate systemic inflammation and malnutrition in patients with chronic obstructive pulmonary disease (COPD). TJ-41 has also been known to have preventive effects against influenza virus infection. However, its role in the acute exacerbation of COPD (AECOPD) remains to be elucidated. Our previous study established a murine model of viral infection-associated AECOPD that was induced by intratracheal administration of porcine pancreatic elastase (PPE) and polyinosinic-polycytidylic acid [poly(I:C)]. Here, we used this model and investigated the effects of TJ-41 in AECOPD. METHODS Specific pathogen-free C57BL/6J mice were used. A COPD model was induced by treating mice intratracheally with PPE on day 0. To generate the murine model of AECOPD, poly(I:C) was administered intratracheally following PPE treatment on days 22-24. Mice were sacrificed and analyzed on day 25. Mice were fed a diet containing 2% TJ-41 or a control diet. RESULTS Daily oral intake of TJ-41 significantly decreased the numbers of neutrophils and lymphocytes in the bronchoalveolar lavage fluid (BALF), which was accompanied by decreased transcripts of CXC chemokines involved in neutrophil migration, viz., Cxcl1 and Cxcl2, in whole lung homogenates and reduced Cxcl2 concentration in BALF. CONCLUSION This study demonstrates the anti-inflammatory effects of TJ-41 in a mouse model of AECOPD, suggesting the effectiveness of TJ-41 for the management of COPD. Clinical investigations evaluating the therapeutic efficacy of TJ-41 in AECOPD would be meaningful.
Collapse
Affiliation(s)
- Kensuke Fukuda
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan,
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Centre for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yoshihisa Hiraishi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Latner Thoracic Surgery Research Laboratories, Department of Surgery and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Takashi Ishii
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division for Health Service Promotion, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masaaki Yuki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hideaki Isago
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Tamiya
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division for Health Service Promotion, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Taisuke Jo
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Nahata M, Fujitsuka N, Sekine H, Shimobori C, Ohbuchi K, Iizuka S, Mogami S, Ohnishi S, Takeda H. Decline in Liver Mitochondria Metabolic Function Is Restored by Hochuekkito Through Sirtuin 1 in Aged Mice With Malnutrition. Front Physiol 2022; 13:848960. [PMID: 35299665 PMCID: PMC8921682 DOI: 10.3389/fphys.2022.848960] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Malnutrition impairs basic daily activities and leads to physical frailty, which is aggravated in the elderly compared with young adults. It is also well-known that the elderly are more vulnerable to metabolic stress. Therefore, in this study, using a food restricted (FR) mouse, we aimed to evaluate the effect of aging on locomotor activity and liver metabolic function. Further, we also investigated the involvement of hepatic mitochondria in liver metabolic function during aging, as well as the therapeutic benefit of the traditional Japanese medicine, hochuekkito (HET). Our findings indicated that following food restriction provided as 30% of ad libitum intake for 5 days, the locomotor activity was lower in 23–26-month-old (aged) mice than in 9-week-old (young) mice. Further, compared with young mice, aged mice exhibited significant decreases in the levels of metabolites related to the urea cycle, mitochondrial function, and anti-oxidative stress. The livers of the aged mice also showed a greater decrease in mitochondrial DNA copy number than young mice. Furthermore, the gene expression levels of sirtuin 1 (SIRT1) and mitochondrial biogenesis-related regulators were attenuated in aged mice. However, these changes were partially restored by HET treatment, which also improved locomotor activity, and combined treatment with alanine resulted in more significant effects in this regard. Therefore, our findings suggested that the decrease in locomotor activity in aged FR mice was associated with a decline in the metabolic function of hepatic mitochondria via decreased SIRT1 expression, which was restored by HET treatment. This implies that enhancing the metabolic function of liver mitochondria can contribute to alleviating energy deficiency in the elderly.
Collapse
Affiliation(s)
- Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
- *Correspondence: Naoki Fujitsuka,
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Chika Shimobori
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Shunsuke Ohnishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Takeda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Gastroenterology, Tokeidai Memorial Hospital, Sapporo, Japan
| |
Collapse
|
3
|
Nahata M, Mogami S, Sekine H, Iizuka S, Okubo N, Fujitsuka N, Takeda H. Bcl-2-dependent autophagy disruption during aging impairs amino acid utilization that is restored by hochuekkito. NPJ Aging Mech Dis 2021; 7:13. [PMID: 34210978 PMCID: PMC8249599 DOI: 10.1038/s41514-021-00065-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic undernutrition contributes to the increase in frailty observed among elderly adults, which is a pressing issue in the sector of health care for older people worldwide. Autophagy, an intracellular recycling system, is closely associated with age-related pathologies. Therefore, decreased autophagy in aging could be involved in the disruption of energy homeostasis that occurs during undernutrition; however, the physiological mechanisms underlying this process remain unknown. Here, we showed that 70% daily food restriction (FR) induced fatal hypoglycemia in 23–26-month-old (aged) mice, which exhibited significantly lower hepatic autophagy than 9-week-old (young) mice. The liver expressions of Bcl-2, an autophagy-negative regulator, and Beclin1–Bcl-2 binding, were increased in aged mice compared with young mice. The autophagy inducer Tat-Beclin1 D11, not the mTOR inhibitor rapamycin, decreased the plasma levels of the glucogenic amino acid and restored the blood glucose levels in aged FR mice. Decreased liver gluconeogenesis, body temperature, physical activity, amino acid metabolism, and hepatic mitochondrial dynamics were observed in the aged FR mice. These changes were restored by treatment with hochuekkito that is a herbal formula containing several autophagy-activating ingredients. Our results indicate that Bcl-2 upregulation in the liver during the aging process disturbs autophagy activation, which increases the vulnerability to undernutrition. The promotion of liver autophagy may offer clinical therapeutic benefits to frail elderly patients.
Collapse
Affiliation(s)
- Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Hitomi Sekine
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoto Okubo
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Hiroshi Takeda
- Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan. .,Hokkaido University Hospital Gastroenterological Medicine, Sapporo, Hokkaido, Japan.
| |
Collapse
|
4
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Li H, Huang H, Long W, Zuo J, Huang H. Herbal medicine significantly improved muscle function in a patient with type 1 facioscapulohumeral muscular dystrophy: A case report. Explore (NY) 2020; 17:247-251. [PMID: 32505519 DOI: 10.1016/j.explore.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Facioscapulohumeral muscular dystrophy (FSHD) is a common muscular disorder. At present, treatments for FSHD have limited effects on the muscle function of patients. A famous Chinese medicine formula, Buzhong Yiqi (BZYQ), has shown promising effects on several muscular diseases, but evidence regarding its effect on FSHD is lacking. This study aimed to examine the effect of BZYQ on FSHD. CASE PRESENTATION A 15-year-old girl suffered from progressive muscle weakness, with a genetically confirmed diagnosis of FSHD. Except for routine FSHD management, the patient received BZQY every day. The muscle strength of the patient remarkably increased after discharge. CONCLUSIONS This study was novel in reporting a significant improvement in muscle function in a patient with FSHD treated with an integrated approach of BZYQ and routine management. Therefore, BZYQ might be a potential treatment for FSHD, requiring further investigations.
Collapse
Affiliation(s)
- Hongjuan Li
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| | - Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Wenjie Long
- Department of Geriatric Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Junling Zuo
- Department of Emergency, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Hongqiang Huang
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
6
|
Keshavarz M, Solaymani-Mohammadi F, Namdari H, Arjeini Y, Mousavi MJ, Rezaei F. Metabolic host response and therapeutic approaches to influenza infection. Cell Mol Biol Lett 2020; 25:15. [PMID: 32161622 PMCID: PMC7059726 DOI: 10.1186/s11658-020-00211-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Based on available metabolomic studies, influenza infection affects a variety of cellular metabolic pathways to ensure an optimal environment for its replication and production of viral particles. Following infection, glucose uptake and aerobic glycolysis increase in infected cells continually, which results in higher glucose consumption. The pentose phosphate shunt, as another glucose-consuming pathway, is enhanced by influenza infection to help produce more nucleotides, especially ATP. Regarding lipid species, following infection, levels of triglycerides, phospholipids, and several lipid derivatives undergo perturbations, some of which are associated with inflammatory responses. Also, mitochondrial fatty acid β-oxidation decreases significantly simultaneously with an increase in biosynthesis of fatty acids and membrane lipids. Moreover, essential amino acids are demonstrated to decline in infected tissues due to the production of large amounts of viral and cellular proteins. Immune responses against influenza infection, on the other hand, could significantly affect metabolic pathways. Mainly, interferon (IFN) production following viral infection affects cell function via alteration in amino acid synthesis, membrane composition, and lipid metabolism. Understanding metabolic alterations required for influenza virus replication has revealed novel therapeutic methods based on targeted inhibition of these cellular metabolic pathways.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- National Influenza Center, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Bojungikgi-tang Improves Muscle and Spinal Cord Function in an Amyotrophic Lateral Sclerosis Model. Mol Neurobiol 2018; 56:2394-2407. [PMID: 30030751 DOI: 10.1007/s12035-018-1236-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive motor function impairment, dysphagia, and respiratory failure. Owing to the complexity of its pathogenic mechanisms, an effective therapy for ALS is lacking. Herbal medicines with multiple targets have good efficacy and low adverse reactions for the treatment of neurodegenerative diseases. In this study, the effects of Bojungikgi-tang (BJIGT), an herbal medicine with eight component herbs, on muscle and spinal cord function were evaluated in an ALS animal model. Animals were randomly divided into three groups: a non-transgenic group (nTg, n = 24), a hSOD1G93A transgenic group (Tg, n = 24), and a hSOD1G93A transgenic group in which 8-week-old mice were orally administered BJIGT (1 mg/g) once daily for 6 weeks (Tg+BJIGT, n = 24). The effects of BJIGT were evaluated using a rotarod test, foot-printing, and survival analyses based on Kaplan-Meier survival curves. To determine the biological mechanism underlying the effects of BJIGT in hSOD1G93A mice, western blotting, transmission electron microscopy, and Bungarotoxin staining were used. BJIGT improved motor function and extended the survival duration of hSOD1G93A mice. In addition, BJIGT had protective effects, including anti-oxidative and anti-inflammatory effects, in both the spinal cord and muscle of hSOD1G93A mice. Our results demonstrated that BJIGT causes muscle atrophy and the denervation of neuromuscular junctions in the gastrocnemius of hSOD1G93A mice. The components of BJIGT may alleviate the symptoms of ALS via different mechanisms, and accordingly, BJIGT treatment may be an effective therapeutic approach.
Collapse
|
8
|
Li TM, Yu YH, Tsai FJ, Cheng CF, Wu YC, Ho TJ, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin JC, Lin CC, Liang WM, Lin YJ. Characteristics of Chinese herbal medicine usage and its effect on survival of lung cancer patients in Taiwan. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:92-100. [PMID: 29100936 DOI: 10.1016/j.jep.2017.10.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Taiwan, lung cancer remains one of the deadliest cancers. Survival of lung cancer patients remains low, ranging from 6% to 18%. Studies have shown that Chinese herbal medicine (CHM) can be used to induce cell apoptosis and exhibit anti-inflammatoryanti-inflammatory activities in cancer cells. AIM OF THE STUDY This study aimed to investigate the frequencies and patterns of CHM treatment for lung cancer patients and the effect of CHM on their survival probability in Taiwan. MATERIALS AND METHODS We identified 6939 lung cancer patients (ICD-9-CM: 162). We allocated 264 CHM users and 528 CHM-non users, matched for age, gender, duration, and regular treatment. Chi-square test, conditional multivariable logistic regression, Kaplan-Meier method, and the log-rank test were used in this study. RESULTS The CHM group was characterized by a longer follow up time and more cases of hyperlipidemia and liver cirrhosis. This group exhibited a lower mortality hazard ratio (0.48, 95% confidence interval [0.39-0.61], p < 0.001), after adjusting for comorbidities. The trend was also observed that the cumulative survival probability was higher in CHM than in non-CHM users (p < 0.0001, log rank test). Analysis of their CHM prescription pattern revealed that Bu-Zhong-Yi-Qi-Tang (BZYQT), Xiang-Sha-Liu-Jun-Zi-Tang (XSLJZT), and Bai-He-Gu-Jin-Tang (BHGJT); and Bei-Mu (BM), Xing-Ren (XR) and Ge-Gen (GG) were found to be the top three formulas and herbs, respectively. Among them, BM was the core CHM of the major cluster, and Jie-Geng (JG) and Mai-Men-Dong-Tang (MMDT) were important CHMs by CHM network analysis. CONCLUSION The use of CHM as an adjunctive therapy may reduce the mortality hazard ratio of lung cancer patients. The investigation of their comprehensive CHM prescription patterns might be useful in future large-scale, randomized clinical investigations of agent effectiveness, safety, and potential interactions with conventional treatments for lung cancer patients.
Collapse
Affiliation(s)
- Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Hao Yu
- Divisions of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Huang Y, Kwan KKL, Leung KW, Yao P, Wang H, Dong TT, Tsim KWK. Ginseng extracts modulate mitochondrial bioenergetics of live cardiomyoblasts: a functional comparison of different extraction solvents. J Ginseng Res 2018; 43:517-526. [PMID: 31695560 PMCID: PMC6823796 DOI: 10.1016/j.jgr.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/31/2017] [Accepted: 02/06/2018] [Indexed: 01/08/2023] Open
Abstract
Background The root of Panax ginseng, a member of Araliaceae family, has been used as herbal medicine and functional food in Asia for thousands of years. According to Traditional Chinese medicine, ginseng is the most widely used “Qi-invigorating” herbs, which provides tonic and preventive effects by resisting oxidative stress, influencing energy metabolism, and improving mitochondrial function. Very few reports have systematically measured cell mitochondrial bioenergetics after ginseng treatment. Methods Here, H9C2 cell line, a rat cardiomyoblast, was treated with ginseng extracts having extracted using solvents of different polarity, i.e., water, 50% ethanol, and 90% ethanol, and subsequently, the oxygen consumption rate in healthy and tert-butyl hydroperoxide–treated live cultures was determined by Seahorse extracellular flux analyzer. Results The 90% ethanol extracts of ginseng possessed the strongest antioxidative and tonic activities to mitochondrial respiration and therefore provided the best protective effects to H9C2 cardiomyocytes. By increasing the spare respiratory capacity of stressed H9C2 cells up to three-folds of that of healthy cells, the 90% ethanol extracts of ginseng greatly improved the tolerance of myocardial cells to oxidative damage. Conclusion These results demonstrated that the low polarity extracts of ginseng could be the best extract, as compared with others, in regulating the oxygen consumption rate of cultured cardiomyocytes during mitochondrial respiration.
Collapse
Affiliation(s)
- Yun Huang
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kenneth Kin Leung Kwan
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ka Wing Leung
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Ping Yao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huaiyou Wang
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tina Tingxia Dong
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Karl Wah Keung Tsim
- HKUST Shenzhen Research Institute, Hi-Tech Park, Guangdong, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
10
|
A 4-Week Repeated-Dose Oral Toxicity Study of Bojungikgi-Tang in Crl:CD Sprague Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:4748904. [PMID: 29387129 PMCID: PMC5745664 DOI: 10.1155/2017/4748904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/26/2017] [Indexed: 11/17/2022]
Abstract
Traditional herbal medicines have been used for centuries in Asian countries. However, recent studies have led to increasing concerns about the safety and toxicity of herbal prescriptions. Bojungikgi-tang (BJIGT), a herbal decoction, has been used in Korea to improve physical strength. To establish the safety information, BJIGT water extract was evaluated in a 4-week repeated-dose oral toxicity test in Crl:CD Sprague Dawley rats. BJIGT was orally administered in daily doses of 0, 500, 1000, and 2000 mg/kg/day for 4 weeks via oral gavage in male and female rats. We examined the mortality, clinical signs, body weight change, food intake, organ weights, hematology, serum biochemistry, and urinalysis parameters. No significant changes were observed in mortality, clinical sings, body weight, food intake, organ weights, hematology, serum biochemistry, and urinalysis parameters between the control group and the BJIGT-treated groups in the rats of both sexes. The results indicate that BJIGT did not induce toxic effects at a dose level up to 2000 mg/kg in rats. Thus, this concentration is considered the nonobservable effect dose in rats and is appropriate for a 13-week subchronic toxicity study.
Collapse
|