1
|
Tang H, Kan C, Zhang K, Sheng S, Qiu H, Ma Y, Wang Y, Hou N, Zhang J, Sun X. Glycerophospholipid and Sphingosine- 1-phosphate Metabolism in Cardiovascular Disease: Mechanisms and Therapeutic Potential. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10620-3. [PMID: 40227543 DOI: 10.1007/s12265-025-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide, driven by factors such as dysregulated lipid metabolism, oxidative stress, and inflammation. Recent studies highlight the critical roles of both glycerophospholipid and sphingosine- 1-phosphate metabolism in the pathogenesis of cardiovascular disorders. However, the contributions of glycerophospholipid-derived metabolites remain underappreciated. Glycerophospholipid metabolism generates bioactive molecules that contribute to endothelial dysfunction, lipid accumulation, and cardiac cell injury while also modulating inflammatory and oxidative stress responses. Meanwhile, sphingosine- 1-phosphate is a bioactive lipid mediator that regulates vascular integrity, inflammation, and cardiac remodeling through its G-protein-coupled receptors. The convergence of these pathways presents novel therapeutic opportunities, where dietary interventions such as omega- 3 polyunsaturated fatty acids and pharmacological targeting of sphingosine- 1-phosphate receptors could synergistically mitigate cardiovascular risk. This review underscores the need for further investigation into the interplay between glycerophospholipid metabolism and sphingosine- 1-phosphate signaling to advance targeted therapies for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Sufang Sheng
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Bookmeyer CHM, Correig FX, Masana L, Magni P, Yanes Ó, Vinaixa M. Advancing atherosclerosis research: The Power of lipid imaging with MALDI-MSI. Atherosclerosis 2025; 403:119130. [PMID: 40059002 DOI: 10.1016/j.atherosclerosis.2025.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/20/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease that is one of the leading causes of mortality globally. It is characterized by the formation of atheromatous plaques in the intima layer of larger arteries. The (fibro-)fatty plaques usually develop asymptomatically within the vessel until a serious event such as myocardial infarction or stroke occurs. Lipids play a pivotal role in disease progression, but while the causal role of cholesterol is beyond doubt, the distribution of numerous other lipids within the heterogeneous layers of atherosclerotic plaques, and their biological function remain unclear. A deeper understanding of the pathophysiological progression of the disease for prognostics, diagnostics, treatment, and prevention is of great need. Mass spectrometry imaging (MSI), in particular with matrix-assisted laser desorption/ionization (MALDI) offers an unprecedented untargeted characterization of the physiological microenvironment, unraveling the spatial distribution of numerous biochemical compounds. MALDI-MSI offers an advantageous balance of sample preparation, chemical sensitivity, and spatial resolution, and thus has been established as a key technology in modern biomedical analysis. This review focuses on the analysis of lipids in atherosclerotic lesions with MALDI-MSI, for which the past years showed major developments in the spatial characterization of lipids and their interaction within atherosclerotic plaques. We will cover main contributions with a focus on the recent decade, elaborate possibilities, limitations, main findings, and recent developments from sample handling to instrumentation, and estimate current challenges and potentials of MALDI-MSI with respect to a clinical application.
Collapse
Affiliation(s)
- Christoph H M Bookmeyer
- Universitat Rovira i Virgili, Department of Electronic Engineering, Metabolomics Interdisciplinary Laboratory, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| | - F Xavier Correig
- Universitat Rovira i Virgili, Department of Electronic Engineering, Metabolomics Interdisciplinary Laboratory, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Luis Masana
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain; Universitat Rovira i Virgili, Research Unit on Lipids and Atherosclerosis, Reus, Spain
| | - Paolo Magni
- Dept. of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Italy
| | - Óscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, Metabolomics Interdisciplinary Laboratory, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Maria Vinaixa
- Universitat Rovira i Virgili, Department of Electronic Engineering, Metabolomics Interdisciplinary Laboratory, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.
| |
Collapse
|
3
|
He B, Zhou T, Liu J. Lipidomics Study of Type 1 Diabetic Rats Using Online Phase Transition Trapping-Supercritical Fluid Extraction-Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J Proteome Res 2024; 23:2619-2628. [PMID: 38910295 DOI: 10.1021/acs.jproteome.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Chromatography-mass spectrometry-based lipidomics represents an essential tool for elucidating lipid dysfunction mechanisms and is extensively employed in investigating disease mechanisms and identifying biomarkers. However, the detection of low-abundance lipids in biological matrices, along with cumbersome operational procedures, complicates comprehensive lipidomic analyses, necessitating the development of highly sensitive, environmentally friendly, and automated methods. In this study, an online phase transition trapping-supercritical fluid extraction-chromatography-mass spectrometry (PTT-SFEC-MS/MS) method was developed and successfully applied to plasma lipidomics analysis in Type 1 diabetes (T1D) rats. The PTT strategy captured entire extracts at the column head by converting CO2 from a supercritical state to a gaseous state, thereby preventing peak spreading, enhancing peak shape for precise quantification, and boosting sensitivity without any sample loss. This method utilized only 5 μL of plasma and accomplished sample extraction, separation, and detection within 27 min. Ultimately, 77 differential lipids were identified, including glycerophospholipids, sphingolipids, and glycerolipids, in T1D rat plasma. The results indicated that the progression of the disease might be linked to alterations in glycerophospholipid and sphingolipid metabolism. Our findings demonstrated a green, highly efficient, and automated method for the lipidomics analysis of biological samples, providing a scientific foundation for understanding the pathogenesis and diagnosis of T1D.
Collapse
Affiliation(s)
- Binhong He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jiaqi Liu
- Guangzhou Analytical Center, Analytical & Measuring Instruments Division, Shimadzu (China) Co., LTD, Guangzhou 510010, P.R. China
| |
Collapse
|
4
|
Inagaki NF, Nakanishi H, Ohto T, Shindou H, Shimizu T. LPCAT3/LPLAT12 deficiency in the liver ameliorates acetaminophen-induced acute liver injury. FASEB J 2024; 38:e23328. [PMID: 38019192 DOI: 10.1096/fj.202301744r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Acetaminophen (APAP) is a double-edged sword, mainly depending on the dosage. A moderate dose of APAP is effective for fever and pain relief; however, an overdose induces acute liver injury. The mechanism underlying APAP-induced acute liver failure is unclear, and its treatment is limited. A recent report has shown that several oxidized phospholipids are associated with APAP-induced acute liver failure. Lysophosphatidylcholine acyltransferase 3 (Lpcat3, Lplat12), which is highly expressed in the liver, preferentially catalyzes the incorporation of arachidonate into lysophospholipids (PLs). In the present study, we investigated the roles of Lpcat3 on APAP-induced acute liver injury using liver-specific Lpcat3-knockout mice. Hepatic Lpcat3 deficiency reduced the degree of APAP-induced necrosis of hepatocytes around Zone 3 and ameliorated the elevation of hepatic injury serum marker levels, and prolonged survival. Lipidomic analysis showed that the accumulation of oxidized and hydroperoxidized phospholipids was suppressed in Lpcat3-knockout mice. The amelioration of APAP-induced acute liver injury was due not only to the reduction in the lipid synthesis of arachidonic acid PLs because of Lpcat3 deficiency, but also to the promotion of the APAP detoxification pathway by facilitating the conjugation of glutathione and N-acetyl-p-benzoquinone imine. Our findings suggest that Lpcat3 is a potential therapeutic target for treating APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Natsuko F Inagaki
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | | | | | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
- Institute of Microbial Chemistry, Tokyo, Japan
| |
Collapse
|
5
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
6
|
Luo X, Liu M, Wang S, Chen Y, Bao X, Lv Y, Zhang S, Xu B, Weng X, Bai X, Zeng M, Zhao C, Li J, Jia H, Yu B. Combining metabolomics and OCT to reveal plasma metabolic profiling and biomarkers of plaque erosion and plaque rupture in STEMI patients. Int J Cardiol 2023; 390:131223. [PMID: 37517782 DOI: 10.1016/j.ijcard.2023.131223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/15/2023] [Accepted: 02/26/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE Plaque erosion (PE) and plaque rupture (PR) are the main subtypes of ST-segment elevation myocardial infarction (STEMI), the differences of metabolic patterns between PE and PR remain largely unknown. METHODS 132 STEMI patients were divided into training set (PR, n = 36; PE, n = 36) and test set (PR, n = 30; PE, n = 30), the plasma from patients were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. RESULTS We identified 56 and 28 differences in training and test set, respectively. Among these metabolites, it was found that docosahexaenoic acid (DHA), salicylic acid and proline were recognized in both tests. Receiver Operating Characteristic (ROC) analysis showed that the area under curve of docosahexaenoic acid (DHA) was 0.81 and 0.75 in training and test samples, respectively; proline was 0.67 and 0.74 in training and test samples, respectively; salicylic acid was 0.70 and 0.73 in training and test samples, respectively. CONCLUSIONS DHA, salicylic acid, and proline could be used as non-invasive biomarkers to differentiate PE and PR.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Minghao Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shengfang Wang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ying Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Shan Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ming Zeng
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Chen Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
7
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B. Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L. Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
8
|
Fan J, Jiang T, He D. Emerging insights into the role of ferroptosis in the pathogenesis of autoimmune diseases. Front Immunol 2023; 14:1120519. [PMID: 37063835 PMCID: PMC10097931 DOI: 10.3389/fimmu.2023.1120519] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Ferroptosis, a novel type of regulated cell death mediated by iron-dependent lipid oxidation, was discovered a decade ago. Significant progress has been made in our knowledge of ferroptosis and immune dysfunction. This review covers recent advancements in the interaction of ferroptosis and the immune system, with an emphasis on autoimmune diseases. The critical regulators of ferroptosis are summarized in the context of reactive oxygen species biology, lipid metabolism, and iron homeostasis. The molecular crosstalk between ferroptosis and different immune cells is also highlighted. Future research is expected to yield new insights into the mechanisms governing ferroptosis and its potential therapeutic benefits in autoimmune diseases.
Collapse
Affiliation(s)
- Junyu Fan
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Dongyi He,
| |
Collapse
|
9
|
Du Z, Wang Y, Li F, Sun X, Du Y, Li L, Yu H, Hu C, Sun H, Gao X, Han L, Zhang Z, Xing J, Wang L, Li J, Qin Y. Targeting Lysophosphatidic Acid Ameliorates Dyslipidemia in Familial Hypercholesterolemia. RESEARCH (WASHINGTON, D.C.) 2023; 8:0629. [PMID: 40018730 PMCID: PMC11865365 DOI: 10.34133/research.0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Familial hypercholesterolemia (FH) is a lipoprotein disorder characterized by elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) and an increased risk of premature atherosclerotic cardiovascular disease. Recent evidences have shown that several glycerophospholipid species were markedly altered in experimental FH animals and exhibited diverse bioactivities. Nevertheless, the glycerophospholipid profiles and their associated biological implications in human FH remain largely unknown. In this study, we sought to comprehensively delineate the glycerophospholipid phenotypes in human FH and to investigate the functional roles of key FH-altered glycerophospholipid molecules on cholesterol metabolism. Targeted analysis of 328 glycerophospholipid metabolites was used to profile the differentiated alterations in patients with homozygous FH (HoFH; n = 181), heterozygous FH (HeFH; n = 452), and non-FH hypercholesterolemia (n = 382). Our findings revealed that the glycerophospholipid phenotypes of FH and non-FH hypercholesterolemia were dominated by a spectrum of metabolites involved in the lysophosphatidic acid (LPA) metabolism. Among the LPA features, palmitoyl-LPA (16:0) showed significant association with the clinical levels of LDL-C and total cholesterol in HoFH and HeFH populations. Using functional metabolomic strategy and murine FH model, we demonstrated that supplementation with LPA 16:0 elevated the plasma levels of LDL and free/esterified cholesterol and exacerbated the atherosclerotic lesions. Conversely, inhibition of autotaxin-mediated LPA 16:0 production significantly ameliorated dyslipidemia. Mechanistically, we uncovered that LPA 16:0 could disrupt hepatic cholesterol homeostasis by impairing cholesterol excretion and inhibiting primary bile acid synthesis. In summary, our study offers novel insights into lipid metabolism in human FH and posits that targeting LPA metabolism may represent a promising therapeutic strategy for reducing cholesterol levels in the FH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yu Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Fan Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xuechun Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Yunhui Du
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Linyi Li
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Huahui Yu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Chaowei Hu
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Haili Sun
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xiaoqian Gao
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Lijie Han
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Zihan Zhang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jingci Xing
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Luya Wang
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Jianping Li
- Department of Cardiology,
Peking University First Hospital, Beijing 100034, China
| | - Yanwen Qin
- Beijing Anzhen Hospital,
Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| |
Collapse
|
10
|
Yu X, Sun H, Gao X, Zhang C, Sun Y, Wang H, Zhang H, Shi Y, He X. A comprehensive analysis of age-related metabolomics and transcriptomics reveals metabolic alterations in rat bone marrow mesenchymal stem cells. Aging (Albany NY) 2022; 14:1014-1032. [PMID: 35122680 PMCID: PMC8833123 DOI: 10.18632/aging.203857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
The functions of stem cells decline progressively with aging, and some metabolic changes occur during the process. However, the molecular mechanisms of stem cell aging remain unclear. In this study, the combined application of metabolomics and transcriptomics technologies can effectively describe the possible molecular mechanisms of rat bone marrow mesenchymal stem cell (BMSC) senescence. Metabolomic profiles revealed 23 differential metabolites which were abundant in “glycerophospholipid metabolism”, “linoleic acid metabolism” and “biosynthesis of unsaturated fatty acids”. In addition, transcriptomics analysis identified 590 genes with enormously differential expressions in young and old BMSCs. KEGG enrichment analyses showed that metabolism-related pathways in BMSC senescence had stronger responses. Furthermore, the integrated analysis of the interactions between the differentially expressed genes (DEGs) and metabolites indicated the differential genes related to lipid metabolism of Scd, Scd2, Dgat2, Fads2, Lpin1, Gpat3, Acaa2, Lpcat3, Pcyt2 and Pla2g4a may be closely associated with the aging of BMSCs. Finally, Scd2 was identified as the most significant DEG, and Scd2 over-expression could alleviate cellular senescence in aged BMSCs. In conclusion, this work provides a validated understanding that the DEGs and metabolites related to lipid metabolism present more apparent changes in the senescence of rat BMSCs.
Collapse
Affiliation(s)
- Xiao Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Hui Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xingyu Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Chang Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanan Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Huan Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
11
|
Su D, Liao L, Zeng Q, Liao Z, Liu Y, Jin C, Zhu G, Chen C, Yang M, Ai Z, Song Y. Study on the new anti-atherosclerosis activity of different Herba patriniae through down-regulating lysophosphatidylcholine of the glycerophospholipid metabolism pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153833. [PMID: 34798520 DOI: 10.1016/j.phymed.2021.153833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a multifactor cardiovascular disease characterized by chronic inflammation. The safety of long-term medication is the focus of clinical treatment selection and application. It is urgent to develop more high-efficiency and low side effects drugs to treat AS. Therefore, the screening of anti-AS drugs with high efficiency and low toxicity from phytomedicine has attracted more and more attention. PURPOSE The aim of this study was to explore the new pharmacological effect of Herba patriniae against AS, to find the best origin and extraction part of Herba patriniae, furthermore, to reveal its potential action mechanism. METHODS Apolipoprotein E gene-knockout (ApoE-/-) mice were orally administered with different extracts of Patrinia villosa Juss (PVJ) and Patrinia scabiosaefolia Fisch (PSF). Their anti-AS effect was comprehensively evaluated by small animal ultrasound, HE staining, Oil-Red O staining, platelet aggregation rate and blood lipid level. Lipid metabolomics and network pharmacology were used to study the mechanism of drug action. Finally, the expression of related proteins were detected by western blots and immunofluorescence. RESULTS PVJ EtOAc extract and PSF EtOAc extract could significantly reduce vascular plaque, liver inflammation, platelet aggregation and blood lipid levels in AS model. By comparison, the effect of PVJEE was better than that of PSFEE. Furthermore, the results of differential metabolites indicated that PVJEE may inhibit the apoptosis of vascular endothelial cells, proliferation and migration of smooth muscle cells by reversing lysophosphatidylcholine (LPC) in the glycerophospholipid metabolic pathway, so as to play an anti-AS role. This result was double verified by KEGG based metabolic pathway enrichment analysis and related protein expression study. CONCLUSION By changing glycerophospholipid metabolism pathway, Herba patriniae can significantly regulate lipid metabolism and inflammatory level, showing the development potential of anti-AS, which provides new candidate drugs and good prospects for the safe treatment of AS. In addition, through comparison, this study also confirmed that PVJEE was the best origin and extraction part of anti-AS.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Liangliang Liao
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Qiang Zeng
- College of Pharmacy,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Zhou Liao
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yali Liu
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Chen Jin
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Changlian Chen
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Zhifu Ai
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China..
| | - Yonggui Song
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China..
| |
Collapse
|
12
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
13
|
The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat Commun 2021; 12:6869. [PMID: 34824256 PMCID: PMC8617236 DOI: 10.1038/s41467-021-27244-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
As the major component of cell membranes, phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation-reacylation remodeling via Lands' cycle. The re-acylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT) and among the four LPCAT members in human, the LPCAT3 preferentially introduces polyunsaturated acyl onto the sn-2 position of lysophosphatidylcholine, thereby modulating the membrane fluidity and membrane protein functions therein. Combining the x-ray crystallography and the cryo-electron microscopy, we determined the structures of LPCAT3 in apo-, acyl donor-bound, and acyl receptor-bound states. A reaction chamber was revealed in the LPCAT3 structure where the lysophosphatidylcholine and arachidonoyl-CoA were positioned in two tunnels connected near to the catalytic center. A side pocket was found expanding the tunnel for the arachidonoyl CoA and holding the main body of arachidonoyl. The structural and functional analysis provides the basis for the re-acylation of lysophosphatidylcholine and the substrate preference during the reactions.
Collapse
|
14
|
Klassen A, Faccio AT, Picossi CRC, Derogis PBMC, Dos Santos Ferreira CE, Lopes AS, Sussulini A, Cruz ECS, Bastos RT, Fontoura SC, Neto AMF, Tavares MFM, Izar MC, Fonseca FAH. Evaluation of two highly effective lipid-lowering therapies in subjects with acute myocardial infarction. Sci Rep 2021; 11:15973. [PMID: 34354179 PMCID: PMC8342504 DOI: 10.1038/s41598-021-95455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
For cardiovascular disease prevention, statins alone or combined with ezetimibe have been recommended to achieve low-density lipoprotein cholesterol targets, but their effects on other lipids are less reported. This study was designed to examine lipid changes in subjects with ST-segment elevation myocardial infarction (STEMI) after two highly effective lipid-lowering therapies. Twenty patients with STEMI were randomized to be treated with rosuvastatin 20 mg QD or simvastatin 40 mg combined with ezetimibe 10 mg QD for 30 days. Fasting blood samples were collected on the first day (D1) and after 30 days (D30). Lipidomic analysis was performed using the Lipidyzer platform. Similar classic lipid profile was obtained in both groups of lipid-lowering therapies. However, differences with the lipidomic analysis were observed between D30 and D1 for most of the analyzed classes. Differences were noted with lipid-lowering therapies for lipids such as FA, LPC, PC, PE, CE, Cer, and SM, notably in patients treated with rosuvastatin. Correlation studies between classic lipid profiles and lipidomic results showed different information. These findings seem relevant, due to the involvement of these lipid classes in crucial mechanisms of atherosclerosis, and may account for residual cardiovascular risk. Randomized clinical trial: ClinicalTrials.gov, NCT02428374, registered on 28/09/2014.
Collapse
Affiliation(s)
- Aline Klassen
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Andrea Tedesco Faccio
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Carolina Raissa Costa Picossi
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | - Aline Soriano Lopes
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Elisa Castañeda Santa Cruz
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rafaela Tudela Bastos
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | | | | | - Marina Franco Maggi Tavares
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Maria Cristina Izar
- Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Rua Loefgren 1350, São Paulo, SP, CEP 04040-001, Brazil
| | | |
Collapse
|
15
|
Miyazaki T, Miyazaki A. Hypercholesterolemia and Lymphatic Defects: The Chicken or the Egg? Front Cardiovasc Med 2021; 8:701229. [PMID: 34250049 PMCID: PMC8262609 DOI: 10.3389/fcvm.2021.701229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Lymphatic vessels are necessary for maintaining tissue fluid balance, trafficking of immune cells, and transport of dietary lipids. Growing evidence suggest that lymphatic functions are limited under hypercholesterolemic conditions, which is closely related to atherosclerotic development involving the coronary and other large arteries. Indeed, ablation of lymphatic systems by Chy-mutation as well as depletion of lymphangiogenic factors, including vascular endothelial growth factor-C and -D, in mice perturbs lipoprotein composition to augment hypercholesterolemia. Several investigations have reported that periarterial microlymphatics were attracted by atheroma-derived lymphangiogenic factors, which facilitated lymphatic invasion into the intima of atherosclerotic lesions, thereby modifying immune cell trafficking. In contrast to the lipomodulatory and immunomodulatory roles of the lymphatic systems, the critical drivers of lymphangiogenesis and the details of lymphatic insults under hypercholesterolemic conditions have not been fully elucidated. Interestingly, cholesterol-lowering trials enable hypercholesterolemic prevention of lymphatic drainage in mice; however, a causal relationship between hypercholesterolemia and lymphatic defects remains elusive. In this review, the contribution of aberrant lymphangiogenesis and lymphatic cholesterol transport to hypercholesterolemic atherosclerosis was highlighted. The causal relationship between hypercholesterolemia and lymphatic insults as well as the current achievements in the field were discussed.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Iwaki T. Meet Our Editorial Board Member. Curr Drug Targets 2021. [DOI: 10.2174/138945012204210127151845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- T. Iwaki
- Hamamatsu University School of Medicine Shizuoka, Japan
| |
Collapse
|
17
|
Drake RR, Scott DA, Angel PM. Imaging Mass Spectrometry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
18
|
Valentine WJ, Hashidate-Yoshida T, Yamamoto S, Shindou H. Biosynthetic Enzymes of Membrane Glycerophospholipid Diversity as Therapeutic Targets for Drug Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:5-27. [PMID: 32894505 DOI: 10.1007/978-3-030-50621-6_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biophysical properties of membranes are dependent on their glycerophospholipid compositions. Lysophospholipid acyltransferases (LPLATs) selectively incorporate fatty chains into lysophospholipids to affect the fatty acid composition of membrane glycerophospholipids. Lysophosphatidic acid acyltransferases (LPAATs) of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family incorporate fatty chains into phosphatidic acid during the de novo glycerophospholipid synthesis in the Kennedy pathway. Other LPLATs of both the AGPAT and the membrane bound O-acyltransferase (MBOAT) families further modify the fatty chain compositions of membrane glycerophospholipids in the remodeling pathway known as the Lands' cycle. The LPLATs functioning in these pathways possess unique characteristics in terms of their biochemical activities, regulation of expressions, and functions in various biological contexts. Essential physiological functions for LPLATs have been revealed in studies using gene-deficient mice, and important roles for several enzymes are also indicated in human diseases where their mutation or dysregulation causes or contributes to the pathological condition. Now several LPLATs are emerging as attractive therapeutic targets, and further understanding of the mechanisms underlying their physiological and pathological roles will aid in the development of novel therapies to treat several diseases that involve altered glycerophospholipid metabolism.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Molecular Therapy, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | | | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan. .,Department of Lipid Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
19
|
Ménégaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: The rise of PUFAs. Atherosclerosis 2019; 291:52-61. [PMID: 31693943 DOI: 10.1016/j.atherosclerosis.2019.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 01/24/2023]
Abstract
Among the pathways involved in the regulation of macrophage functions, the metabolism of unsaturated fatty acids is central. Indeed, unsaturated fatty acids act as precursors of bioactive molecules such as prostaglandins, leukotrienes, resolvins and related compounds. As components of phospholipids, they have a pivotal role in cell biology by regulating membrane fluidity and membrane-associated cellular processes. Finally, polyunsaturated fatty acids (PUFAs) are also endowed with ligand properties for numerous membrane or nuclear receptors. Although myeloid cells are dependent on the metabolic context for the uptake of essential FAs, recent studies showed that these cells autonomously handle the synthesis of n-3 and n-6 long chain PUFAs such as arachidonic acid and eicosapentaenoic acid. Moreover, targeting PUFA metabolism in macrophages influences pathological processes, including atherosclerosis, by modulating macrophage functions. Omics evidence also supports a role for macrophage PUFA metabolism in the development of cardiometabolic diseases in humans. Currently, there is a renewed interest in the role of n-3/n-6 PUFAs and their oxygenated derivatives in the onset of atherosclerosis and plaque rupture. Purified n-3 FA supplementation appears as a potential strategy in the treatment and prevention of cardiovascular diseases. In this context, the ability of immune cells to handle and to synthesize very long chain PUFA must absolutely be integrated and better understood.
Collapse
Affiliation(s)
- Louise Ménégaut
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Antoine Jalil
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - Charles Thomas
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France
| | - David Masson
- Univ. Bourgogne Franche-Comté, LNC UMR1231, F-21000, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, F-21000, Dijon, France.
| |
Collapse
|
20
|
Du X, Hu J, Zhang Q, Liu Q, Xiang X, Dong J, Lou B, He S, Gu X, Cao Y, Li Y, Ding T. A novel assay for measuring recombinant human lysophosphatidylcholine acyltransferase 3 activity. FEBS Open Bio 2019; 9:1734-1743. [PMID: 31376210 PMCID: PMC6768109 DOI: 10.1002/2211-5463.12712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/02/2019] [Accepted: 08/02/2019] [Indexed: 11/28/2022] Open
Abstract
Lysophosphatidylcholine acyltransferase 3 (LPCAT3) is an important enzyme in phospholipid remodeling, a process that influences the biophysical properties of cell membranes and thus cell function. Multiple lines of evidence suggest that LPCAT3 is involved in several diseases, including atherosclerosis, non‐alcoholic steatohepatitis, and carcinoma. Thus, LPCAT3 may have potential as a therapeutic target for these diseases. In the present study, we devised an assay based on reversed‐phase HPLC to measure LPCAT3 activity, which may facilitate the identification of LPCAT3 inhibitors and activators. We found that optimal pH and temperature of recombinant human LPCAT3 are 6.0 and 30 °C, respectively. The enzyme Km values for substrates NBD‐labelled lysophosphatidylcholine and arachidonoyl CoA were 266.84 ± 3.65 and 11.03 ± 0.51 μmol·L−1, respectively, and the Vmax was 39.76 ± 1.86 pmol·min−1·U−1. Moreover, we used our new method to determine the IC50 of a known LPCAT inhibitor, TSI‐10. In conclusion, this novel assay can be used to measure the effects of compounds on LPCAT3 activity.
Collapse
Affiliation(s)
- Xinming Du
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiachun Hu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qing Zhang
- Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Liu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinxin Xiang
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jibin Dong
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Bin Lou
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Shuhua He
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang Gu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Cao
- Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Tingbo Ding
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Mezger STP, Mingels AMA, Bekers O, Cillero-Pastor B, Heeren RMA. Trends in mass spectrometry imaging for cardiovascular diseases. Anal Bioanal Chem 2019; 411:3709-3720. [PMID: 30980090 PMCID: PMC6594994 DOI: 10.1007/s00216-019-01780-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Mass spectrometry imaging (MSI) is a widely established technology; however, in the cardiovascular research field, its use is still emerging. The technique has the advantage of analyzing multiple molecules without prior knowledge while maintaining the relation with tissue morphology. Particularly, MALDI-based approaches have been applied to obtain in-depth knowledge of cardiac (dys)function. Here, we discuss the different aspects of the MSI protocols, from sample handling to instrumentation used in cardiovascular research, and critically evaluate these methods. The trend towards structural lipid analysis, identification, and “top-down” protein MSI shows the potential for implementation in (pre)clinical research and complementing the diagnostic tests. Moreover, new insights into disease progression are expected and thereby contribute to the understanding of underlying mechanisms related to cardiovascular diseases.
Collapse
Affiliation(s)
- Stephanie T P Mezger
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.,Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Alma M A Mingels
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Abstract
Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| |
Collapse
|
23
|
Bao L, Qi J, Wang YW, Xi Q, Tserennadmid T, Zhao PF, Qi J, Damirin A. The atherogenic actions of LPC on vascular smooth muscle cells and its LPA receptor mediated mechanism. Biochem Biophys Res Commun 2018; 503:1911-1918. [DOI: 10.1016/j.bbrc.2018.07.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/02/2023]
|