1
|
de Oliveira-Sobrinho RP, Vieira TP, Steiner CE. Microdeletion 3q13.2q21.2 in a Patient Previously Diagnosed with MOMO Syndrome. Mol Syndromol 2024; 15:523-530. [PMID: 39634243 PMCID: PMC11614443 DOI: 10.1159/000538012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/22/2024] [Indexed: 12/07/2024] Open
Abstract
Background MOMO syndrome is a rare disorder with variable presentation and unknown etiology belonging to the overgrowth syndromes group. Case Presentation The authors describe a patient presenting with severe developmental delay, absent speech, autism spectrum disorder, central nervous system malformations, bilateral optic atrophy, and postnatal overgrowth, besides a dysmorphic and progressive coarse face. A clinical diagnosis of MOMO syndrome was proposed, but he developed megaesophagus, megacolon, paraparesis, and severe acne during the clinical follow-up, which are not described in this condition. Whole-genome sequencing detected a deletion of 11.9 Mb at 3q13.2q21.2 comprising 80 genes, including the ZBTB20 gene associated with Primrose syndrome. Conclusion Despite the atypical manifestations in this patient, the overlapping features between MOMO syndrome, Primrose syndrome, and 3q13.31 deletion led the authors to propose that MOMO syndrome could be part of the Primrose/3q13.31 microdeletion syndrome spectrum.
Collapse
Affiliation(s)
- Ruy Pires de Oliveira-Sobrinho
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Rare Genomes Project Consortium
- Serviço de Genética Molecular, Departamento de Medicina Laboratorial, Hospital Israelita Albert Einstein (HIAE), São Paulo, Brazil
| | - Társis Paiva Vieira
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Carlos Eduardo Steiner
- Genética Médica e Medicina Genômica, Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
2
|
Allred RP, Aguilar-Martinez J, Howell R, Betancourt D, Marengo L, Dixon A, Jeon H, Yantz C, Kilburn M, Drummond-Borg M, Nguyen J, Arena F, Shumate C. Epidemiology of Macrocephaly in the Texas Birth Defects Registry, 1999-2019. Birth Defects Res 2024; 116:e2415. [PMID: 39584355 DOI: 10.1002/bdr2.2415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Macrocephaly is a clinical observation denoted as an occipitofrontal head circumference exceeding two standard deviations above same age and sex norms. By its definition, macrocephaly occurs in approximately 3% of the population. Descriptive epidemiologic evaluations of macrocephaly are lacking in the literature. The primary objective of this study was to describe the prevalence of macrocephaly captured by the Texas Birth Defects Registry (TBDR) by infant sex, rural/urban residence, and select maternal characteristics. METHODS Cases of TBDR between 1999 and 2019 with a six-digit Centers for Disease Control modified-British Pediatric Association (BPA) code of 742.400 (enlarged brain/head, large head, macrocephaly, megalencephaly) were identified. All pregnancy outcomes and diagnostic certainties were included. Prevalence (per 10,000 live births) and 95% confidence intervals (CIs) were calculated using a Poisson table by rural/urban residence, infant sex, maternal age, education, race/ethnicity, history of diabetes, and body mass index (BMI). Prevalence calculations were repeated across multiple sensitivity analyses including (1) definite, isolated cases excluding those with indication of being either "benign" or "familial", (2) definite, non-isolated cases, (3) definite non-isolated cases excluding chromosomal and syndromic cases, and (4) definite, proportionate (at birth) cases. A secondary objective was to describe the most common co-occurring congenital defects among definite, non-isolated cases. RESULTS Overall, between 1999 and 2019, 14,637 cases of macrocephaly were identified in the TBDR resulting in a prevalence of 18.12/10,000 live births (95% CI: 17.83-18.42). Most cases were live born (99%), had a definite diagnosis (87%), and were non-isolated (57%). Prevalence was significantly higher among males, among those with an urban residence, and among mothers who were older, Non-Hispanic White, who had greater than high school education, who had a history of diabetes, and who were obese. Prevalence patterns remained consistent across all sensitivity analyses. The most common co-occurring congenital defects among definite, non-isolated cases were minor and primarily included skull and facial bone anomalies (e.g., plagiocephaly [18%]). CONCLUSIONS To our knowledge, this is the first epidemiologic evaluation of macrocephaly in a birth defects registry. The long-term clinical impact of isolated macrocephaly is not well understood and should be the focus of future investigations.
Collapse
Affiliation(s)
- Rachel P Allred
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - J Aguilar-Martinez
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - R Howell
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Dayana Betancourt
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Lisa Marengo
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - A Dixon
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - H Jeon
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - C Yantz
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - M Kilburn
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Margaret Drummond-Borg
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Joanne Nguyen
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Fernando Arena
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| | - Charles Shumate
- Texas Department of State Health Services Birth Defects Epidemiology and Surveillance Branch, Austin, Texas, USA
| |
Collapse
|
3
|
Lazea C, Vulturar R, Chiș A, Encica S, Horvat M, Belizna C, Damian LO. Macrocephaly and Finger Changes: A Narrative Review. Int J Mol Sci 2024; 25:5567. [PMID: 38791606 PMCID: PMC11122644 DOI: 10.3390/ijms25105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Macrocephaly, characterized by an abnormally large head circumference, often co-occurs with distinctive finger changes, presenting a diagnostic challenge for clinicians. This review aims to provide a current synthetic overview of the main acquired and genetic etiologies associated with macrocephaly and finger changes. The genetic cause encompasses several categories of diseases, including bone marrow expansion disorders, skeletal dysplasias, ciliopathies, inherited metabolic diseases, RASopathies, and overgrowth syndromes. Furthermore, autoimmune and autoinflammatory diseases are also explored for their potential involvement in macrocephaly and finger changes. The intricate genetic mechanisms involved in the formation of cranial bones and extremities are multifaceted. An excess in growth may stem from disruptions in the intricate interplays among the genetic, epigenetic, and hormonal factors that regulate human growth. Understanding the underlying cellular and molecular mechanisms is important for elucidating the developmental pathways and biological processes that contribute to the observed clinical phenotypes. The review provides a practical approach to delineate causes of macrocephaly and finger changes, facilitate differential diagnosis and guide for the appropriate etiological framework. Early recognition contributes to timely intervention and improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Cecilia Lazea
- 1st Department of Pediatrics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400370 Cluj-Napoca, Romania;
- 1st Pediatrics Clinic, Emergency Pediatric Clinical Hospital, 400370 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 400015 Cluj-Napoca, Romania
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
| | - Svetlana Encica
- Department of Pathology, “Niculae Stancioiu” Heart Institute Cluj-Napoca, 19-21 Calea Moților St., 400001 Cluj-Napoca, Romania;
| | - Melinda Horvat
- Department of Infectious Diseases and Epidemiology, The Clinical Hospital of Infectious Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy Cluj-Napoca, 400348 Cluj-Napoca, Romania;
| | - Cristina Belizna
- UMR CNRS 6015, INSERM U1083, University of Angers, 49100 Angers, France;
- Internal Medicine Department Clinique de l’Anjou, Vascular and Coagulation Department, University Hospital Angers, 49100 Angers, France
| | - Laura-Otilia Damian
- Association for Innovation in Rare Inflammatory, Metabolic, Genetic Diseases INNOROG, 30E, Făgetului St., 400497 Cluj-Napoca, Romania;
- Department of Rheumatology, Center for Rare Musculoskeletal Autoimmune and Autoinflammatory Diseases, Emergency Clinical County Hospital Cluj, 400006 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 400002 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Linaburg TJ, Lahaie-Luna G, Pradeep T, Bhatti T, Katowitz W. Surgical Management of Overgrowth Syndrome With Bilateral Vision-Threatening Ptosis. Ophthalmic Plast Reconstr Surg 2024; 40:e95-e97. [PMID: 38738723 DOI: 10.1097/iop.0000000000002621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
We describe the first case reported in ophthalmological literature of the surgical management of a 17-month-old boy with bilateral vision-threatening ptosis, tarsomegaly, ectropion, and euryblepharon secondary to suspected overgrowth syndrome. We elaborate on the major challenges associated with surgical management including the natural and asymmetric growth of oversized tissue, the high likelihood of scarring and formation of disorganized tissue, and risks of frequent intubation in these patients who may have lesions that compromise critical structures such as the airway. Ultimately, surgical intervention is encouraged primarily if vision or ocular health is threatened and secondarily to achieve good cosmesis.
Collapse
Affiliation(s)
- Taylor J Linaburg
- Division of Ophthalmology, Children's Hospital of Philadelphia
- Department of Ophthalmology, University of Pennsylvania
| | - Gabriela Lahaie-Luna
- Division of Ophthalmology, Children's Hospital of Philadelphia
- Department of Ophthalmology, University of Pennsylvania
| | - Tejus Pradeep
- Division of Ophthalmology, Children's Hospital of Philadelphia
- Department of Ophthalmology, University of Pennsylvania
| | - Trisha Bhatti
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
| | - William Katowitz
- Division of Ophthalmology, Children's Hospital of Philadelphia
- Department of Ophthalmology, University of Pennsylvania
| |
Collapse
|
5
|
Veneti Z, Fasoulaki V, Kalavros N, Vlachos IS, Delidakis C, Eliopoulos AG. Polycomb-mediated silencing of miR-8 is required for maintenance of intestinal stemness in Drosophila melanogaster. Nat Commun 2024; 15:1924. [PMID: 38429303 PMCID: PMC10907375 DOI: 10.1038/s41467-024-46119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Balancing maintenance of self-renewal and differentiation is a key property of adult stem cells. The epigenetic mechanisms controlling this balance remain largely unknown. Herein, we report that the Polycomb Repressive Complex 2 (PRC2) is required for maintenance of the intestinal stem cell (ISC) pool in the adult female Drosophila melanogaster. We show that loss of PRC2 activity in ISCs by RNAi-mediated knockdown or genetic ablation of the enzymatic subunit Enhancer of zeste, E(z), results in loss of stemness and precocious differentiation of enteroblasts to enterocytes. Mechanistically, we have identified the microRNA miR-8 as a critical target of E(z)/PRC2-mediated tri-methylation of histone H3 at Lys27 (H3K27me3) and uncovered a dynamic relationship between E(z), miR-8 and Notch signaling in controlling stemness versus differentiation of ISCs. Collectively, these findings uncover a hitherto unrecognized epigenetic layer in the regulation of stem cell specification that safeguards intestinal homeostasis.
Collapse
Affiliation(s)
- Zoe Veneti
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece.
- Medical School, University of Crete, Heraklion, Greece.
| | - Virginia Fasoulaki
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nikolaos Kalavros
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ioannis S Vlachos
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
6
|
Grens K, Church KM, Diehl E, Hunter SE, Tatton-Brown K, Kiernan J, Delagrammatikas CG. Epilepsy and overgrowth-intellectual disability syndromes: a patient organization perspective on collaborating to accelerate pathways to treatment. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241254123. [PMID: 38827639 PMCID: PMC11143874 DOI: 10.1177/26330040241254123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024]
Abstract
Overgrowth-intellectual disability (OGID) syndromes are a collection of rare genetic disorders with overlapping clinical profiles. In addition to the cardinal features of general overgrowth (height and/or head circumference at least two standard deviations above the mean) and some degree of intellectual disability, the OGID syndromes are often associated with neurological anomalies including seizures. In an effort to advance research in directions that will generate meaningful treatments for people with OGID syndromes, a new collaborative partnership called the Overgrowth Syndromes Alliance (OSA) formed in 2023. By taking a phenotype-first approach, OSA aims to unite research and patient communities traditionally siloed by genetic disorder. OSA has galvanized OGID patient organizations around shared interests and developed a research roadmap to identify and address our community's greatest unmet needs. Here, we describe the literature regarding seizures among those with overgrowth syndromes and present the OSA Research Roadmap. This patient-driven guide outlines the milestones essential to reaching the outcome of effective treatments for OGID syndromes and offers resources for reaching those milestones.
Collapse
Affiliation(s)
- Kerry Grens
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Kit M. Church
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Eric Diehl
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | - Senyene E. Hunter
- Division of Pediatric Neurology, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katrina Tatton-Brown
- St George’s University Hospitals NHS Foundation Trust, London, UK
- St George’s University of London, London, UK
| | - Jill Kiernan
- Tatton Brown Rahman Syndrome Community, Stanfordville, NY, USA
| | | |
Collapse
|
7
|
Mehawej C, Chouery E, Al Hage Chehade G, Bejaoui Y, Mahfoud D, Gerges M, Delague V, El Hajj N, Megarbane A. Report on a Case with Moreno-Nishimura-Schmidt Overgrowth Syndrome: A Clinically Delineated Disease Yet of an Unknown Origin! Mol Syndromol 2023; 14:219-224. [PMID: 37323196 PMCID: PMC10267562 DOI: 10.1159/000527215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Overgrowth syndromes are a heterogeneous group of genetic disorders characterized by excessive growth, often accompanied by additional clinical features, such as facial dysmorphism, hormonal imbalances, cognitive impairment, and increased risk for neoplasia. Moreno-Nishimura-Schmidt (M-N-S) overgrowth syndrome is a very rare overgrowth syndrome characterized by severe pre- and postnatal overgrowth, dysmorphic facial features, kyphoscoliosis, large hands and feet, inguinal hernia, and distinctive skeletal features. The clinical and radiological features of the disorder have been well delineated, yet its molecular pathogenesis remains unclear. Case Presentation We report on a Lebanese boy with M-N-S syndrome, whose clinical manifestations were compared with those of previously reported 5 affected individuals. Whole-exome sequencing combined with comparative genome hybridization analysis failed to delineate the molecular basis of the phenotype. However, epigenetic studies revealed a different methylation status of several CpG sites between him and healthy controls, with methyltransferase activity showing the most significant enrichment. Conclusion An additional case of M-N-S syndrome recapitulated the clinical and radiological manifestations described in the previous reports. The data in the epigenetic studies implicated that abnormal methylations might play an essential role in development of the disease phenotype. However, additional studies in a clinically homogeneous cohort of patients are crucial to confirm this hypothesis.
Collapse
Affiliation(s)
- Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ghada Al Hage Chehade
- Pediatric Endocrinology and Diabetology, Pediatrics Department, Hammoud Hospital University Medical Center, Saida, Lebanon
- Pediatric Endocrinology and Diabetology, Pediatric Division, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Yosra Bejaoui
- College of Health and Life Sciences, Qatar Foundation, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Daniel Mahfoud
- Department of Radiology, Gilbert and Rose-Marie Ghagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Maya Gerges
- Genetic Laboratory, American University of Science and Technology, Beirut, Lebanon
| | - Valérie Delague
- Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Aix Marseille University, Marseille, France
| | - Nady El Hajj
- College of Health and Life Sciences, Qatar Foundation, Education City, Hamad Bin Khalifa University, Doha, Qatar
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut Jérôme Lejeune, Paris, France
| |
Collapse
|
8
|
Yüksel Ülker A, Uludağ Alkaya D, Çağlayan AO, Usluer E, Aykut A, Aslanger A, Vural M, Tüysüz B. An investigation of the etiology and follow-up findings in 35 children with overgrowth syndromes, including biallelic SUZ12 variant. Am J Med Genet A 2023; 191:1530-1545. [PMID: 36919607 DOI: 10.1002/ajmg.a.63180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
Overgrowth-intellectual disability (OGID) syndromes are clinically and genetically heterogeneous group of disorders. The aim of this study was to examine the molecular etiology and long-term follow-up findings of Turkish OGID cohort. Thirty-five children with OGID were included in the study. Single gene sequencing, clinical exome analysis, chromosomal microarray analysis and whole exome sequencing were performed. Five pathogenic copy number variants were detected in the patients; three of them located on chromosome 5q35.2 (encompassing NSD1), others on 9q22.3 and 22q13.31. In 19 of 35 patients; we identified pathogenic variants in OGID genes associated with epigenetic regulation, NSD1 (n = 15), HIST1H1E (n = 1), SETD1B (n = 1), and SUZ12 (n = 2). The pathogenic variants in PIK3CA (n = 2), ABCC9 (n = 1), GPC4 (n = 2), FIBP (n = 1), and TMEM94 (n = 1) which had a role in other growth pathways were detected in seven patients. The diagnostic yield was 31/35(88%). Twelve pathogenic variants were novel. The common facial feature of the patients was prominent forehead. The patients with Sotos syndrome were observed to have milder intellectual disability than patients with other OGID syndromes. In conclusion, this study showed, for the first time, that biallelic variants of SUZ12 caused Imagawa-Matsumoto syndrome, monoallelic variants in SETDIB resulted in OGID. Besides expanded the phenotypes of very rare OGID syndromes caused by FIBP and TMEM94.
Collapse
Affiliation(s)
- Aylin Yüksel Ülker
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Okay Çağlayan
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Esra Usluer
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ayça Aykut
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayça Aslanger
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Mehmet Vural
- Department of Neonatology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Okello DA, Mutio J, Masiga MA, Guthua S, Kariuki N, Mutinda C, Sarna K, Wanjohi R. A Rare Case of an Asymmetric Overgrowth Syndrome in a Kenyan African Child: A Case Report and Review of Literature. Cureus 2022; 14:e29761. [DOI: 10.7759/cureus.29761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
|
10
|
Fiandrino G, Arossa A, Ghirardello S, Kalantari S, Rossi C, Bonasoni MP, Cesari S, Rizzuti T, Giorgio E, Bassanese F, Scatigno AL, Meroni A, Melito C, Feltri M, Longo S, Figar TA, Andorno A, Gelli MC, Bertozzi M, Spinillo A, Riccipetitoni G, Valente EM, Paulli M, Sirchia F. SIMPSON-GOLABI-BEHMEL syndrome type 1: How placental immunohistochemistry can rapidly Predict the diagnosis. Placenta 2022; 126:119-124. [DOI: 10.1016/j.placenta.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
11
|
Marques P, Korbonits M. Approach to the Patient With Pseudoacromegaly. J Clin Endocrinol Metab 2022; 107:1767-1788. [PMID: 34792134 DOI: 10.1210/clinem/dgab789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/19/2022]
Abstract
Pseudoacromegaly encompasses a heterogeneous group of conditions in which patients have clinical features of acromegaly or gigantism, but no excess of GH or IGF-1. Acromegaloid physical features or accelerated growth in a patient may prompt referral to endocrinologists. Because pseudoacromegaly conditions are rare and heterogeneous, often with overlapping clinical features, the underlying diagnosis may be challenging to establish. As many of these have a genetic origin, such as pachydermoperiostosis, Sotos syndrome, Weaver syndrome, or Cantú syndrome, collaboration is key with clinical geneticists in the diagnosis of these patients. Although rare, awareness of these uncommon conditions and their characteristic features will help their timely recognition.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisboa, Portugal
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| |
Collapse
|
12
|
Kärkinen J, Sorakunnas E, Miettinen PJ, Raivio T, Hero M. The aetiology of extreme tall stature in a screened Finnish paediatric population. EClinicalMedicine 2021; 42:101208. [PMID: 34849478 PMCID: PMC8608868 DOI: 10.1016/j.eclinm.2021.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Extremely tall children (defined as height SDS (HSDS) ≥+3) are frequently referred to specialized healthcare for diagnostic work-up. However, no systematic studies focusing on such children currently exist. We investigated the aetiology, clinical features, and auxological clues indicative of syndromic tall stature in extremely tall children subject to population-wide growth monitoring and screening rules. METHODS Subjects with HSDS ≥+3 after three years of age born between 1990 and 2010 were identified from the Helsinki University Hospital district growth database. We comprehensively reviewed their medical records up to December 2020 and recorded underlying diagnoses, auxological data, and clinical features. FINDINGS We identified 424 subjects (214 girls and 210 boys) who fulfilled the inclusion criteria. Underlying growth disorder was diagnosed in 61 (14%) patients, in 36 (17%) girls and 25 (12%) boys, respectively (P=0•15). Secondary causes were diagnosed in 42 (10%) patients and the two most frequent secondary diagnoses, premature adrenarche, and central precocious puberty were more frequent in girls. Primary disorder, mainly Marfan or Sotos syndrome, was diagnosed in 19 (4%) patients. Molecular genetic studies were used as a part of diagnostic work-up in 120 subjects. However, array CGH or next-generation sequencing studies were seldom used. Idiopathic tall stature (ITS) was diagnosed in 363 (86%) subjects, and it was considered familial in two-thirds. Dysmorphic features or a neurodevelopmental disorder were recorded in 104 (29%) children with ITS. The probability of a monogenic primary growth disorder increased with the degree of tall stature and deviation from target height. INTERPRETATION A considerable proportion of extremely tall children have an underlying primary or secondary growth disorder, and their risk is associated with auxological parameters. Clinical features related to syndromic tall stature were surprisingly frequent in subjects with ITS, supporting the view that syndromic growth disorders with mild phenotypes may be underdiagnosed in extremely tall children. Our results lend support to comprehensive diagnostic work-up of extremely tall children. FUNDING Päivikki and Sakari Sohlberg Foundation, Foundation for Pediatric Research, and Helsinki University Hospital research grants.
Collapse
Affiliation(s)
- Juho Kärkinen
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Eero Sorakunnas
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Päivi J. Miettinen
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Taneli Raivio
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Matti Hero
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Maines E, Franceschi R, Martinelli D, Soli F, Lepri FR, Piccoli G, Soffiati M. Hypoglycemia due to PI3K/AKT/mTOR signaling pathway defects: two novel cases and review of the literature. Hormones (Athens) 2021; 20:623-640. [PMID: 33876391 DOI: 10.1007/s42000-021-00287-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is important for the regulation of multiple biological processes, including cellular growth and glucose metabolism. Defects of the PI3K/AKT/mTOR signaling pathway are not usually considered among the genetic causes of recurrent hypoglycemia in childhood. However, accumulating evidence links hypoglycemia with defects of this pathway. CASE REPORTS AND REVIEW We describe here two cases of macrocephaly and hypoglycemia bearing genetic defects in genes involved in the PI3K/AKT/mTOR pathway. The first patient was diagnosed with a PTEN hamartoma tumour syndrome (PTHS) due to the de novo germline missense mutation c.[492 + 1G > A] of the PTEN gene. The second patient presented the autosomal dominant mental retardation-35 (MDR35) due to the heterozygous missense mutation c.592G > A in the PPP2R5D gene. A review of the literature on hypoglycemia and PI3K/AKT/mTOR signaling pathway defects, with a special focus on the metabolic characterization of hypoglycemia, is included. CONCLUSIONS PI3K/AKT/mTOR pathway defects should be included in the differential diagnosis of patients with hypoglycemia and macrocephaly. Clinical suspicion and molecular confirmation are important, not just for an accurate genetic counselling but also for defining the follow-up management, including cancer surveillance. The biochemical profile of hypoglycemia varies among patients. While most patients are characterized by low plasmatic insulin levels, hyperinsulinemia has also been observed. Large patient cohorts are needed to gain a comprehensive profile of the biochemical patterns of hypoglycemia in such defects and eventually guide targeted therapeutic interventions.
Collapse
Affiliation(s)
- Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy.
| | - Roberto Franceschi
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy
| | - Diego Martinelli
- Division of Metabolism and Research Unit of Metabolic Biochemistry, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorenza Soli
- Division of Medical Genetics, S. Chiara General Hospital, Trento, Italy
| | | | - Giovanni Piccoli
- CIBIO - Centre for Integrative Biology, Università Degli Studi Di Trento, Italy & Dulbecco Telethon Institute, Trento, Italy
| | - Massimo Soffiati
- Division of Pediatrics, S. Chiara General Hospital, Largo Medaglie d'oro, 9, 38122, Trento, Italy
| |
Collapse
|
14
|
Hetzelt KLML, Winterholler M, Kerling F, Rauch C, Ekici AB, Winterpacht A, Vasileiou G, Uebe S, Thiel CT, Kraus C, Reis A, Zweier C. Manifestation of epilepsy in a patient with EED-related overgrowth (Cohen-Gibson syndrome). Am J Med Genet A 2021; 188:292-297. [PMID: 34533271 DOI: 10.1002/ajmg.a.62496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
Cohen-Gibson syndrome is a rare genetic disorder, characterized by fetal or early childhood overgrowth and mild to severe intellectual disability. It is caused by heterozygous aberrations in EED, which encodes an evolutionary conserved polycomb group (PcG) protein that forms the polycomb repressive complex-2 (PRC2) together with EZH2, SUZ12, and RBBP7/4. In total, 11 affected individuals with heterozygous pathogenic variants in EED were reported, so far. All variants affect a few key residues within the EED WD40 repeat domain. By trio exome sequencing, we identified the heterozygous missense variant c.581A > G, p.(Asn194Ser) in exon 6 of the EED-gene in an individual with moderate intellectual disability, overgrowth, and epilepsy. The same pathogenic variant was detected in 2 of the 11 previously reported cases. Epilepsy, however, was only diagnosed in one other individual with Cohen-Gibson syndrome before. Our findings further confirm that the WD40 repeat domain represents a mutational hotspot; they also expand the clinical spectrum of Cohen-Gibson syndrome and highlight the clinical variability even in individuals with the same pathogenic variant. Furthermore, they indicate a possible association between Cohen-Gibson syndrome and epilepsy.
Collapse
Affiliation(s)
- Katalin L M L Hetzelt
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Martin Winterholler
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - Frank Kerling
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - Christophe Rauch
- Department of Neurology, Epilepsy and Movement Disorders Center, Sana-Krankenhaus Rummelsberg, Schwarzenbruck/Nuremberg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Andreas Winterpacht
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.,Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Verma A, Salehi P, Hing A, Curda Roberts AJ. Sotos syndrome with a novel mutation in the NSD1 gene associated with congenital hypothyroidism. Int J Pediatr Adolesc Med 2021; 8:191-194. [PMID: 34350334 PMCID: PMC8319649 DOI: 10.1016/j.ijpam.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/05/2022]
Abstract
Childhood overgrowth syndromes are relatively rare. A generalized overgrowth syndrome should be suspected when tall stature and macrocephaly are present, after ruling out nutritional excess and endocrinopathies. Sotos syndrome is a well-described overgrowth syndrome due to haploinsufficiency of the NSD1 gene. We present a case of an infant with permanent congenital hypothyroidism, who had tall stature and macrocephaly by 7 months of age. He was noted to have typical facial features, mild gross motor and speech delay, and scoliosis by 13 months of age. Gene sequencing revealed a heterozygous novel c6076_6087del12: p.Asn2026_Thr2029del variant in exon 20 of the NSD1 gene, pathogenic for Sotos syndrome. Congenital hypothyroidism with Sotos syndrome has been infrequently reported and may expand the spectrum of disease characteristics. Early diagnosis of overgrowth syndromes is important for developmental follow up and multidisciplinary care coordination.
Collapse
Affiliation(s)
- Arushi Verma
- Division of Endocrinology and Diabetes, Seattle Children's Hospital/University of Washington, Seattle, WA, 98105, USA
| | - Parisa Salehi
- Division of Endocrinology and Diabetes, Seattle Children's Hospital/University of Washington, Seattle, WA, 98105, USA
| | - Anne Hing
- Division of Medical Genetics, Seattle Children's Hospital/University of Washington, Seattle, WA, 98105, USA
| | - Alissa Jeanne Curda Roberts
- Division of Endocrinology and Diabetes, Seattle Children's Hospital/University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
16
|
Cardona-Ospina JA, Zapata MF, Grajales M, Arias MA, Grajales J, Bedoya-Rendón HD, González-Moreno GM, Lagos-Grisales GJ, Suárez JA, Rodríguez-Morales AJ. Physical Growth and Neurodevelopment of a Cohort of Children after 3.5 Years of Follow-up from Mothers with Zika Infection during Pregnancy-Third Report of the ZIKERNCOL Study. J Trop Pediatr 2021; 67:6284403. [PMID: 34037794 DOI: 10.1093/tropej/fmab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION In utero Zika virus (ZIKV) exposure has been related to a group of congenital structural abnormalities called the congenital Zika syndrome, which also has been related to neurodevelopment alterations even in normocephalic children. Physical growth has been less explored, and delayed growth and malnutrition have been reported. OBJECTIVE The objective of this study is to describe the growth and neurodevelopment features of normocephalic infants born from a cohort of mothers with RT-PCR confirmed ZIKV during pregnancy in Risaralda, Colombia. METHODS We conducted a retrospective cohort, including normocephalic children born from mothers with RT-PCR confirmed ZIKV infection during pregnancy in Risaralda, Colombia. Physical growth was measured using WHO standards, and neurodevelopment was measured with the abbreviated neurodevelopment scale 2 validated for Colombia. RESULTS After verifying inclusion and exclusion criteria, 16 children were followed during a median time of 28 months (IQR 23-31 months); for a total of 116 visits, 87.5% (n = 14) of the patients developed a growth alteration. Five presented post-natal microcephaly, and among them, four presented malnutrition or low height. Six patients developed macrocephaly. Patients with a normal head circumference had normal neurodevelopment. Only one patient with microcephaly persisted with impairment of the neurodevelopment at the end of follow-up. All the patients with macrocephaly had normal neurodevelopment. DISCUSSION Our study suggests that growth could be altered in infants with in utero Zika exposure. We found a high proportion of patients with overgrowth and macrocephaly. Future studies should consider endocrine follow-up of children born with in utero Zika exposure to explore these findings' possible aetiologies. CONCLUSION We found a high proportion of growth alterations, particularly with overgrowth features and macrocephaly. Our study suggests that in addition to neurodevelopment impairment, growth could be altered in infants and children with in utero Zika exposure, even in those patients born without CZS.
Collapse
Affiliation(s)
- Jaime A Cardona-Ospina
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia.,Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas-Sci-Help, Pereira, Risaralda, 660009, Colombia
| | - María Fernanda Zapata
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia
| | - Manuela Grajales
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia
| | - María Alejandra Arias
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia
| | - Jennifer Grajales
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia
| | | | | | - Guillermo J Lagos-Grisales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia
| | - José Antonio Suárez
- Investigador SNI Senacyt Panamá, Clinical Research Department, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | - Alfonso J Rodríguez-Morales
- Grupo de Investigación Biomedicina, Facultad de Medicina, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda 660004, Colombia.,Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, 660003, Colombia.,Emerging Infectious Diseases and Tropical Medicine Research Group, Instituto para la Investigación en Ciencias Biomédicas-Sci-Help, Pereira, Risaralda, 660009, Colombia
| |
Collapse
|
17
|
Moirangthem A, Mandal K, Saxena D, Srivastava P, Gambhir PS, Agrawal N, Shambhavi A, Nampoothiri S, Phadke SR. Genetic heterogeneity of disorders with overgrowth and intellectual disability: Experience from a center in North India. Am J Med Genet A 2021; 185:2345-2355. [PMID: 33942996 DOI: 10.1002/ajmg.a.62241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/10/2021] [Indexed: 12/24/2022]
Abstract
Overgrowth, defined as height and/or OFC ≥ +2SD, characterizes a subset of patients with syndromic intellectual disability (ID). Many of the disorders with overgrowth and ID (OGID) are rare and the full phenotypic and genotypic spectra have not been unraveled. This study was undertaken to characterize the phenotypic and genotypic profile of patients with OGID. Patients with OGID were ascertained from the cohort of patients who underwent cytogenetic microarray (CMA) and/or exome sequencing (ES) at our center over a period of 6 years. Thirty-one subjects (six females) formed the study group with ages between 3.5 months and 13 years. CMA identified pathogenic deletions in two patients. In another 11 patients, a disease causing variant was detected by ES. The spectrum of disorders encompassed aberrations in genes involved in the two main pathways associated with OGID. These were genes involved in epigenetic regulation like NSD1, NFIX, FOXP1, and those in the PI3K-AKT pathway like PTEN, AKT3, TSC2, PPP2R5D. Five novel pathogenic variants were added by this study. NSD1-related Sotos syndrome was the most common disorder, seen in five patients. A causative variant was identified in 61.5% of patients who underwent only ES compared to the low yield of 11.1% in the CMA group. The molecular etiology could be confirmed in 13 subjects with OGID giving a diagnostic yield of 42%. The major burden was formed by autosomal dominant monogenic disorders. Hence, ES maybe a better first-tier genomic test rather than CMA in OGID.
Collapse
Affiliation(s)
- Amita Moirangthem
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepti Saxena
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Poonam Singh Gambhir
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Neha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Arya Shambhavi
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS, Cochin, Kerala, India
| | - Shubha R Phadke
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Suda K, Fukuoka H, Iguchi G, Kanie K, Fujita Y, Odake Y, Matsumoto R, Bando H, Ito H, Takahashi M, Chihara K, Nagai H, Narumi S, Hasegawa T, Ogawa W, Takahashi Y. A Case of Luscan-Lumish Syndrome: Possible Involvement of Enhanced GH Signaling. J Clin Endocrinol Metab 2021; 106:718-723. [PMID: 33248444 DOI: 10.1210/clinem/dgaa893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Luscan-Lumish syndrome (LLS) is characterized by postnatal overgrowth, obesity, Chiari I malformation, seizures, and intellectual disability. SET domain-containing protein 2 (SETD2) is a histone methyltransferase, where mutations in the gene are associated with the development of LLS. However, mechanisms underlying LLS remain unclear. CASE DESCRIPTION A 20-year-old man was referred to our hospital because of tall stature. His body height was 188.2 cm (+3.18 SD) and he showed obesity with a body mass index of 28.4 kg/m2. He exhibited acral overgrowth, jaw malocclusion, and prognathism, but no history of seizures, intellectual disability, or speech delay. Serum growth hormone (GH), insulin-like growth factor 1 (IGF-1), and nadir GH levels after administration of 75 g oral glucose were within normal range. Pituitary magnetic resonance imaging showed no pituitary adenoma, but Chiari I malformation. Whole exome sequencing analysis of the proband revealed a de novo heterozygous germline mutation in SETD2 (c.236T>A, p.L79H). Skin fibroblasts derived from the patient grew faster than those from his father and the control subject. In addition, these cells showed enhanced tyrosine phosphorylation and transcriptional activity of signal transducer and activator of transcription 5b (STAT5b) and increased IGF-1 expression induced by GH. CONCLUSION This is a mild case of LLS with a novel mutation in SETD2 without neurological symptoms. LLS should be differentiated in a patient with gigantism without pituitary tumors. Although further investigation is necessary, this is the first study to suggest the involvement of aberrant GH signaling in the development of LLS.
Collapse
Affiliation(s)
- Kentaro Suda
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
- Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasunori Fujita
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yukiko Odake
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryusaku Matsumoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Ito
- Center for Medical Education and Training, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Kanagawa, Japan
| | - Michiko Takahashi
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
- Department of Nutrition, Kobe University Hospital, Kobe, Japan
| | - Kazuo Chihara
- Department of Diabetes and Endocrinology, Akashi Medical Center, Akashi, Japan
| | - Hiroshi Nagai
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
19
|
Modzelewski J, Kajdy A, Muzyka-Placzyńska K, Sys D, Rabijewski M. Fetal Growth Acceleration-Current Approach to the Big Baby Issue. ACTA ACUST UNITED AC 2021; 57:medicina57030228. [PMID: 33801377 PMCID: PMC8001449 DOI: 10.3390/medicina57030228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Fetal overgrowth is related to many perinatal complications, including stillbirth, cesarean section, maternal and neonatal injuries, and shoulder dystocia. It is related to maternal diabetes, obesity, and gestational weight gain but also happens in low-risk pregnancies. There is ongoing discussion regarding definitions, methods of detection, and classification. The method used for detection is crucial as it draws a line between those at risk and low-risk popula-tions. Materials and Methods: For this narrative review, relevant evidence was identified through PubMed search with one of the general terms (macrosomia, large-for-gestational-age) combined with the outcome of interest. Results: This review summarizes evidence on the relation of fetal overgrowth with stillbirth, cesarean sections, shoulder dystocia, anal sphincter injury, and hem-orrhage. Customized growth charts help to detect mothers and fetuses at risk of those complica-tions. Relations between fetal overgrowth and diabetes, maternal weight, and gestational weight gain were investigated. Conclusions: a substantial proportion of complications are an effect of the fetus growing above its potential and should be recognized as a new dangerous condition of Fetal Growth Acceleration.
Collapse
Affiliation(s)
| | - Anna Kajdy
- Correspondence: (A.K.); (M.R.); Tel.: +48-22-255-9917 (A.K. & M.R.)
| | | | | | | |
Collapse
|
20
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Semmes EC, Shen E, Cohen JL, Zhang C, Wei Q, Hurst JH, Walsh KM. Genetic variation associated with childhood and adult stature and risk of MYCN-amplified neuroblastoma. Cancer Med 2020; 9:8216-8225. [PMID: 32945147 PMCID: PMC7643638 DOI: 10.1002/cam4.3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric solid tumor. MYCN‐amplification is an important negative prognostic indicator and inherited genetic contributions to risk are incompletely understood. Genetic determinants of stature increase risk of several adult and childhood cancers, but have not been studied in neuroblastoma despite elevated neuroblastoma incidence in children with congenital overgrowth syndromes. Methods We investigated the association between genetic determinants of height and neuroblastoma risk in 1538 neuroblastoma cases, stratified by MYCN‐amplification status, and compared to 3390 European‐ancestry controls using polygenic scores for birth length (five variants), childhood height (six variants), and adult height (413 variants). We further examined the UK Biobank to evaluate the association of known neuroblastoma risk loci and stature. Results An increase in the polygenic score for childhood stature, corresponding to a ~0.5 cm increase in pre‐pubertal height, was associated with greater risk of MYCN‐amplified neuroblastoma (OR = 1.14, P = .047). An increase in the polygenic score for adult stature, corresponding to a ~1.7 cm increase in adult height attainment, was associated with decreased risk of MYCN‐amplified neuroblastoma (OR = 0.87, P = .047). These associations persisted in case‐case analyses comparing MYCN‐amplified to MYCN‐unamplified neuroblastoma. No polygenic height scores were associated with MYCN‐unamplified neuroblastoma risk. Previously identified genome‐wide association study hits for neuroblastoma (N = 10) were significantly enriched for association with both childhood (P = 4.0 × 10−3) and adult height (P = 8.9 × 10−3) in >250 000 UK Biobank study participants. Conclusions Genetic propensity to taller childhood height and shorter adult height were associated with MYCN‐amplified neuroblastoma risk, suggesting that biological pathways affecting growth trajectories and pubertal timing may contribute to MYCN‐amplified neuroblastoma etiology.
Collapse
Affiliation(s)
- Eleanor C Semmes
- Medical Scientist Training Program, Duke University, Durham, NC, USA.,Department of Pediatrics, Children's Health and Discovery Institute, Duke University, Durham, NC, USA
| | - Erica Shen
- Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Jennifer L Cohen
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, NC, USA
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Qingyi Wei
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Jillian H Hurst
- Department of Pediatrics, Children's Health and Discovery Institute, Duke University, Durham, NC, USA
| | - Kyle M Walsh
- Department of Pediatrics, Children's Health and Discovery Institute, Duke University, Durham, NC, USA.,Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, NC, USA.,Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
22
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
23
|
International consensus recommendations on the diagnostic work-up for malformations of cortical development. Nat Rev Neurol 2020; 16:618-635. [PMID: 32895508 PMCID: PMC7790753 DOI: 10.1038/s41582-020-0395-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Malformations of cortical development (MCDs) are neurodevelopmental disorders that result from abnormal development of the cerebral cortex in utero. MCDs place a substantial burden on affected individuals, their families and societies worldwide, as these individuals can experience lifelong drug-resistant epilepsy, cerebral palsy, feeding difficulties, intellectual disability and other neurological and behavioural anomalies. The diagnostic pathway for MCDs is complex owing to wide variations in presentation and aetiology, thereby hampering timely and adequate management. In this article, the international MCD network Neuro-MIG provides consensus recommendations to aid both expert and non-expert clinicians in the diagnostic work-up of MCDs with the aim of improving patient management worldwide. We reviewed the literature on clinical presentation, aetiology and diagnostic approaches for the main MCD subtypes and collected data on current practices and recommendations from clinicians and diagnostic laboratories within Neuro-MIG. We reached consensus by 42 professionals from 20 countries, using expert discussions and a Delphi consensus process. We present a diagnostic workflow that can be applied to any individual with MCD and a comprehensive list of MCD-related genes with their associated phenotypes. The workflow is designed to maximize the diagnostic yield and increase the number of patients receiving personalized care and counselling on prognosis and recurrence risk.
Collapse
|
24
|
Park HJ, Shin CH, Yoo WJ, Cho TJ, Kim MJ, Seong MW, Park SS, Lee JH, Sim NS, Ko JM. Detailed analysis of phenotypes and genotypes in megalencephaly-capillary malformation-polymicrogyria syndrome caused by somatic mosaicism of PIK3CA mutations. Orphanet J Rare Dis 2020; 15:205. [PMID: 32778138 PMCID: PMC7418424 DOI: 10.1186/s13023-020-01480-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/26/2020] [Indexed: 01/08/2023] Open
Abstract
Background Megalencephaly-capillary malformation-polymicrogyria syndrome (MCAP) belongs to a group of conditions called the PIK3CA-related overgrowth spectrum (PROS). The varying phenotypes and low frequencies of each somatic mosaic variant make confirmative diagnosis difficult. We present 12 patients who were diagnosed clinically and genetically with MCAP. Genomic DNA was extracted mainly from the skin of affected lesions, also from peripheral blood leukocytes and buccal epithelial cells, and target panel sequencing using high-depth next-generation sequencing technology was performed. Results Macrocephaly was present in 11/12 patients (92%). All patients had normal body asymmetry. Cutaneous vascular malformation was found in 10/12 patients (83%). Megalencephaly or hemimegalencephaly was noted in all 11 patients who underwent brain magnetic resonance imaging. Arnold–Chiari type I malformation was also seen in 10 patients. Every patient was identified as having pathogenic or likely pathogenic variants of the PIK3CA gene. The variant allele frequency (VAF) ranged from 6.3 to 35.3%, however, there was no direct correlation between VAF and the severity of associated anomalies. c.2740G > A (p.Gly914Arg) was most commonly found, in four patients (33%). No malignancies developed during follow-up periods. Conclusions This is the first and largest cohort of molecularly diagnosed patients with MCAP in Korea. Targeted therapy with a PI3K-specific inhibitor, alpelisib, has shown successful outcomes in patients with PROS in a pilot clinical study, so early diagnosis for genetic counseling and timely introduction of emerging treatments might be achieved in the future through optimal genetic testing.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Jongnogu Daehakro 101, Seoul, 03080, Republic of Korea
| | - Chang Ho Shin
- Division of Pediatric Orthopaedics, Department of Orthopaedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Joon Yoo
- Division of Pediatric Orthopaedics, Department of Orthopaedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Department of Orthopaedic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Man Jin Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jung Min Ko
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Jongnogu Daehakro 101, Seoul, 03080, Republic of Korea. .,Rare Disease Center, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Gada S. Neurodevelopmental assessments of rare genetic conditions. Dev Med Child Neurol 2020; 62:894. [PMID: 31925785 DOI: 10.1111/dmcn.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Srinivas Gada
- John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
26
|
Balci TB, Strong A, Kalish JM, Zackai E, Maris JM, Reilly A, Surrey LF, Wertheim GB, Marcadier JL, Graham GE, Carter MT. Tatton-Brown-Rahman syndrome: Six individuals with novel features. Am J Med Genet A 2020; 182:673-680. [PMID: 31961069 DOI: 10.1002/ajmg.a.61475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/26/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Tatton-Brown Rahman syndrome (TBRS) is an overgrowth-intellectual disability syndrome caused by heterozygous variants in DNMT3A. Seventy-eight individuals have been reported with a consistent phenotype of somatic overgrowth, mild to moderate intellectual disability, and similar dysmorphisms. We present six individuals with TBRS, including the youngest individual thus far reported, first individual to be diagnosed with tumor testing and two individuals with variants at the Arg882 domain, bringing the total number of reported cases to 82. Patients reported herein have additional clinical features not previously reported in TBRS. One patient had congenital diaphragmatic hernia. One patient carrying the recurrent p.Arg882His DNMT3A variant, who was previously reported as having a phenotype due to a truncating variant in the CLTC gene, developed a ganglioneuroblastoma at 18 months and T-cell lymphoblastic lymphoma at 6 years of age. Four patients manifested symptoms suggestive of autonomic dysfunction, including central sleep apnea, postural orthostatic hypotension, and episodic vasomotor instability in the extremities. We discuss the molecular and clinical findings in our patients with TBRS in context of existing literature.
Collapse
Affiliation(s)
- Tugce B Balci
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Alana Strong
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - John M Maris
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Anne Reilly
- Department of Pediatrics, Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lea F Surrey
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gerald B Wertheim
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julien L Marcadier
- Department of Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Gail E Graham
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
27
|
Burkardt DD, Tatton-Brown K, Dobyns W, Graham JM. Approach to overgrowth syndromes in the genome era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:483-490. [PMID: 31793186 DOI: 10.1002/ajmg.c.31757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
This introduction to the special issue of AJMG Part C: Overgrowth Syndromes updates the current understanding of overgrowth syndromes. We clarify the terminology associated with overgrowth, review some common pathways to overgrowth and present a preliminary classification based on currently known genomic and epigenetic mechanisms. We introduce the articles of this issue-new research and reviews of well-established and recently described overgrowth syndromes of the brain, body or both.
Collapse
Affiliation(s)
| | - Katrina Tatton-Brown
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK.,St George's University of London, London, UK.,Institute of Cancer Research, Surrey, UK
| | - William Dobyns
- Department of Pediatrics and Neurology, University of Washington School of Medicine, and Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, Washington
| | - John M Graham
- Division of Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
28
|
Cyrus S, Burkardt D, Weaver DD, Gibson WT. PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:519-531. [PMID: 31724824 DOI: 10.1002/ajmg.c.31754] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
The EZH2, EED, and SUZ12 genes encode proteins that comprise core components of the polycomb repressive complex 2 (PRC2), an epigenetic "writer" with H3K27 methyltransferase activity, catalyzing the addition of up to three methyl groups on histone 3 at lysine residue 27 (H3K27). Partial loss-of-function variants in genes encoding the EZH2 and EED subunits of the complex lead to overgrowth, macrocephaly, advanced bone age, variable intellectual disability, and distinctive facial features. EZH2-associated overgrowth, caused by constitutional heterozygous mutations within Enhancer of Zeste homologue 2 (EZH2), has a phenotypic spectrum ranging from tall stature without obvious intellectual disability or dysmorphic features to classical Weaver syndrome (OMIM #277590). EED-associated overgrowth (Cohen-Gibson syndrome; OMIM #617561) is caused by germline heterozygous mutations in Embryonic Ectoderm Development (EED), and manifests overgrowth and intellectual disability (OGID), along with other features similar to Weaver syndrome. Most recently, rare coding variants in SUZ12 have also been described that present with clinical characteristics similar to the previous two syndromes. Here we review the PRC2 complex and clinical syndromes of OGID associated with core components EZH2, EED, and SUZ12.
Collapse
Affiliation(s)
- Sharri Cyrus
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Deepika Burkardt
- Center for Human Genetics, University Hospitals Rainbow Babies and Children/Department of Genetics, Case Western Reserve University, Cleveland, Ohio
| | - David D Weaver
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Takenouchi T, Okuno H, Kosaki K. Kosaki overgrowth syndrome: A newly identified entity caused by pathogenic variants in platelet‐derived growth factor receptor‐beta. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:650-657. [DOI: 10.1002/ajmg.c.31755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Hironobu Okuno
- Department of PhysiologyKeio University School of Medicine Tokyo Japan
| | - Kenjiro Kosaki
- Center for Medical GeneticsKeio University School of Medicine Tokyo Japan
| |
Collapse
|
30
|
Cytrynbaum C, Choufani S, Weksberg R. Epigenetic signatures in overgrowth syndromes: Translational opportunities. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:491-501. [PMID: 31828978 DOI: 10.1002/ajmg.c.31745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 12/21/2022]
Abstract
In recent years, numerous overgrowth syndromes have been found to be caused by pathogenic DNA sequence variants in "epigenes," genes that encode proteins that function in epigenetic regulation. Epigenetic marks, including DNA methylation (DNAm), histone modifications and chromatin conformation, have emerged as a vital genome-wide regulatory mechanism that modulate the transcriptome temporally and spatially to drive normal developmental and cellular processes. Evidence suggests that epigenetic marks are layered and engage in crosstalk, in that disruptions of any one component of the epigenetic machinery impact the others. This interdependence of epigenetic marks underpins the recent identification of gene-specific DNAm signatures for a variety of disorders caused by pathogenic variants in epigenes. Here, we discuss the power of DNAm signatures with respect to furthering our understanding of disease pathophysiology, enhancing the efficacy of molecular diagnostics and identifying new targets for therapeutics of overgrowth syndromes. These findings highlight the promise of the field of epigenomics to provide unprecedented insights into disease mechanisms generating a host of opportunities to advance precision medicine.
Collapse
Affiliation(s)
- Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario.,Department of Pediatrics, University of Toronto, Toronto, Ontario.,Institute of Medical Science, University of Toronto, Toronto, Ontario
| |
Collapse
|
31
|
Abstract
Large offspring syndrome (LOS) is a fetal overgrowth condition in bovines most often observed in offspring conceived with the use of assisted reproductive technologies (ART). Phenotypes observed in LOS include, overgrowth, enlarged tongues, umbilical hernias, muscle and skeleton malformations, abnormal organ growth and placental development. Although LOS cases have only been reported to be associated with ART, fetal overgrowth can occur spontaneously in cattle (S-LOS). S-LOS refers to oversized calves that are born at normal gestation lengths. ART-induced LOS has been characterized as an epigenetic syndrome, more specifically, a loss-of-imprinting condition. We propose that S-LOS is also a loss-of-imprinting condition.
Collapse
|
32
|
Abstract
In this Perspective, Bharathavikru and Hastie discuss recent studies published by Hunter et al., investigating the molecular mechanisms by which mutations in the gene encoding the RNA degradation component DIS3L2 lead to Perlman syndrome, and Chen et al., who show that microRNA processing gene mutations in Wilms tumor leads to an increase in the levels of transcription factor PLAG1 that in turn activates IGF2 expression. Overgrowth syndromes such as Perlman syndrome and associated pediatric cancers, including Wilms tumor, arise through genetic and, in certain instances, also epigenetic changes. In the case of the Beckwith-Wiedemann overgrowth syndrome and in Wilms tumor, increased levels of IGF2 have been shown to be causally related to the disease manifestation. In the previous issue of Genes & Development, Hunter and colleagues (pp. 903–908) investigated the molecular mechanisms by which mutations in the gene encoding the RNA degradation component DIS3L2 lead to Perlman syndrome. By analyzing nephron progenitor cells derived from their newly created Dis3l2 mutant mouse lines, the investigators showed that DIS3L2 loss of function leads to up-regulation of IGF2 independently of the let7 microRNA pathway. In a second study in this issue of Genes & Development, Chen and colleagues (pp. 996–1007) show that microRNA processing gene mutations in Wilms tumor lead to an increase in the levels of transcription factor pleomorphic adenoma gene 1 (PLAG1) that in turn activates IGF2 expression. Thus, augmented IGF2 expression seems to be a common downstream factor in both tissue overgrowth and Wilms tumor through several alternative mechanisms.
Collapse
Affiliation(s)
- Ruthrothaselvi Bharathavikru
- Medical Research Council, Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Nicholas D Hastie
- Medical Research Council, Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
33
|
Talukdar S, Hawkes L, Hanson H, Kulkarni A, Brady AF, McMullan DJ, Ahn JW, Woodward E, Turnbull C. Structural Aberrations with Secondary Implications (SASIs): consensus recommendations for reporting of cancer susceptibility genes identified during analysis of Copy Number Variants (CNVs). J Med Genet 2019; 56:718-726. [DOI: 10.1136/jmedgenet-2018-105820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/19/2019] [Accepted: 03/02/2019] [Indexed: 11/04/2022]
Abstract
Clinical testing with chromosomal microarray (CMA) is most commonly undertaken for clinical indications such as intellectual disability, dysmorphic features and/or congenital abnormalities. Identification of a structural aberration (SA) involving a cancer susceptibility gene (CSG) constitutes a type of incidental or secondary finding. Laboratory reporting, risk communication and clinical management of these structural aberrations with secondary implications (SASIs) is currently inconsistent. We undertake meta-analysis of 18 622 instances of CMA performed for unrelated indications in which 106 SASIs are identified involving in total 40 different CSGs. Here we present the recommendations of a joint UK working group representing the British Society of Genomic Medicine, UK Cancer Genetics Group and UK Association for Clinical Genomic Science. SASIs are categorised into four groups, defined by the type of SA and the cancer risk. For each group, recommendations are provided regarding reflex parental testing and cancer risk management.
Collapse
|
34
|
Corredor B, Dattani M, Gertosio C, Bozzola M. Tall Stature: A Challenge for Clinicians. Curr Pediatr Rev 2019; 15:10-21. [PMID: 30394212 PMCID: PMC6696825 DOI: 10.2174/1573396314666181105092917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/12/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Clinicians generally use the term "tall stature" to define a height more than two standard deviations above the mean for age and sex. In most cases, these subjects present with familial tall stature or a constitutional advance of growth which is diagnosed by excluding the other conditions associated with overgrowth. Nevertheless, it is necessary to be able to identify situations in which tall stature or an accelerated growth rate indicate an underlying disorder. A careful physical evaluation allows the classification of tall patients into two groups: those with a normal appearance and those with an abnormal appearance including disproportion or dysmorphism. In the first case, the growth rate has to be evaluated and, if it is normal for age and sex, the subjects may be considered as having familial tall stature or constitutional advance of growth or they may be obese, while if the growth rate is increased, pubertal status and thyroid function should be evaluated. In turn, tall subjects having an abnormal appearance can be divided into proportionate and disproportionate syndromic patients. Before initiating further investigations, the clinician needs to perform both a careful physical examination and growth evaluation. To exclude pathological conditions, the cause of tall stature needs to be considered, although most children are healthy and generally do not require treatment to inhibit growth progression. In particular cases, familial tall stature subject can be treated by inducing puberty early and leading to a complete fusion of the epiphyses, so final height is reached. This review aims to provide proposals about the management of tall children.
Collapse
Affiliation(s)
| | | | | | - Mauro Bozzola
- Address correspondence to this author at the Department of Internal Medicine and Therapeutics, Pediatrics and Adolescent Care Unit, University of Pavia, Strada Nuova 65, 27100 Pavia, Italy; Tel: +39 339 5469483;
E-mail:
| |
Collapse
|