1
|
Xu K, Wang G, Gong J, Yang X, Cheng Y, Li D, Sheng S, Zhang F. Akkermansia muciniphila protects against dopamine neurotoxicity by modulating butyrate to inhibit microglia-mediated neuroinflammation. Int Immunopharmacol 2025; 152:114374. [PMID: 40056512 DOI: 10.1016/j.intimp.2025.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Parkinson's disease (PD) is an age-related and second most common neurodegenerative disease. To date, safe and efficient therapeutic drugs are deficient. In recent years, the relationship between gut microbiota and CNS have received more attention. Homeostatic imbalance of gut microbiota was revealed to participate in the progression of PD. This study detected that Akkermansia muciniphila (A. muciniphila) was apparently decreased in the feces of PD rats via 16S rRNA amplicon sequencing. Furtherly, we found that exogenous supplementation of A. muciniphila could improve 6-OHDA-induced motor dysfunction and dopamine (DA) neuronal damage and neuroinflammatory factors release in PD rats. Moreover, the short-chain fatty acids (SCFAs) sequencing demonstrated that A. muciniphila addition increased butyrate content both in gut and brain. The subsequent functional experiments confirmed that the exogenous supplementation of butyrate conferred neuroprotection against DA neurotoxicity. Mechanically, butyrate targeted microglia to attenuate DA neuronal injury via inhibiting microglia activation and neuroinflammatory factors production. In conclusion, A. muciniphila protected DA neuronal damage by modulating butyrate to inhibit microglia-elicited neuroinflammation. These findings provided a potential application of A. muciniphila on PD treatment.
Collapse
Affiliation(s)
- Kaifei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiantao Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinxing Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yufeng Cheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shuo Sheng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
2
|
Eladawy RM, Ahmed LA, Salem MB, El-Sayed RM, Salem HA, Mohamed AF. Probiotics reverse gut dysbiosis and memory impairment associated with esomeprazole use in chronically stressed rats: A significant neuroprotective role for cholecystokinin. Int Immunopharmacol 2025; 150:114227. [PMID: 39952008 DOI: 10.1016/j.intimp.2025.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Recent studies propose an association between the prolonged usage of gastric acid suppressants (GAS) and the incidence of dementia in stressed patients. This association was confirmed in our investigation recently published with a significant role for gut dysbiosis using different GAS, especially PPI esomeprazole (Esom). Hence, this work explored the influence of different probiotics on gut dysbiosis associated with Esom use in unpredictable chronic mild stress (UCMS)-induced cognitive impairment. Rats were given Esom (3.7 mg/kg/day orally) with exposure to UCMS for 7 weeks and treated with Lactobacillus delbrukii and Lactobacillus fermentum (LB) (1 × 1010 CFU/day orally) or Bacillus clausii (BC) (1 × 109 CFU/day orally) in the last 3 weeks of the experiment. LB and BC attenuated the cognitive impairment associated with Esom use in the presence of UCMS, where BC showed more remarkable results. These results were correlated with improvement of dysbiosis and gut membrane integrity by reducing colonic inflammation via hampering the NLRP3 inflammasome pathway. The improvement of gut dysbiosis was further interrelated with decrease in systemic inflammation and improvement of cholecystokinin (CCK) level. The neuroprotective effects in LB and BC groups were achieved via enhancement of brain-derived neurotrophic factor (BDNF) by 2.7 and 3.4-folds, respectively, through CCK activation with decline of hippocampal amyloid β accumulation by 67.29 % and 97.9 %, respectively, compared to UCMS with Esom group. Our study supports the neuroprotective effect of probiotics on cognitive impairment attributed to long-term use of GAS in the presence of stress, with a significant role for gut microbiota modulation.
Collapse
Affiliation(s)
- Reem M Eladawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch 45511 Arish, Egypt.
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Maha B Salem
- Pharmacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Rehab M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University - Arish Branch 45511 Arish, Egypt
| | - Hesham A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Egypt
| |
Collapse
|
3
|
Sanchez-Martinez J, Solis-Urra P, Olivares-Arancibia J, Plaza-Diaz J. Physical Exercise and Mechanism Related to Alzheimer's Disease: Is Gut-Brain Axis Involved? Brain Sci 2024; 14:974. [PMID: 39451988 PMCID: PMC11506766 DOI: 10.3390/brainsci14100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disease characterized by structural changes in the brain, including hippocampal atrophy, cortical thinning, amyloid plaques, and tau tangles. Due to the aging of the global population, the burden of Alzheimer's disease is expected to increase, making the exploration of non-pharmacological interventions, such as physical exercise, an urgent priority. RESULTS There is emerging evidence that regular physical exercise may mitigate the structural and functional declines associated with Alzheimer's disease. The underlying mechanisms, however, remain poorly understood. Gut-brain axis research is a promising area for further investigation. This system involves bidirectional communication between the gut microbiome and the brain. According to recent studies, the gut microbiome may influence brain health through modulating neuroinflammation, producing neuroactive compounds, and altering metabolic processes. Exercise has been shown to alter the composition of the gut microbiome, potentially impacting brain structure and function. In this review, we aim to synthesize current research on the relationship between physical exercise, structural brain changes in Alzheimer's disease, and the gut-brain axis. CONCLUSIONS In this study, we will investigate whether changes in the gut microbiome induced by physical exercise can mediate its neuroprotective effects, offering new insights into the prevention and treatment of Alzheimer's disease. By integrating findings from neuroimaging studies, clinical trials, and microbiome research, this review will highlight potential mechanisms. It will also identify key gaps in the literature. This will pave the way for future research directions.
Collapse
Affiliation(s)
- Javier Sanchez-Martinez
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 8370134, Chile
| | - Jorge Olivares-Arancibia
- AFySE Group, Research in Physical Activity and School Health, School of Physical Education, Faculty of Education, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Campus de Cartuja s/n, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
4
|
Prajjwal P, Inban P, Sai VP, Shiny KS, Lam JR, John J, Sulaimanov M, Tekuru Y, Wasi ul Haq M, Marsool MDM, Sivarajan VV, Amir Hussin O. The effects of the interplay between vitamins, antibiotics, and gut microbiota on the pathogenesis and progression of dementia: A systematic review and meta-analysis. Health Sci Rep 2024; 7:e1808. [PMID: 38196569 PMCID: PMC10774544 DOI: 10.1002/hsr2.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
Background Given that there is already evidence of a neural network that connects the brain and gut and that the gut microbiota actively modulates gut health, it is crucial to know which foods, supplements, and medications to use or avoid when treating any disease that causes dementia or cognitive impairment. Previous research has examined the relationships between vitamins, antibiotics, and gut microbiota and the correlations between these factors and dementia. The question arises of how these three factors interact together and if evidence suggests one element is more important than the others in the pathogenesis and development of dementia. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) standards were followed when conducting this review. The papers' publication dates varied from (2012-2022). Cochrane/EMBASE, PEDro, and PubMed/Medline databases were searched. The precise terms "gut microbiota," vitamins," antibiotics," and "dementia" were included in the search method, along with the conjunctions "OR" and "AND." Results Gut dysbiosis has a significant impact on cognition, brain function, and the development and progression of dementia. The two most popular probiotics used in studies linked to cognition benefits were Lactobacillus and Bifidobacterium. Numerous scales were used to evaluate cognition, but the mini-mental state examination was the most popular, and the most prevalent impairment was Alzheimer's disease. The supplements with the most significant impact on gut microbiota were vitamin B-12 and folic acid. Conclusion This systematic review concluded that vitamins, gut microbiota and antibiotics have a close association with the development of dementia. More research is required to establish causality and elucidate the underlying mechanisms because there is still little evidence connecting the interactions of vitamins, medications, and microbiota with dementia. The complexity of interactions between genetics, lifestyle factors, and comorbidities, as well as the heterogeneity of dementia, may make it more challenging to interpret the findings.
Collapse
Affiliation(s)
| | - Pugazhendi Inban
- Internal MedicineGovernment Medical College OmandurarChennaiTamil NaduIndia
| | | | | | | | - Jobby John
- Internal MedicineDr. Somervell Memorial CSI Medical College and HospitalTrivandrumIndia
| | | | - Yogesh Tekuru
- RVM Institute of Medical Sciences and Research CentreSiddipetIndia
| | | | | | | | | |
Collapse
|
5
|
Abdalkareem Jasim S, Jade Catalan Opulencia M, Alexis Ramírez-Coronel A, Kamal Abdelbasset W, Hasan Abed M, Markov A, Raheem Lateef Al-Awsi G, Azamatovich Shamsiev J, Thaeer Hammid A, Nader Shalaby M, Karampoor S, Mirzaei R. The emerging role of microbiota-derived short-chain fatty acids in immunometabolism. Int Immunopharmacol 2022; 110:108983. [PMID: 35750016 DOI: 10.1016/j.intimp.2022.108983] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
The accumulating evidence revealed that microbiota plays a significant function in training, function, and the induction of host immunity. Once this interaction (immune system-microbiota) works correctly, it enables the production of protective responses against pathogens and keeps the regulatory pathways essential for maintaining tolerance to innocent antigens. This concept of immunity and metabolic activity redefines the realm of immunometabolism, paving the way for innovative therapeutic interventions to modulate immune cells through immune metabolic alterations. A body of evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) such as butyrate, acetate, and propionate, play a key role in immune balance. SCFAs act on many cell types to regulate various vital biological processes, including host metabolism, intestinal function, and the immune system. Such SCFAs generated by gut bacteria also impact immunity, cellular function, and immune cell fate. This is a new concept of immune metabolism, and better knowledge about how lifestyle affects intestinal immunometabolism is crucial for preventing and treating disease. In this review article, we explicitly focus on the function of SCFAs in the metabolism of immune cells, especially macrophages, neutrophils, dendritic cells (DCs), B cells, T (Th) helper cells, and cytotoxic T cells (CTLs).
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-maarif University College, Al-anbar-Ramadi, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Murtadha Hasan Abed
- Department of Medical Laboratory, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Alexander Markov
- Tyumen State Medical University, Tyumen, Russian Federation; Tyumen Industrial University, Tyumen, Russian Federation.
| | | | - Jamshid Azamatovich Shamsiev
- Department of Pediatric Surgery, Anesthesiology and Intensive Care, Samarkand State Medical Institute, Samarkand, Uzbekistan; Research scholar, Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan.
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq.
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Wang F, Fei M, Hu WZ, Wang XD, Liu S, Zeng Y, Zhang JH, Lv Y, Niu JP, Meng XL, Cai P, Li Y, Gang BZ, You Y, Lv Y, Ji Y. Prevalence of Constipation in Elderly and Its Association With Dementia and Mild Cognitive Impairment: A Cross-Sectional Study. Front Neurosci 2022; 15:821654. [PMID: 35140587 PMCID: PMC8819140 DOI: 10.3389/fnins.2021.821654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background Constipation and dementia have similar epidemiological characteristics. Changes in intestinal flora and characteristics of the brain-gut axis play roles in the pathogeneses of the two diseases, suggesting that there may be a close connection between the two. Most of the studies on constipation in dementia patients have focused on the population with α-synucleinopathies [Parkinson’s disease dementia (PDD), dementia with Lewy bodies (DLB)]. Few studies have reported the prevalence of constipation in all-cause dementia and mild cognitive impairment (MCI) populations. Objective To assess the prevalence of constipation in patients with all-cause dementia and MCI subtypes and to explore the association between constipation with dementia and MCI subtypes. Methods From May 2019 to December 2019, we conducted a population-based cross-sectional survey. A total of 11,743 participants aged 65 or older from nine cities in China were surveyed. Participants underwent a series of clinical examinations and neuropsychological measurements. Constipation, dementia, MCI and MCI subtype were diagnosed according to established criteria through standard diagnostic procedures. Results The overall age- and sex-adjusted prevalence of constipation in individuals aged 65 years and older was 14.8% (95% CI, 14.6–15.0). The prevalence rates of constipation were19.2% (95% CI, 17.3–21.0), 19.1% (95% CI, 16.8–21.5), 14.4% (95% CI, 12.8–15.9), and 13.8% (95% CI, 13.0–14.6) in the dementia, non-amnestic (na)-MCI, amnestic (a)-MCI and normal cognition populations, respectively. Multivariate logistic regression analysis showed that higher prevalence of constipation was associated with dementia (p = 0.0.032, OR = 1.18, 95% CI: 1.02–1.38) and na-MCI (p = 0.003, OR = 1.30, 95% CI: 1.09–1.54). Conclusion The present study found a high prevalence of constipation in elderly individuals in China, and higher in patients with dementia and na-MCI.
Collapse
Affiliation(s)
- Fei Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Min Fei
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, China
| | - Wen-Zheng Hu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiao-Dan Wang
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jin-Hong Zhang
- Department of Neurology, Cangzhou People’s Hospital, Cangzhou, China
| | - Yang Lv
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-ping Niu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xin-ling Meng
- Department of Neurology, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, China
| | - Pan Cai
- Dementia Clinic, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yang Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bao-zhi Gang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong You
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yan Lv
- Department of Neurology, Hainan General Hospital, Haikou, China
| | - Yong Ji
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Department of Neurology, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Yong Ji,
| |
Collapse
|
7
|
Mirzaei R, Bouzari B, Hosseini-Fard SR, Mazaheri M, Ahmadyousefi Y, Abdi M, Jalalifar S, Karimitabar Z, Teimoori A, Keyvani H, Zamani F, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomed Pharmacother 2021; 139:111661. [PMID: 34243604 DOI: 10.1016/j.biopha.2021.111661] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
During the past decade, accumulating evidence from the research highlights the suggested effects of bacterial communities of the human gut microbiota and their metabolites on health and disease. In this regard, microbiota-derived metabolites and their receptors, beyond the immune system, maintain metabolism homeostasis, which is essential to maintain the host's health by balancing the utilization and intake of nutrients. It has been shown that gut bacterial dysbiosis can cause pathology and altered bacterial metabolites' formation, resulting in dysregulation of the immune system and metabolism. The short-chain fatty acids (SCFAs), such as butyrate, acetate, and succinate, are produced due to the fermentation process of bacteria in the gut. It has been noted remodeling in the gut microbiota metabolites associated with the pathophysiology of several neurological disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease, amyotrophic lateral sclerosis, stress, anxiety, depression, autism, vascular dementia, schizophrenia, stroke, and neuromyelitis optica spectrum disorders, among others. This review will discuss the current evidence from the most significant studies dealing with some SCFAs from gut microbial metabolism with selected neurological disorders.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mazaheri
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimitabar
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Nagpal R, Neth BJ, Wang S, Mishra SP, Craft S, Yadav H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer's disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine 2020; 59:102950. [PMID: 32861197 PMCID: PMC7475073 DOI: 10.1016/j.ebiom.2020.102950] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, we reported that patients with mild cognitive impairment (MCI) harbor specific signature of bacteria in their gut and that a modified Mediterranean ketogenic diet (MMKD) improves Alzheimer's disease (AD) markers in cerebrospinal fluid (CSF) and the signatures of gut bacteria. However, other microbial population such as gut fungi (mycobiome) in relation to MCI/AD pathology, gut bacteria and diet remain unknown. METHODS We measure gut mycobiome by sequencing of the fungal rRNA ITS1 gene in 17 older adults (11 MCI; 6 cognitively normal [CN]) in a single-center, randomized, double-blind, crossover pilot study, before and after 6 weeks intervention of MMKD and American Heart Association Diet (AHAD), and determine its correlation with AD markers in CSF and gut bacteria. FINDINGS Compared to CN counterparts, patients with MCI have higher proportion of families Sclerotiniaceae, Phaffomyceteceae, Trichocomaceae, Cystofilobasidiaceae, Togniniaceae and genera Botrytis, Kazachstania, Phaeoacremonium and Cladosporium and lower abundance of Meyerozyma. Specific fungal taxa exhibit distinct correlation arrays with AD markers and gut bacteria in subjects with versus without MCI. MMKD induces broader effect on fungal diversity in subjects with MCI and increases Agaricus and Mrakia while decreasing Saccharomyces and Claviceps with differential response in subjects with or without MCI. INTERPRETATION The study reveals MCI-specific mycobiome signatures and demonstrates that distinct diets modulate the mycobiome in association with AD markers and fungal-bacterial co-regulation networks in patients with MCI. The findings corroborate the notion of considering gut mycobiome as a unique factor that can affect cognitive health/AD by interacting with gut bacteria and diet and facilitate better understanding of the AD and related microbiome, using unique diet or microbiome modulators.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bryan J Neth
- Department of Internal Medicine- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
9
|
Saji N, Murotani K, Hisada T, Tsuduki T, Sugimoto T, Kimura A, Niida S, Toba K, Sakurai T. The relationship between the gut microbiome and mild cognitive impairment in patients without dementia: a cross-sectional study conducted in Japan. Sci Rep 2019; 9:19227. [PMID: 31852995 PMCID: PMC6920432 DOI: 10.1038/s41598-019-55851-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
Recent studies have revealed an association between the dysregulation of the gut microbiome and dementia. However, whether this dysregulation is associated with mild cognitive impairment (MCI), an early stage of cognitive decline, in patients without dementia remains unclear. We performed a cross-sectional analysis to determine the association between the gut microbiome and MCI. Data, including patient demographics, risk factors, cognitive function, and brain imaging, were collected. The gut microbiome was assessed through terminal restriction fragment length polymorphism analysis. Multivariable logistic regression models were used to identify factors independently associated with MCI. Graphical modelling was used to illustrate mutual associations between MCI and identified factors. We analysed 82 patients, 61 of whom exhibited MCI. Patients with MCI had a higher prevalence of Bacteroides. Furthermore, patients with more Bacteroides were more likely to present with white matter hyperintensity and high voxel-based specific regional analysis system for Alzheimer's Disease (VSRAD) scores, indicating cortical and hippocampal atrophy. A multivariable logistic regression analysis revealed that a greater prevalence of Bacteroides was independently associated with MCI. Graphical modelling also showed a close association between Bacteroides and MCI. In conclusion, an increased prevalence of Bacteroides is independently associated with the presence of MCI in patients without dementia.
Collapse
Grants
- The research grants from the Research Funding of Longevity Sciences (26-20, 27-21, 28-15, 30-1) from the National Center for Geriatrics and Gerontology, grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Advanced integration research for agriculture and interdisciplinary fields), the BMS/Pfizer Japan Thrombosis Investigator Initiated Research Program, and research funds for Comprehensive Research on Aging and Health from the Japan Agency for Medical Research and Development, AMED.
- The research grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Advanced integration research for agriculture and interdisciplinary fields).
- The research grants from the Research Funding of Longevity Sciences (26-20) from the National Center for Geriatrics and Gerontology, and research funds for Comprehensive Research on Aging and Health from the Japan Agency for Medical Research and Development, AMED.
- Research funds for Comprehensive Research on Aging and Health from the Japan Agency for Medical Research and Development, AMED.
- The research grants from the Research Funding of Longevity Sciences (27-21, 30-1) from the National Center for Geriatrics and Gerontology, and research funds for Comprehensive Research on Aging and Health from the Japan Agency for Medical Research and Development, AMED.
Collapse
Affiliation(s)
- Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Aichi, Japan.
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Fukuoka, Japan
| | | | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Department of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Taiki Sugimoto
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ai Kimura
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Kenji Toba
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Aichi, Japan
- Department of Cognition and Behavioural Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
10
|
Shin HE, Kwak SE, Lee JH, Zhang D, Bae JH, Song W. Exercise, the Gut Microbiome, and Frailty. Ann Geriatr Med Res 2019; 23:105-114. [PMID: 32743298 PMCID: PMC7370771 DOI: 10.4235/agmr.19.0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
The gut microbiome is deeply associated with both skeletal muscle and brain function. In particular, gut microbiome dysbiosis may accelerate age-related diseases by affecting these systems. Although there is increasing evidence of the correlations between the gut microbiome and skeletal muscle and brain, it remains unclear whether changes in the gut microbiome due to exercise training can lead to healthy aging. This review covers the current status of gut microbiome-related research and future directions related to aging (e.g., physical frailty and cognitive dysfunction) as well as the effect of exercise training on both. We reviewed relevant literature including original articles and reviews identified from searches of the PubMed, Google Scholar, SCOPUS, EBSCOHost, ScienceDirect, Cochrane Library, and EMBASE databases using the following terms: 'gut microbiome', 'exercise', 'physical frailty', and 'cognitive dysfunction'. We identified a strong positive correlation between cognitive dysfunction or physical frailty and the gut microbiome. Furthermore, exercise had a significant effect on the composition of the gut microbiome. These results suggest that exercise training can prevent physical frailty or cognitive dysfunction by altering the gut microbiome. However, the exact mechanism by which these effects occur is not yet clear. Further studies are needed to determine whether exercise training can prevent age-related diseases by balancing the gut microbiome.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Seong Eun Kwak
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Ji-Hyun Lee
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Didi Zhang
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Jun Hyun Bae
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea
| | - Wook Song
- Health and Exercise Science Laboratory, Seoul National University, Seoul, Korea.,Institute of Sport Science, Seoul National University, Seoul, Korea.,Institue on Aging, Seoul National University, Seoul, Korea
| |
Collapse
|
11
|
Lerner A, Shoenfeld Y, Matthias T. Probiotics: If It Does Not Help It Does Not Do Any Harm. Really? Microorganisms 2019; 7:104. [PMID: 30979072 PMCID: PMC6517882 DOI: 10.3390/microorganisms7040104] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
Probiotics per definition should have beneficial effects on human health, and their consumption has tremendously increased in the last decades. In parallel, the amount of published material and claims for their beneficial efficacy soared continuously. Recently, multiple systemic reviews, meta-analyses, and expert opinions expressed criticism on their claimed effects and safety. The present review describes the dark side of the probiotics, in terms of problematic research design, incomplete reporting, lack of transparency, and under-reported safety. Highlighted are the potential virulent factors and the mode of action in the intestinal lumen, risking the physiological microbiome equilibrium. Finally, regulatory topics are discussed to lighten the heterogeneous guidelines applied worldwide. The shift in the scientific world towards a better understanding of the human microbiome, before consumption of the probiotic cargo, is highly endorsed. It is hoped that better knowledge will extend the probiotic repertoire, re-confirm efficacy or safety, establish their efficacy and substantiate their beneficial effects.
Collapse
Affiliation(s)
- Aaron Lerner
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
- AESKU.KIPP Institute, 55234 Wendelsheim, Germany.
| | - Yehuda Shoenfeld
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 5262000, Israel.
| | | |
Collapse
|