1
|
Du M, Chi C, Xiong L, Rong J, Yi M, Zhao Q, Chi X. Convergence of Hypervirulence and Multidrug-Resistance in Burkholderia cepacia Complex Isolates from Patients with COVID-19. Infect Drug Resist 2024; 17:5855-5866. [PMID: 39741887 PMCID: PMC11687121 DOI: 10.2147/idr.s495676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Burkholderia is a conditioned pathogen in the medical setting and mainly affects patients with cystic fibrosis. We found co-infection with Burkholderia cepacia complex (Bcc) in many patients with respiratory tract infections, including H7N9 and COVID-19. However, previous studies have not focused on co-infections with BCC and respiratory viruses. Therefore, this study attempted to clarify the evolution of COVID-19-Bcc and H7N9-Bcc in terms of genetic background, antibiotic resistance, and virulence phenotypes. Methods This study retrospectively collected 49 Bcc isolated from patients with H7N9 and COVID-19 in a tertiary hospital of Zhejiang Province, of which 42 isolates were isolated from patients with H7N9, seven isolates were isolated from patients with COVID-19. The collected isolates were tested for antibiotic susceptibility, Galleria mellonella infection model, and whole-genome COVID-19-Bcc Characterization. Results The test results of 49 strains of Bcc showed that the strains isolated from COVID-19 patients accounted for 57.1% of multidrug-resistance resistant strains. Statistical analysis of the median lethal time of G. mellonella showed that the median fatal time for COVID-19-Bcc was shorter and more virulent than that of H7N9-Bcc (P<0.05). The results of phylogenetic analysis indicated that COVID-19-Bcc may have evolved from H7N9-Bcc. Conclusion In this study, co-infection with BCC in many patients with respiratory tract infections, including H7N9 and COVID-19, was first identified and clarified that COVID-19-Bcc may have evolved from H7N9-Bcc and has the characteristics of hypervirulence and multidrug resistance.
Collapse
Affiliation(s)
- Mengjiao Du
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Cheng Chi
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| | - LuYing Xiong
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jincheng Rong
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| | - Maoli Yi
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| | - Qi Zhao
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| | - Xiaohui Chi
- Department of Medical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Crépin A, Thiroux A, Alafaci A, Boukerb AM, Dufour I, Chrysanthou E, Bertaux J, Tahrioui A, Bazire A, Rodrigues S, Taupin L, Feuilloley M, Dufour A, Caillon J, Lesouhaitier O, Chevalier S, Berjeaud JM, Verdon J. Sensitivity of Legionella pneumophila to phthalates and their substitutes. Sci Rep 2023; 13:22145. [PMID: 38092873 PMCID: PMC10719263 DOI: 10.1038/s41598-023-49426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Phthalates constitute a family of anthropogenic chemicals developed to be used in the manufacture of plastics, solvents, and personal care products. Their dispersion and accumulation in many environments can occur at all stages of their use (from synthesis to recycling). However, many phthalates together with other accumulated engineered chemicals have been shown to interfere with hormone activities. These compounds are also in close contact with microorganisms that are free-living, in biofilms or in microbiota, within multicellular organisms. Herein, the activity of several phthalates and their substitutes were investigated on the opportunistic pathogen Legionella pneumophila, an aquatic microbe that can infect humans. Beside showing the toxicity of some phthalates, data suggested that Acetyl tributyl citrate (ATBC) and DBP (Di-n-butyl phthalate) at environmental doses (i.e. 10-6 M and 10-8 M) can modulate Legionella behavior in terms of motility, biofilm formation and response to antibiotics. A dose of 10-6 M mostly induced adverse effects for the bacteria, in contrast to a dose of 10-8 M. No perturbation of virulence towards Acanthamoeba castellanii was recorded. These behavioral alterations suggest that L. pneumophila is able to sense ATBC and DBP, in a cross-talk that either mimics the response to a native ligand, or dysregulates its physiology.
Collapse
Affiliation(s)
- Alexandre Crépin
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Audrey Thiroux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Aurélien Alafaci
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Amine M Boukerb
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Izelenn Dufour
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Eirini Chrysanthou
- Department of Life Sciences and Systems Biology, University of Turin, 10100, Turin, Italy
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, 13900, Biella, Italy
| | - Joanne Bertaux
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Marc Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université Bretagne Sud, EMR CNRS 6076, IUEM, Lorient, France
| | - Jocelyne Caillon
- Faculté de Médecine, EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Université de Nantes, Nantes, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, UR4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
3
|
Louis M, Tahrioui A, Tremlett CJ, Clamens T, Leprince J, Lefranc B, Kipnis E, Grandjean T, Bouffartigues E, Barreau M, Defontaine F, Cornelis P, Feuilloley MG, Harmer NJ, Chevalier S, Lesouhaitier O. The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm 2023; 5:100131. [PMID: 37252226 PMCID: PMC10220261 DOI: 10.1016/j.bioflm.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Melissande Louis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Courtney J. Tremlett
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Clamens
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Jérôme Leprince
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Eric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Magalie Barreau
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Florian Defontaine
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Marc G.J. Feuilloley
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Nicholas J. Harmer
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Sylvie Chevalier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| |
Collapse
|
4
|
Zhao NL, Zhu ZQ, Feng HZ, Song YJ, Huang Q, Mou XY, Nong C, He YX, Bao R. Host-derived peptide signals regulate Pseudomonas aeruginosa virulence stress via the ParRS and CprRS two-component systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132512. [PMID: 37703740 DOI: 10.1016/j.jhazmat.2023.132512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Pseudomonas aeruginosa, a versatile bacterium, has dual significance because of its beneficial roles in environmental soil processes and its detrimental effects as a nosocomial pathogen that causes clinical infections. Understanding adaptability to environmental stress is essential. This investigation delves into the complex interplay of two-component system (TCS), specifically ParRS and CprRS, as P. aeruginosa interprets host signals and navigates stress challenges. In this study, through phenotypic and proteomic analyses, the nuanced contributions of ParRS and CprRS to the pathogenesis and resilience mechanisms were elucidated. Furthermore, the indispensable roles of the ParS and CprS extracellular sensor domains in orchestrating signal perception remain unknown. Structural revelations imply a remarkable convergence of TCS sensors in interacting with host peptides, suggesting evolutionary strategies for bacterial adaptation. This pioneering work not only established links between cationic antimicrobial peptide (CAMP) resistance-associated TCSs and virulence modulation in nosocomial bacteria, but also transcended conventional boundaries. These implications extend beyond clinical resistance, permeating into the realm of soil revitalization and environmental guardianship. As it unveils P. aeruginosa intricacies, this study assumes a mantle of guiding strategies to mitigate clinical hazards, harness environmental advantages, and propel sustainable solutions forward.
Collapse
Affiliation(s)
- Ning-Lin Zhao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qi Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han-Zhong Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying-Jie Song
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qin Huang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Nong
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Luqman A. The orchestra of human bacteriome by hormones. Microb Pathog 2023; 180:106125. [PMID: 37119938 DOI: 10.1016/j.micpath.2023.106125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Human microbiome interact reciprocally with the host. Recent findings showed the capability of microorganisms to response towards host signaling molecules, such as hormones. Studies confirmed the complex response of bacteria in response to hormones exposure. These hormones impact many aspects on bacteria, such as the growth, metabolism, and virulence. The effects of each hormone seem to be species-specific. The most studied hormones are cathecolamines also known as stress hormones that consists of epinephrine, norepinephrine and dopamine. These hormones affect the growth of bacteria either inhibit or enhance by acting like a siderophore. Epinephrine and norepinephrine have also been reported to activate QseBC, a quorum sensing in Gram-negative bacteria and eventually enhances the virulence of pathogens. Other hormones were also reported to play a role in shaping human microbiome composition and affect their behavior. Considering the complex response of bacteria on hormones, it highlights the necessity to take the impact of hormones on bacteria into account in studying human health in relation to human microbiome.
Collapse
Affiliation(s)
- Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
| |
Collapse
|
6
|
Choudhary MI, Römling U, Nadeem F, Bilal HM, Zafar M, Jahan H, ur-Rahman A. Innovative Strategies to Overcome Antimicrobial Resistance and Tolerance. Microorganisms 2022; 11:microorganisms11010016. [PMID: 36677308 PMCID: PMC9863313 DOI: 10.3390/microorganisms11010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance and tolerance are natural phenomena that arose due to evolutionary adaptation of microorganisms against various xenobiotic agents. These adaptation mechanisms make the current treatment options challenging as it is increasingly difficult to treat a broad range of infections, associated biofilm formation, intracellular and host adapted microbes, as well as persister cells and microbes in protected niches. Therefore, novel strategies are needed to identify the most promising drug targets to overcome the existing hurdles in the treatment of infectious diseases. Furthermore, discovery of novel drug candidates is also much needed, as few novel antimicrobial drugs have been introduced in the last two decades. In this review, we focus on the strategies that may help in the development of innovative small molecules which can interfere with microbial resistance mechanisms. We also highlight the recent advances in optimization of growth media which mimic host conditions and genome scale molecular analyses of microbial response against antimicrobial agents. Furthermore, we discuss the identification of antibiofilm molecules and their mechanisms of action in the light of the distinct physiology and metabolism of biofilm cells. This review thus provides the most recent advances in host mimicking growth media for effective drug discovery and development of antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Faiza Nadeem
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hafiz Muhammad Bilal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Munirah Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (U.R.); (H.J.); Tel.: +46-8-5248-7319 (U.R.); +92-21-111-232-292 (ext. 301) (H.J.)
| | - Atta ur-Rahman
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
7
|
Loskutov SI, Proshin SN, Ryabukhin DS. Evolutionary aspects of gastrointestinal tract microbiome-host interaction underlying gastrointestinal barrier integrity. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2022. [DOI: 10.15789/2220-7619-eao-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the host sustenance and homeostasis, the microbiome is a key component in the functional system. Throughout ontogenetic development, microbiome including that of the gastrointestinal tract (GIT) is the vital factor that ensures not only host functioning, but also its interaction with environment. To uncover the mechanisms underlying GIT microbiome showing a decisive influence on host organism, a systematic approach is needed, because diverse microorganisms are predominantly localized in different parts of the GIT. Recently, a new interdisciplinary direction of science, nanobioinformatics that has been extensively developed considers gene networks as the major object of study representing a coordinated group of genes that functionally account for formation and phenotypic disclosure of various host traits. Here, an important place should be provided to the genetically determined level of the gastrointestinal tract microbiome, its interaction at the level of the host food systems. There have been increasing evidence indicating that the microbiome is directly involved in the pathogenesis of host diseases showing a multi-layered interaction with host metabolic and immune systems. At the same time, the microbial community is unevenly distributed throughout the gastrointestinal tract, and its different portions are variously active while interacting with the host immune system. The architecture of interaction between the microbiome and host cells is extremely complex, and the interaction of individual cells, at the same time, varies greatly. Bacteria colonizing the crypts of the small intestine regulate enterocyte proliferation by affecting DNA replication and gene expression, while bacteria at the tip of the intestinal villi mediate gene expression responsible for metabolism and immune response. Enterocytes and Paneth cells, in turn, regulate the vital activity of the community of microorganisms through the production of polysaccharides (carbohydrates) and antibacterial factors on their surface. Thus, the integrity of the gastrointestinal barrier (GIB) is maintained, which protects the body from infections and inflammation, while violation of its integrity leads to a number of diseases. It has been shown that depending on the dominance of certain types of bacteria the microbiome can maintain or disrupt GIB integrity. The structural and functional GIB integrity is important for body homeostasis. To date, at least 50 proteins have been characterized as being involved in the structural and functional integrability of tight junctions between gastrointestinal tract epithelial cells. The current review comprehensively discusses such issues and presents original research carried out at various facilities of translational biomedicine.
Collapse
|
8
|
Louis M, Tahrioui A, Verdon J, David A, Rodrigues S, Barreau M, Manac’h M, Thiroux A, Luton B, Dupont C, Calvé ML, Bazire A, Crépin A, Clabaut M, Portier E, Taupin L, Defontaine F, Clamens T, Bouffartigues E, Cornelis P, Feuilloley M, Caillon J, Dufour A, Berjeaud JM, Lesouhaitier O, Chevalier S. Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091788. [PMID: 36144390 PMCID: PMC9502294 DOI: 10.3390/microorganisms10091788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Phthalates are used in a variety of applications—for example, as plasticizers in polyvinylchloride products to improve their flexibility—and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.
Collapse
Affiliation(s)
- Mélissande Louis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Ali Tahrioui
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Julien Verdon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Audrey David
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sophie Rodrigues
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Magalie Barreau
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Maëliss Manac’h
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Audrey Thiroux
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Baptiste Luton
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Charly Dupont
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marie Le Calvé
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexis Bazire
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexandre Crépin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Maximilien Clabaut
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Emilie Portier
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Laure Taupin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Florian Defontaine
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Thomas Clamens
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Emeline Bouffartigues
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Pierre Cornelis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marc Feuilloley
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Jocelyne Caillon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Faculté de Médecine, Université de Nantes, F-44000 Nantes, France
| | - Alain Dufour
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Jean-Marc Berjeaud
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sylvie Chevalier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-2-32-29-15-60
| |
Collapse
|
9
|
Brain Natriuretic Peptide (BNP) Affects Growth and Stress Tolerance of Representatives of the Human Microbiome, Micrococcus luteus C01 and Alcaligenes faecalis DOS7. BIOLOGY 2022; 11:biology11070984. [PMID: 36101364 PMCID: PMC9311935 DOI: 10.3390/biology11070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The body of an average person weighing 70 kg contains approximately 39 trillion bacterial cells, which densely inhabit the gastrointestinal tract, skin, mucous membranes, etc. Bacteria respond to the signaling molecules in the human body, regulate the expression of the necessary genes, and thus adapt to the physiology of the host. Signaling molecules include hormones, neurotransmitters, immune system molecules, as well as natriuretic peptides, which are involved in the regulation of the circulatory system, water and electrolyte metabolism, and adipose tissue metabolism. Brain natriuretic peptide (BNP) is secreted by the ventricles during congestion and signals heart failure. This study showed that the presence of BNP in the growth medium of human symbiont bacteria affects their growth characteristics, survival, and stress resistance, including antibiotic resistance. It was concluded that bacterial populations that develop in a healthy person at a BNP level of up to 250 pg/mL will be more stress resistant than in a person suffering from heart failure. Our findings are promising to be used both in clinical medical practice and in the production of bacterial preparations for cosmetology, agriculture, and waste management. Abstract Brain natriuretic peptide (BNP) is secreted by the ventricles of the heart during overload to signal heart failure. Slight bilateral skin itching induced by BNP has been associated with response activity of the skin microbiota. In this work, we studied the effect of 25–250,000 pg BNP/mL on the growth, long-term survival, and stress (H2O2, antibiotics, salinity, heat and pH shock) resistance of human symbiont bacteria: Gram-positive Micrococcus luteus C01 and Gram-negative Alcaligenes faecalis DOS7. The effect of BNP turned out to be dose-dependent. Up to 250 pg BNP/mL made bacteria more stress resistant. At 2500 pg BNP/mL (heart failure) the thermosensitivity of the bacteria increased. Almost all considered BNP concentrations increased the resistance of bacteria to the action of tetracycline and ciprofloxacin. Both bacteria survived 1.3–1.7 times better during long-term (up to 4 months) storage. Our findings are important both for clinical medical practice and for practical application in other areas. For example, BNP can be used to obtain stress-resistant bacteria, which is important in the collection of microorganisms, as well as for the production of bacterial preparations and probiotics for cosmetology, agriculture, and waste management.
Collapse
|
10
|
Fan M, Miao Y, Yan Y, Zhu K, Zhao X, Pan M, Ma B, Wei Q. C-Type Natriuretic Peptide Regulates the Expression and Secretion of Antibacterial Peptide S100A7 in Goat Mammary Gland Through PKG/JNK/c-Jun Signaling Pathway. Front Vet Sci 2022; 9:822165. [PMID: 35498722 PMCID: PMC9039262 DOI: 10.3389/fvets.2022.822165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
During infection, the infected tissue secretes a variety of endogenous peptides to resist further invasion of pathogens. Among these endogenous peptides, the natriuretic peptides and the antimicrobial peptides attracted the most attention. C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) were members of the natriuretic peptide system. The antimicrobial peptide S100A7 plays an important role to resist infection of bacteria in mastitis. It is reported that the expression of S100A7 is regulated by an activator protein-1 (AP-1)-responsive promoter. As a subunit of AP-1, c-Jun is a downstream target of CNP/NPR-B signaling pathway. Therefore, it is a hypothesis that the CNP/NPR-B signaling pathway induces the expression and secretion of S100A7 in mammary glands to take part in local mammary gland innate immunity. To verify this hypothesis, goat mammary gland and isolated mammary epithelial cells (MECs) were used to explore the expression of CNP/NPR-B and their physiological roles in goat mammary gland. The results showed that goat mammary gland expressed NPR-B, but not CNP. The expression and secretion of S100A7 in goat MECs were obviously induced by CNP/NPR-B signaling pathway. After treatment with CNP, the cyclic guanosine monophosphate (cGMP) level in goat MECs was significantly upregulated. Along with the upregulation of cGMP level, the phosphorylation levels of c-Jun N-terminal kinase (JNK) and its target c-Jun were also increased gradually. KT5823 is a specific inhibitor for protein kinase G (PKG). KT5823 remarkably inhibited the phosphorylation of JNK and c-Jun induced by CNP. Correspondingly, KT5823 evidently inhibited the expression and secretion of S100A7 induced by CNP. On the other hand, the expression of NPR-B and S100A7 was upregulated in the mastitis goat mammary gland. But, there was no significant difference in expression of CNP between healthy and mastitis goat mammary gland tissues. The goat mastitis model was established in vitro using goat MECs treated by lipopolysaccharide (LPS). LPS treatment also could increase the expression of NPR-B and S100A7. In conclusion, goat mammary gland expressed NPR-B, indicating mammary gland was the target organ for natriuretic peptide system. Moreover, CNP, through NPR-B/JNK/c-Jun signaling pathway to regulate the expression and secretion of S100A7 in MECs, played an important role in mammary gland innate immunity.
Collapse
Affiliation(s)
- Mingzhen Fan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuyang Miao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yutong Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Kunyuan Zhu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Menghao Pan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- *Correspondence: Baohua Ma
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Xianyang, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Qiang Wei
| |
Collapse
|
11
|
Attia J, Barreau M, Toquin EL, Feuilloley MGJ, Loing E, Lesouhaitier O. A Polylysine dendrigraft is able to differentially impact Cutibacterium acnes strains preventing acneic skin. Exp Dermatol 2022; 31:1056-1064. [PMID: 35231149 DOI: 10.1111/exd.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
With a view to reducing the impact of Cutibacterium acnes on acne vulgaris, it now appears interesting to modify the balance between acneic and non-acneic strains of C. acnes using moderate approach. In the present study, we identified that a G2 dendrigraft of lysine dendrimer (G2 dendrimer) was able to modify membrane fluidity and biofilm formation of a C. acnes acneic strain (RT5), whereas it appeared no or less active on a C. acnes non-acneic strain (RT6). Moreover, skin ex vivo data indicated that the G2 is able to decrease inflammation (IL1α and TLR2) and improve skin desquamation after of C. acnes acneic strains colonization. Then, in vivo data confirmed, after C. acnes quantification by metagenomic analysis, that the G2 cream after 28 days of treatment was able to increase the diversity of C. acnes strains versus placebo cream. Data showed also a modification of the balance expression between C. acnes phylotype IA1 and phylotype II abundances. Taken together, the results confirm the interest of using soft compounds in cosmetic product for modifying phylotype abundances as well as diversity of C. acnes strains could be a new strategy for prevent acne vulgaris outbreak.
Collapse
Affiliation(s)
- Joan Attia
- Lucas Meyer Cosmetics, 195 route d'Espagne, 31036, Toulouse
| | - Magalie Barreau
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Normandie Université, Université de Rouen Normandie, Evreux, France
| | | | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Normandie Université, Université de Rouen Normandie, Evreux, France
| | - Estelle Loing
- Lucas Meyer Cosmetics, 195 route d'Espagne, 31036, Toulouse
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Normandie Université, Université de Rouen Normandie, Evreux, France.,GIP Normandie Sécurité Sanitaire (N2S), Evreux, France
| |
Collapse
|
12
|
Louis M, Clamens T, Tahrioui A, Desriac F, Rodrigues S, Rosay T, Harmer N, Diaz S, Barreau M, Racine P, Kipnis E, Grandjean T, Vieillard J, Bouffartigues E, Cornelis P, Chevalier S, Feuilloley MGJ, Lesouhaitier O. Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103262. [PMID: 35032112 PMCID: PMC8895129 DOI: 10.1002/advs.202103262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Pseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process. It is shown that the human hormone Atrial Natriuretic Peptide (hANP) both prevents the formation of P. aeruginosa biofilms and strongly disperses established P. aeruginosa biofilms. This hANP action is dose-dependent with a strong effect at low nanomolar concentrations and takes effect in 30-120 min. Furthermore, although hANP has no antimicrobial effect, it acts as an antibiotic adjuvant. hANP enhances the antibiofilm action of antibiotics with diverse modes of action, allowing almost full biofilm eradication. The hANP effect requires the presence of the P. aeruginosa sensor AmiC and the AmiR antiterminator regulator, indicating a specific mode of action. These data establish the activation of the ami pathway as a potential mechanism for P. aeruginosa biofilm dispersion. hANP appears to be devoid of toxicity, does not enhance bacterial pathogenicity, and acts synergistically with antibiotics. These data show that hANP is a promising powerful antibiofilm weapon against established P. aeruginosa biofilms in chronic infections.
Collapse
Affiliation(s)
- Mélissande Louis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Florie Desriac
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
- Normandie UnivUNICAENUnité De Recherche Risques Microbiens U2RMCaen14000France
| | - Sophie Rodrigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | | | - Suraya Diaz
- School of BiosciencesUniversity of ExeterExeterEX4 4QDUK
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Pierre‐Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Eric Kipnis
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019‐UMR9017‐CIIL‐Centre d’Infection et d’Immunité de Lille, Lille, FranceUniversity LilleLilleF‐59000France
| | - Teddy Grandjean
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019‐UMR9017‐CIIL‐Centre d’Infection et d’Immunité de Lille, Lille, FranceUniversity LilleLilleF‐59000France
| | - Julien Vieillard
- Normandie UnivUNIROUENINSA RouenCNRSCOBRA (UMR 6014)Evreux27000France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312University of Rouen NormandyEvreux27000France
| |
Collapse
|
13
|
La Carpia F, Slate A, Bandyopadhyay S, Wojczyk BS, Godbey EA, Francis KP, Prestia K, Hod EA. Red blood cell transfusion-induced non-transferrin-bound iron promotes Pseudomonas aeruginosa biofilms in human sera and mortality in catheterized mice. Br J Haematol 2022; 196:1105-1110. [PMID: 34726258 PMCID: PMC8831455 DOI: 10.1111/bjh.17934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
Transfusion of storage-damaged red blood cells (RBCs) increases non-transferrin-bound iron (NTBI) levels in humans. This can potentially enhance virulence of microorganisms. In this study, Pseudomonas aeruginosa replication and biofilm production in vitro correlated with NTBI levels of transfused subjects (R2 = 0·80; P < 0·0001). Transfusion of stored RBCs into catheterized mice enhanced P. aeruginosa virulence and mortality in vivo, while pre-administration of apotransferrin reduced NTBI levels improving survival (69% vs 27% mortality; P < 0·05). These results suggest that longer RBC storage, by modulating the bioavailability of iron, may increase the risk of P. aeruginosa biofilm-related infections in transfused patients.
Collapse
Affiliation(s)
- Francesca La Carpia
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrea Slate
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sheila Bandyopadhyay
- Department of Biological Science, Division of Life Science, School of Arts and Science, Rutgers University, Newark, NJ, USA
| | - Boguslaw S. Wojczyk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth A. Godbey
- Department of Pathology, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | | | - Kevin Prestia
- Division of Comparative Medicine, NYU Langone Health, New York, NY, USA
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Gannesen A, Schelkunov M, Geras'kina O, Makarova N, Sukhacheva M, Danilova N, Ovcharova M, Mart'yanov S, Pankratov T, Muzychenko D, Zhurina M, Feofanov A, Botchkova E, Plakunov V. Epinephrine affects gene expression levels and has a complex effect on biofilm formation in M icrococcus luteus strain C01 isolated from human skin. Biofilm 2021; 3:100058. [PMID: 34729469 PMCID: PMC8543384 DOI: 10.1016/j.bioflm.2021.100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
In this study, the effect of epinephrine on the biofilm formation of Micrococcus luteus C01 isolated from human skin was investigated in depth for the first time. This hormone has a complex effect on biofilms in various systems. In a system with polytetrafluoroethylene (PTFE) cubes, treatment with epinephrine at a physiological concentration of 4.9 × 10-9 M increased the total amount of 72-h biofilm biomass stained with crystal violet and increased the metabolic activity of biofilms, but at higher and lower concentrations, the treatment had no significant effect. On glass fiber filters, treatment with the hormone decreased the number of colony forming units (CFUs) and changed the aggregation but did not affect the metabolic activity of biofilm cells. In glass bottom plates examined by confocal microscopy, epinephrine notably inhibited the growth of biofilms. RNA-seq analysis and RT-PCR demonstrated reproducible upregulation of genes encoding Fe-S cluster assembly factors and cyanide detoxification sulfurtransferase, whereas genes encoding the co-chaperone GroES, the LysE superfamily of lysine exporters, short-chain alcohol dehydrogenase and the potential c-di-GMP phosphotransferase were downregulated. Our results suggest that epinephrine may stimulate matrix synthesis in M. luteus biofilms, thereby increasing the activity of NAD(H) oxidoreductases. Potential c-di-GMP pathway proteins are essential in these processes.
Collapse
Affiliation(s)
- A.V. Gannesen
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
- Corresponding author.
| | - M.I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - O.V. Geras'kina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N.E. Makarova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - M.V. Sukhacheva
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - N.D. Danilova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.A. Ovcharova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - S.V. Mart'yanov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - T.A. Pankratov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - D.S. Muzychenko
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - M.V. Zhurina
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - A.V. Feofanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - E.A. Botchkova
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - V.K. Plakunov
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Fournière M, Bedoux G, Souak D, Bourgougnon N, Feuilloley MGJ, Latire T. Effects of Ulva sp. Extracts on the Growth, Biofilm Production, and Virulence of Skin Bacteria Microbiota: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes Strains. Molecules 2021; 26:4763. [PMID: 34443349 PMCID: PMC8401615 DOI: 10.3390/molecules26164763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| |
Collapse
|
16
|
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol 2021; 105:3495-3505. [PMID: 33893838 DOI: 10.1007/s00253-021-11291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
Antibiotics play a key role in the prevention and treatment of bacterial diseases for human and animals. The widespread use of antibiotics results in bacterial exposure to the concentrations that are lower than the MIC (that is, sub-inhibitory concentration (sub-MIC)) in the environment, humans, and livestock, which can lead to antibiotic resistance. In this review, we focus on the impact of sub-MIC antibiotics in bacterial virulence. This paper summarized the known relationships between sub-MIC antibiotics in the environment and bacterial virulence. Together, considering the impact of sub-MIC antibiotics and their alternative products in the virulence of bacteria, it is helpful to the rational use of antibiotics and the development of antibiotic alternative products to provide new insights.Key points• Sub-MIC level antibiotics exist in the environment, humans, and livestock.• The review includes mechanisms of sub-MIC antibiotics in bacterial virulence.• New antibacterial strategies and agents are being a new way to weaken virulence. Graphical Abstract.
Collapse
|
17
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
18
|
Effect of 17β-estradiol on a human vaginal Lactobacillus crispatus strain. Sci Rep 2021; 11:7133. [PMID: 33785829 PMCID: PMC8010061 DOI: 10.1038/s41598-021-86628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17β-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β-estradiol (10-6 to 10-10 M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17β-estradiol, but its mean size was significantly reduced. 17β-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft-associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17β-estradiol binding site. Overall, our results reveal direct effects of 17β-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens.
Collapse
|
19
|
Ovcharova MA, Geraskina OV, Danilova ND, Botchkova EA, Martyanov SV, Feofanov AV, Plakunov VK, Gannesen AV. Atrial Natriuretic Peptide Affects Skin Commensal Staphylococcus epidermidis and Cutibacterium acnes Dual-Species Biofilms. Microorganisms 2021; 9:552. [PMID: 33800171 PMCID: PMC7999105 DOI: 10.3390/microorganisms9030552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 01/11/2023] Open
Abstract
The first evidence of the atrial natriuretic peptide (ANP) effect on mono-species and dual-species biofilms of skin commensals Cutibacterium acnes and Staphylococcus epidermidis was obtained in different model systems. Elucidation of the mechanism of action of hormones on the microbial communities of human skin is an important physiological and medical aspect. Under anaerobic conditions, ANP at a concentration of 6.5 × 10-10 M inhibits the growth of S. epidermidis biofilms and stimulates the growth of C. acnes biofilms, and a lesser effect has been demonstrated on planktonic cultures. In biofilms, ANP stimulates aggregation in C. acnes and aggregate dispersion of S. epidermidis, while in S. epidermidis, ANP also stimulates the metabolic activity of cells. Analysis of dual-species biofilms has shown the dominance of S. epidermidis, while ANP increases the ratio of C. acnes biomass in the community. ANP decreases the growth rate of S. epidermidis biofilms and increases that of C. acnes. The effect of ANP is not dependent on the surface type and probably affects other targets in microbial cells. Thus, the potential regulatory effect of human ANP on skin microbe dual-species communities has been shown, and its potential has been demonstrated to change microbiota homeostasis on the skin.
Collapse
Affiliation(s)
- Maria Alekseevna Ovcharova
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Olga Vyacheslavovna Geraskina
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.V.G.); (A.V.F.)
| | - Natalya Dmitrievna Danilova
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Ekaterina Alexandrovna Botchkova
- Laboratory of Microbiology of Anthropogenic Habitats, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Sergey Vladislavovich Martyanov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Alexey Valeryevich Feofanov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (O.V.G.); (A.V.F.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Konstantinovich Plakunov
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| | - Andrei Vladislavovich Gannesen
- Laboratory of Viability of Microorganisms, Federal Research Center “Fundamentals of Biotechnology” of Russian Academy of Sciences, 117312 Moscow, Russia; (M.A.O.); (N.D.D.); (S.V.M.); (V.K.P.)
| |
Collapse
|
20
|
Kannan S, Solomon A, Krishnamoorthy G, Marudhamuthu M. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci Rep 2021; 11:1102. [PMID: 33441765 PMCID: PMC7806599 DOI: 10.1038/s41598-020-79976-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
In the present study lipopeptide biosurfactant with high emulsification capacity produced by human skin bacterium Paenibacillus thiaminolyticus was purified and subjected to FTIR and NMR spectral analysis which gave evidence of the active characteristics of the surfactant. To augment the antivirulent potential further, the mixer of copper and copper oxide nanoparticles (CuNPs) was synthesized, and characterized by UV–Visible spectroscopy, SEM-EDAX, TEM, and Zeta analysis. Here, we attempted to enhance the antimicrobial and antibiofilm activity with the assistance of encapsulated preparation of lipopeptide and CuNPs in multilamellar liposomes. The proposed mechanism of action of lipopeptide and CuNPs liposomal preparation negatively influences the cell metabolism, secreted virulence such as staphyloxanthin, pyocyanin, and extracellular polysaccharides. The significant decline in the growth of MRSA and P. aeruginosa in both planktonic form and biofilm by lipopeptide and CuNPs treatment were visualized using scanning electron microscopy and High content screening imaging system. In vivo studies revealed that treatment with lipopeptide and CuNPs in multilamellar liposomes extended the lifespan of infected Caenorhabditis elegans by about 75%. Therefore, this study typifies lipopeptide and CuNPs could credibly be a substantial substitute over conventional antibiotics in averting the biofilm associated pathogenesis of MRSA and P. aeruginosa.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Anitta Solomon
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
21
|
Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium. PLoS One 2020; 15:e0243003. [PMID: 33270697 PMCID: PMC7714214 DOI: 10.1371/journal.pone.0243003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.
Collapse
|
22
|
Fournière M, Latire T, Souak D, Feuilloley MGJ, Bedoux G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms 2020; 8:E1752. [PMID: 33171837 PMCID: PMC7695133 DOI: 10.3390/microorganisms8111752] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dermatological and cosmetics fields have recently started to focus on the human skin microbiome and microbiota, since the skin microbiota is involved in the health and dysbiosis of the skin ecosystem. Amongst the skin microorganisms, Staphylococcus epidermidis and Cutibacterium acnes, both commensal bacteria, appear as skin microbiota sentinels. These sentinels have a key role in the skin ecosystem since they protect and prevent microbiota disequilibrium by fighting pathogens and participate in skin homeostasis through the production of beneficial bacterial metabolites. These bacteria adapt to changing skin microenvironments and can shift to being opportunistic pathogens, forming biofilms, and thus are involved in common skin dysbiosis, such as acne or atopic dermatitis. The current evaluation methods for cosmetic active ingredient development are discussed targeting these two sentinels with their assets and limits. After identification of these objectives, research of the active cosmetic ingredients and products that maintain and promote these commensal metabolisms, or reduce their pathogenic forms, are now the new challenges of the skincare industry in correlation with the constant development of adapted evaluation methods.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France
| | - Djouhar Souak
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironment LMSM EA4312, Université de Rouen Normandie, 27000 Évreux, France; (D.S.); (M.G.J.F.)
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines LBCM EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (T.L.); (G.B.)
| |
Collapse
|
23
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The human body plays host to bacterial biofilms across diverse anatomical sites. The treatment of pathogenic biofilm infection is confounded by their high rate of antibiotic resistance. Therefore, it is critical to understand the interplay between these biofilms and the host immune system to develop new tactics to combat these infections. RECENT FINDINGS Bacterial biofilms and the components they produce affect and are affected by the host immune system. Host anatomical sites represent distinct niches in which defined bacterial biofilms are able to form and interact with the host immune system. For persistent colonization to occur, the bacteria must either avoid or suppress the host immune system, or induce an immune response that facilitates their perpetuation. SUMMARY Commensal bacterial biofilms form a protective barrier against colonization by pathogens. Using similar mechanisms, bacteria modulate the immune system to orchestrate persistence and sometimes disease. Clinicians must balance the need to avoid disturbing beneficial commensal biofilms with the difficulty in preventing or treating pathogenic bacterial biofilms such as those that develop on medical implants and open wounds.
Collapse
Affiliation(s)
- Christina N Morra
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
25
|
Borrel V, Thomas P, Catovic C, Racine PJ, Konto-Ghiorghi Y, Lefeuvre L, Duclairoir-Poc C, Zouboulis CC, Feuilloley MGJ. Acne and Stress: Impact of Catecholamines on Cutibacterium acnes. Front Med (Lausanne) 2019; 6:155. [PMID: 31355200 PMCID: PMC6635461 DOI: 10.3389/fmed.2019.00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
Cutibacterium acnes (former Propionibacterium acnes), is a bacterium characterized by high genomic variability, consisting of four subtypes and six major ribotypes. Skin is the largest neuroendocrine organ of the human body and many cutaneous hormones and neurohormones can modulate bacterial physiology. Here, we investigated the effect of catecholamines, i.e., epinephrine and norepinephrine, on two representative strains of C. acnes, of which the genome has been fully sequenced, identified as RT4 acneic and RT6 non-acneic strains. Epinephrine and norepinephrine (10-6 M) had no impact on the growth of C. acnes but epinephrine increased RT4 and RT6 biofilm formation, as measured by crystal violet staining, whereas norepinephrine was only active on the RT4 strain. We obtained the same results by confocal microscopy with the RT4 strain, whereas there was no effect of either catecholamine on the RT6 strain. However, this strain was also sensitive to catecholamines, as shown by MATs tests, as epinephrine and norepinephrine affected its surface polarity. Flow cytometry studies revealed that epinephrine and norepinephrine are unable to induce major changes of bacterial surface properties and membrane integrity. Exposure of sebocytes to control or catecholamine-treated bacteria showed epinephrine and norepinephrine to have no effect on the cytotoxic or inflammatory potential of either C. acnes strains but to stimulate their effect on sebocyte lipid synthesis. Uriage thermal spring water was previously shown to inhibit biofilm production by C. acnes. We thus tested its effect after exposure of the bacteria to epinephrine and norepinephrine. The effect of the thermal water on the response of C. acnes to catecholamines depended on the surface on which the biofilm was grown. Finally, an in-silico study revealed the presence of a protein in the genome of C. acnes that shows homology with the catecholamine receptor of Escherichia coli and eukaryotes. This study suggests that C. acnes may play a role as a relay between stress mediators (catecholamines) and acne.
Collapse
Affiliation(s)
- Valérie Borrel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Pauline Thomas
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Chloé Catovic
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Luc Lefeuvre
- R&D Uriage Dermatological Laboratory, Neuilly sur Seine, France
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen Normandy, Normandie Université, Evreux, France
| |
Collapse
|
26
|
Egesten A, Herwald H. The Extracellular Matrix: Reloaded Revolutions. J Innate Immun 2019; 11:301-302. [PMID: 31167198 DOI: 10.1159/000500357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
|
27
|
Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. NPJ Biofilms Microbiomes 2019; 5:15. [PMID: 31149345 PMCID: PMC6533273 DOI: 10.1038/s41522-019-0088-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Biofilms are structured microbial communities that are the leading cause of numerous chronic infections which are difficult to eradicate. Within the lungs of individuals with cystic fibrosis (CF), Pseudomonas aeruginosa causes persistent biofilm infection that is commonly treated with aminoglycoside antibiotics such as tobramycin. However, sublethal concentrations of this aminoglycoside were previously shown to increase biofilm formation by P. aeruginosa, but the underlying adaptive mechanisms still remain elusive. Herein, we combined confocal laser scanning microscope analyses, proteomics profiling, gene expression assays and phenotypic studies to unravel P. aeruginosa potential adaptive mechanisms in response to tobramycin exposure during biofilm growth. Under this condition, we show that the modified biofilm architecture is related at least in part to increased extracellular DNA (eDNA) release, most likely as a result of biofilm cell death. Furthermore, the activity of quorum sensing (QS) systems was increased, leading to higher production of QS signaling molecules. We also demonstrate upon tobramycin exposure an increase in expression of the PrrF small regulatory RNAs, as well as expression of iron uptake systems. Remarkably, biofilm biovolumes and eDNA relative abundances in pqs and prrF mutant strains decrease in the presence of tobramycin. Overall, our findings offer experimental evidences for a potential adaptive mechanism linking PrrF sRNAs, QS signaling, biofilm cell death, eDNA release, and tobramycin-enhanced biofilm formation in P. aeruginosa. These specific adaptive mechanisms should be considered to improve treatment strategies against P. aeruginosa biofilm establishment in CF patients’ lungs.
Collapse
|
28
|
Römling U. Innate Immune Mechanisms with a Focus on Small-Molecule Microbe-Host Cross Talk. J Innate Immun 2019; 11:191-192. [PMID: 30726830 DOI: 10.1159/000495817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden,
| |
Collapse
|
29
|
Gannesen AV, Lesouhaitier O, Racine PJ, Barreau M, Netrusov AI, Plakunov VK, Feuilloley MGJ. Regulation of Monospecies and Mixed Biofilms Formation of Skin Staphylococcus aureus and Cutibacterium acnes by Human Natriuretic Peptides. Front Microbiol 2018; 9:2912. [PMID: 30619105 PMCID: PMC6296281 DOI: 10.3389/fmicb.2018.02912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
Staphylococcus aureus and Cutibacterium acnes are common representatives of the human skin microbiome. However, when these bacteria are organized in biofilm, they could be involved in several skin disorders such as acne or psoriasis. They inhabit in hollows of hair follicles and skin glands, where they form biofilms. There, they are continuously exposed to human hormones, including human natriuretic peptides (NUPs). We first observed that the atrial natriuretic peptide (ANP) and the C-type natriuretic peptide (CNP) have a strong effect S. aureus and C. acnes biofilm formation on the skin. These effects are significantly dependent on the aero-anaerobic conditions and temperature. We also show that both ANP and CNP increased competitive advantages of C. acnes toward S. aureus in mixed biofilm. Because of their temperature-dependent effects, NUPs appear to act as a thermostat, allowing the skin to modulate bacterial development in normal and inflammatory conditions. This is an important step toward understanding how human neuroendocrine systems can regulate the cutaneous microbial community and should be important for applications in fundamental sciences, medicine, dermatology, and cosmetology.
Collapse
Affiliation(s)
- Andrei Vladislavovich Gannesen
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Petroleum Microbiology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir K. Plakunov
- Laboratory of Petroleum Microbiology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, EA4312, University of Rouen Normandy, Évreux, France
| |
Collapse
|