1
|
García-Fernández J, Fuente Freire MDL. Exosome-like systems: Nanotechnology to overcome challenges for targeted cancer therapies. Cancer Lett 2023; 561:216151. [PMID: 37001751 DOI: 10.1016/j.canlet.2023.216151] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Exosomes are natural extracellular nanovesicles (30-150 nm in diameter) with the ability to interact with and be taken up by specific cells. They are being explored as delivery systems and imaging agents for biomedical purposes owing to their biocompatibility, biostability in extracellular biofluids, and organotropic properties. However, their usefulness, efficacy, and clinical application are limited by certain critical parameters, including the need for more robust and reproducible manufacturing processes, characterization, quality control assessment, and clinical studies. Recently, exosome-like systems have emerged as alternatives for overcoming the limitations of natural exosomes. These systems are based on surface engineering approaches and nanoscale platforms that offer a deeper understanding and allow for more exhaustive standardization compared with natural exosomes. By combining the latest knowledge related to exosome research with the most promising developments in nanotechnology, exosome-like systems can be developed as a competitive approach for innovative targeted anti-cancer therapies. This review aims to provide a critical overview of the latest advances in designing and testing innovative exosome-like systems and the most promising modalities that can be translated into the clinic. Future perspectives and challenges in this field are discussed.
Collapse
|
2
|
CTC-5: A novel digital pathology approach to characterise circulating tumour cell biodiversity. Heliyon 2023; 9:e13044. [PMID: 36747925 PMCID: PMC9898658 DOI: 10.1016/j.heliyon.2023.e13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Metastatic progression and tumor evolution complicates the clinical management of cancer patients. Circulating tumor cell (CTC) characterization is a growing discipline that aims to elucidate tumor metastasis and evolution processes. CTCs offer the clinical potential to monitor cancer patients for therapy response, disease relapse, and screen 'at risk' groups for the onset of malignancy. However, such clinical utility is currently limited to breast, prostate, and colorectal cancer patients. Further understanding of the basic CTC biology of other malignancies is required to progress them towards clinical utility. Unfortunately, such basic clinical research is often limited by restrictive characterization methods and high-cost barrier to entry for CTC isolation and imaging infrastructure. As experimental clinical results on applications of CTC are accumulating, it is becoming clear that a two-tier system of CTC isolation and characterization is required. The first tier is to facilitate basic research into CTC characterization. This basic research then informs a second tier specialised in clinical prognostic and diagnostic testing. This study presented in this manuscript describes the development and application of a low-cost, CTC isolation and characterization pipeline; CTC-5. This approach uses an established 'isolation by size' approach (ScreenCell Cyto) and combines histochemical morphology stains and multiparametric immunofluorescence on the same isolated CTCs. This enables capture and characterization of CTCs independent of biomarker-based pre-selection and accommodates both single CTCs and clusters of CTCs. Additionally, the developed open-source software is provided to facilitate the synchronization of microscopy data from multiple sources (https://github.com/CTC5/). This enables high parameter histochemical and immunofluorescent analysis of CTCs with existing microscopy infrastructure without investment in CTC specific imaging hardware. Our approach confirmed by the number of successful tests represents a potential major advance towards highly accessible low-cost technology aiming at the basic research tier of CTC isolation and characterization. The biomarker independent approach facilitates closing the gap between malignancies with poorly, and well-defined CTC phenotypes. As is currently the case for some of the most commonly occurring breast, prostate and colorectal cancers, such advances will ultimately benefit the patient, as early detection of relapse or onset of malignancy strongly correlates with their prognosis.
Collapse
|
3
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
4
|
Constantinou M, Hadjigeorgiou K, Abalde-Cela S, Andreou C. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS APPLIED NANO MATERIALS 2022; 5:12276-12299. [PMID: 36210923 PMCID: PMC9534173 DOI: 10.1021/acsanm.2c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is a powerful analytical technique for the detection of small analytes with great potential for medical diagnostic applications. Its high sensitivity and excellent molecular specificity, which stems from the unique fingerprint of molecular species, have been applied toward the detection of different types of cancer. The noninvasive and rapid detection offered by SERS highlights its applicability for point-of-care (PoC) deployment for cancer diagnosis, screening, and staging, as well as for predicting tumor recurrence and treatment monitoring. This review provides an overview of the progress in label-free (direct) SERS-based chemical detection for cancer diagnosis with the main focus on the advances in the design and preparation of SERS substrates on the basis of metal nanoparticle structures formed via bottom-up strategies. It begins by introducing a synopsis of the working principles of SERS, including key chemometric approaches for spectroscopic data analysis. Then it introduces the advances of label-free sensing with SERS in cancer diagnosis using biofluids (blood, urine, saliva, sweat) and breath as the detection media. In the end, an outlook of the advances and challenges in cancer diagnosis via SERS is provided.
Collapse
Affiliation(s)
- Marios Constantinou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Katerina Hadjigeorgiou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| | - Sara Abalde-Cela
- International
Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga 4715-330, Portugal
| | - Chrysafis Andreou
- Department
of Electrical and Computer Engineering, University of Cyprus, Nicosia, 2112, Cyprus
| |
Collapse
|
5
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 393] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
CASIDE: A data model for interoperable cancer survivorship information based on FHIR. J Biomed Inform 2021; 124:103953. [PMID: 34781009 PMCID: PMC9930408 DOI: 10.1016/j.jbi.2021.103953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Cancer survivorship has traditionally received little research attention although it is associated with a variety of long-term consequences and also many other comorbidities. There is an urgent need to increase research on this area, and the secondary use of healthcare data has the potential to provide valuable insights on survivors' health trajectories. However, cancer survivors' data is often stored in silos and collected inconsistently. In this study we present CASIDE, an interoperable data model for cancer survivorship information that aims to accelerate the secondary use of healthcare data and data sharing across institutions. It is designed to provide a holistic view of the cancer survivor, taking into account not just the clinical data but also the patient's own perspective, and is built upon the emerging Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard. Advantages of adopting FHIR and challenges in information modelling using this standard are discussed. CASIDE is a generalizable approach that is already being used as a support tool for the development of downstream applications to support clinical decision making and can contribute to translational collaborative research on cancer survivorship.
Collapse
|
7
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L, Diéguez L. HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers (Basel) 2021; 13:4446. [PMID: 34503260 PMCID: PMC8431641 DOI: 10.3390/cancers13174446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Collapse
Affiliation(s)
- Cláudia Lopes
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| | - Liliana R. Pires
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal;
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), Complejo Hospitalario de Santiago de Compostela, Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (P.C.); (P.A.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Av Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (C.L.); (A.C.); (S.A.-C.)
| |
Collapse
|
8
|
Rzhevskiy A, Kapitannikova A, Malinina P, Volovetsky A, Aboulkheyr Es H, Kulasinghe A, Thiery JP, Maslennikova A, Zvyagin AV, Ebrahimi Warkiani M. Emerging role of circulating tumor cells in immunotherapy. Theranostics 2021; 11:8057-8075. [PMID: 34335980 PMCID: PMC8315079 DOI: 10.7150/thno.59677] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Over the last few years, immunotherapy, in particular, immune checkpoint inhibitor therapy, has revolutionized the treatment of several types of cancer. At the same time, the uptake in clinical oncology has been slow owing to the high cost of treatment, associated toxicity profiles and variability of the response to treatment between patients. In response, personalized approaches based on predictive biomarkers have emerged as new tools for patient stratification to achieve effective immunotherapy. Recently, the enumeration and molecular analysis of circulating tumor cells (CTCs) have been highlighted as prognostic biomarkers for the management of cancer patients during chemotherapy and for targeted therapy in a personalized manner. The expression of immune checkpoints on CTCs has been reported in a number of solid tumor types and has provided new insight into cancer immunotherapy management. In this review, we discuss recent advances in the identification of immune checkpoints using CTCs and shed light on the potential applications of CTCs towards the identification of predictive biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Alexey Rzhevskiy
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Institute for Urology and Reproductive Health, Sechenov University, Moscow 119991, Russia
| | - Alina Kapitannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Polina Malinina
- Privolzhsky Research Medical University, 10/1, Minini Pozharsky Square, Nizhny Novgorod 603005, Russia
| | - Arthur Volovetsky
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
| | | | - Arutha Kulasinghe
- Queensland University of Technology, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Woolloongabba, QLD 4102, Australia
- Translational Research Institute, Woolloongabba, QLD 4102 Australia
| | - Jean Paul Thiery
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Guangzhou Institutes of Biomedicine and Health, Guangzhou, People's Republic of China
| | - Anna Maslennikova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia
- The Chair of Cancer, Radiotherapy and Radiologic Diagnostics, Privolzhsky Research Medical University, Nizhniy Novgorod. Russia 603005
| | - Andrei V. Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- IBCh - Shemyakin Ovchinnikov Institute of BioOrganic Chemistry of the Russian Academy of Sciences, Miklukho Maklai Street, 16, Moscow, Russia
| | - Majid Ebrahimi Warkiani
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- School of Biomedical Engineering, University of Technology Sydney, 2007 Sydney, Australia
| |
Collapse
|
9
|
Assessment of circulating tumor cells in peripheral blood using flow cytometry in patients with surgery for colorectal cancer – review. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Colorectal cancer (CRC) is the third most common neoplasia in the world. Circulating tumor cells (CTC) have a prognostic value and can be useful in monitoring solid neoplasia. Only one method for CTC identification has received the approval and this is the CellSearch® system based on the immunomagnetic separation. Multiple markers are used in CTC identification, as epithelial markers and cytokeratines. CTC identification in peripheral blood is associated with a worse prognostic and reduced free survival in CRC.
Material and methods: We performed a systematic search in PubMed database for articles that reports the circulating tumor cells in CRC until July 2019. We selected studies in English and French and the main words used for search were ‘circulating tumor cells’, ‘colorectal cancer’, ‘colon cancer’, ‘rectal cancer’, ‘flow cytometry’, ‘peripheral blood’. We included studies with more than 10 patients, where samples were collected from the blood in relation with surgery and flow cytometry was used as analyzing technique.
Results: We included 7 studies in final analysis, that showed in flow cytometry analysis a cut-off value of CTC that can vary from 2-4 CTC/ 7.5 ml peripheral blood with a sensitivity of 50.8% and specificity of 95%. Patients with positive CTC were associated with higher T stage and positive lymph nodes, with a worse overall survival (OS) and disease free survival (DFS) comparing with negative patients.
Conclusion: CTC are considered to be a prognostic factor who needs more validation studies in order to be included in the clinical practice.
Collapse
|
10
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
11
|
Pan Y, Long W, Liu Q. Current Advances and Future Perspectives of Cerebrospinal Fluid Biopsy in Midline Brain Malignancies. Curr Treat Options Oncol 2019; 20:88. [PMID: 31784837 DOI: 10.1007/s11864-019-0689-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT Malignancies arising in midline brain structures, including lymphomas, teratomas, germinomas, diffuse midline gliomas, and medulloblastomas typically respond to systemic therapies, and excessive surgical excision can result in serious complications, so that total surgical removal is not routinely performed. Identifying tumor specific biomarkers that can facilitate diagnosis at early stage and allow for dynamic surveillance of the tumor is of great clinical importance. However, existing standard methods for biopsy of these brain neoplasms are high risk, time consuming, and costly. Thus, less invasive and more rapid diagnosis tests are urgently needed to detect midline brain malignancies. Currently, tools for cerebrospinal biopsy of midline brain malignancies mainly include circulating tumor DNA, circulating tumor cells, and extracellular vesicles. Circulating tumor DNA achieved minimally invasive biopsy in several brain malignancies and has advantages in detecting tumor-specific mutations. In the field of tumor heterogeneity, circulating tumor cells better reflect the genome of tumors than surgical biopsy specimens. They can be applied for the diagnosis of leptomeningeal metastasis. Extracellular vesicles contain lots of genetic information about cancer cells, so they have potential in finding therapeutic targets and studying tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yimin Pan
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
12
|
Costa JL, Schmitt FC. Liquid Biopsy: A New Tool in Oncology. Acta Cytol 2019; 63:448. [PMID: 31266005 DOI: 10.1159/000501355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Affiliation(s)
- José Luís Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fernando C Schmitt
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal,
- Faculty of Medicine, University of Porto, Porto, Portugal,
| |
Collapse
|
13
|
Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy stands out due to its sensitivity, selectivity, and multiplex ability. The development of ready-to-use, simple, and low-cost SERS substrates is one of the main challenges of the field. In this paper, the intrinsic reproducibility of microfluidics technology was used for the fabrication of self-assembled nanoparticle structures over a paper film. The paper SERS substrates were fabricated by assembling anisotropic particles, gold nanostars (GNSs), and nanorods (NRs) onto paper to offer an extra enhancement to reach ultra-sensitive detection limits. A polydimethylsiloxane PDMS-paper hybrid device was used to control the drying kinetics of the nanoparticles over the paper substrate. This method allowed a high reproducibility and homogeneity of the fabrication of SERS substrates that reach limits of detection down to the picomolar range. This simple and low-cost fabrication of a paper-based sensing device was tested for the discrimination of different cell lineages.
Collapse
|