1
|
Yang Y, Razak SRA, Ismail IS, Ma Y, Yunus MA. Molecular mechanisms of miR-192 in cancer: a biomarker and therapeutic target. Cancer Cell Int 2025; 25:94. [PMID: 40087755 PMCID: PMC11908092 DOI: 10.1186/s12935-025-03666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 03/17/2025] Open
Abstract
Cancer remains a major global health challenge due to its rising prevalence and high mortality rates. The field of microRNAs (miRNAs) has made significant progress in the understanding of tumorigenesis and has broadened our knowledge of their targeting, especially in cancer therapy. miRNAs, a class of small non-coding RNAs, participate in post-transcriptional gene regulation by translational inhibition or mRNA degradation. Among these, microRNA-192 (miR-192) is located on human chromosome 11q13.1, and is highly correlated with the occurrence and development of various human cancers. Dysregulation of miR-192 has been extensively studied in various pathological processes, including tumorigenesis, making it a valuable biomarker for cancer diagnosis and prognosis. The functional role of miR-192 varies across cancer types, acting as either a tumor suppressor or as an oncogene through the modulation of multiple gene expressions and downstream signaling pathways. However, the roles of miR-192 in cancer appear inconsistent across types, with current research often focused on specific genes or pathways, limiting insight into its broader impact on cellular signaling networks. Therefore, this review aims to provide a comprehensive overview of miR-192 research. The paper reviews differences in miR-192 expression in cancer and systematically summarizes the role of miR-192 in cancers. The review further explores the complex roles of miR-192 in various pathological processes, emphasizing its regulatory pathways, interaction networks, and association with tumor progression. This review also illustrates the clinical application of miR-192 as a diagnostic and prognostic biomarker for non-invasive cancer detection, as it is consistently present in both serum and exosomes. A comprehensive summary and analysis of the relationship between miR-192 and various cancers may provide valuable insights, potentially guiding novel approaches in clinical diagnosis, therapeutic strategies, and foundational cancer research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Ida Shazrina Ismail
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Yanxia Ma
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Muhammad Amir Yunus
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Elazab IM, El-Feky OA, Khedr EG, El-Ashmawy NE. Prostate cancer and the cell cycle: Focusing on the role of microRNAs. Gene 2024; 928:148785. [PMID: 39053658 DOI: 10.1016/j.gene.2024.148785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Prostate cancer is the most frequent solid tumor in terms of incidence and ranks second only to lung cancer in terms of cancer mortality among men. It has a considerably high mortality rate; around 375,000 deaths occurred worldwide in 2020. In 2024, the American Cancer Society estimated that the number of new prostate cancer cases will be around 299,010 cases, and the estimated deaths will be around 32,250 deaths only in the USA. Cell cycle dysregulation is inevitable in cancer etiology and is targeted by various therapies in cancer treatment. MicroRNAs (miRNAs) are small, endogenous, non-coding regulatory molecules involved in both normal and abnormal cellular events. One of the cellular processes regulated by miRNAs is the cell cycle. Although there are some exceptions, tumor suppressor miRNAs could potentially arrest the cell cycle by downregulating several molecular machineries involved in catalyzing the cell cycle progression. In contrast, oncogenic miRNAs (oncomirs) help the cell cycle to progress by targeting various regulatory proteins such as retinoblastoma (Rb) or cell cycle inhibitors such as p21 or p27, and hence may contribute to prostate cancer progression; however, this is not always the case. In this review, we emphasize how a dysregulated miRNA expression profile is linked to an abnormal cell cycle progression in prostate cancer, which subsequently paves the way to a new therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Ibrahim M Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Ola A El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt.
| | - Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, BUE, Cairo, 11837, Egypt.
| |
Collapse
|
3
|
Schmidt T. S-Adenosylmethionine Treatment Diminishes the Proliferation of Castration-Resistant Prostate Cancer Cells by Modulating the Expression of miRNAs. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0022. [PMID: 39486056 DOI: 10.2478/aite-2024-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024]
Abstract
AdoMet (S-adenosylmethionine) inhibits cancer cell proliferation and migration via epigenetic alterations. This study aimed to investigate whether AdoMet may cause alterations in microRNA (miRNA) expression profiles that are important for the initiation and progression of prostate cancer. PC-3 cells were treated with AdoMet before miRNA sequencing. A total of 17 differentially expressed miRNAs were detected. Target gene prediction was performed by means of databases. Results were aligned to transcriptomic data. The bioinformatic analysis revealed upregulation of anticancerogenic genes, downregulation of cancerogenic-related processes and pathways. Knocking down hsa-miR-192-5p in PC-3 cells resulted in downregulation of cancer cell proliferation, thus confirming these results.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Gao R, Li Q, Qiu M, Xie S, Sun X, Huang T. Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows. Anim Biosci 2023; 36:1336-1349. [PMID: 37170506 PMCID: PMC10472158 DOI: 10.5713/ab.22.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. METHODS The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). RESULTS A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC] = 0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. CONCLUSION Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.
Collapse
Affiliation(s)
- Ruonan Gao
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Qingchun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Meiyu Qiu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, 830000,
China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Key Laboratory of Animal Breeding and Reproduction of Minstry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070,
China
| | - Xiaomei Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Xinjiang Pig Breeding Engineering Technology Research Center, Xinjiang Tecon Husbandry S&T Co. Ltd, Changji, 831100,
China
| |
Collapse
|
5
|
Song J, Lin Z, Liu Q, Huang S, Han L, Fang Y, Zhong P, Dou R, Xiang Z, Zheng J, Zhang X, Wang S, Xiong B. MiR-192-5p/RB1/NF-κBp65 signaling axis promotes IL-10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin Transl Med 2022; 12:e992. [PMID: 35969010 PMCID: PMC9377151 DOI: 10.1002/ctm2.992] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are important components of the tumour microenvironment (TME) that play roles in gastric cancer (GC) metastasis. Although tumour cells that undergo epithelial-mesenchymal transition (EMT) regulate Treg cell function, their regulatory mechanism in GC remains unclear. METHODS The miR-192-5p was identified by examining three Gene Expression Omnibus GC miRNA expression datasets. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to identify interactions between miR-192-5p and RB1. The role of miR-192-5p/RB1 in GC progression was evaluated based on EdU incorporation, wound healing and Transwell assays. An in vitro co-culture assay was performed to measure the effect of miR-192-5p/RB1 on Treg cell differentiation. In vivo experiments were conducted to explore the role of miR-192-5p in GC progression and Treg cell differentiation. RESULTS MiR-192-5p was overexpressed in tumour and was associated with poor prognosis in GC. MiR-192-5p bound to the RB1 3'-untranslated region, resulting in GC EMT, proliferation, migration and invasion. MiR-192-5p/RB1 mediated interleukin-10 (IL-10) secretion by regulating nuclear factor-kappaBp65 (NF-κBp65), affecting Treg cell differentiation. NF-κBp65, in turn, promoted miR-192-5p expression and formed a positive feedback loop. Furthermore, in vivo experiments confirmed that miR-192-5p/RB1 promotes GC growth and Treg cell differentiation. CONCLUSION Collectively, our studies indicate that miR-192-5p/RB1 promotes EMT of tumour cells, and the miR-192-5p/RB1/NF-κBp65 signaling axis induces Treg cell differentiation by regulating IL-10 secretion in GC. Our results suggest that targeting miR-192-5p/RB1/NF-κBp65 /IL-10 may pave the way for the development of new immune treatments for GC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zaihuan Lin
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Qing Liu
- Department of Respiratory and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| | - Sihao Huang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Lei Han
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Yan Fang
- Department of obstetrics and gynecologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Panyi Zhong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Rongzhang Dou
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zhenxian Xiang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Jinsen Zheng
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Xinyao Zhang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Shuyi Wang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Bin Xiong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
6
|
Li Y, He J, Yu L, Yang Q, Du J, Chen Y, Tang W. Hsa‐miR‐1290 is associated with stemness and invasiveness in prostate cancer cell lines by targeting RORA. Andrologia 2022; 54:e14396. [PMID: 35220610 DOI: 10.1111/and.14396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuehua Li
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jiang He
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Lu Yu
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Qixin Yang
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Jing Du
- Department of Anesthesiology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Yirong Chen
- Department of Nephrology and Urology University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Tang
- Department of Urology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
7
|
Li Y, Zu L, Wu H, Zhang F, Fan Y, Pan H, Du X, Guo F, Zhou Q. MiR-192/NKRF axis confers lung cancer cell chemoresistance to cisplatin via the NF-κB pathway. Thorac Cancer 2021; 13:430-441. [PMID: 34953057 PMCID: PMC8807278 DOI: 10.1111/1759-7714.14278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background Chemoresistance influences the therapeutic effect of cisplatin and remains a major obstacle to its clinical use. MicroRNAs are associated with drug resistance of various tumors. However, the association between microRNAs and cisplatin in lung cancer remains largely unclear. Methods MicroRNA expression profile was identified by microRNA microarray between the lung cancer cisplatin‐sensitive cell line A549 (A549) and cisplatin‐resistant cell line A549/DDP (A549/DDP) and confirmed by quantitative real‐time‐PCR (qRT‐PCR). In vitro loss‐ and gain‐of‐function studies were performed to reveal the biological function of miR‐192 and related mechanism of the microRNA‐192/NKRF axis in lung cancer cell cisplatin resistance. Results Increased miR‐192 expression was detected in A549/DDP cells compared to A549. High miR‐192 expression significantly suppressed apoptosis, enhanced proliferation, and conferred resistance to cisplatin in lung cancer cells. NF‐κB repressing factor (NKRF), which is involved in the regulation of the NF‐κB signaling pathway, was identified as a direct target of miR‐192. Overexpression of miR‐192 significantly increased the nuclear protein amount and transcriptional activation of NF‐κB and expression of cIAP1, cIAP2, Bcl‐xl and XIAP, whereas decreased miR‐192 expression did the opposite. Inhibition of the NF‐κB signal pathway by curcumin reversed the effect of upregulation of miR‐192 on proliferation, apoptosis and cisplatin‐resistance in lung cancer cells. These results indicated that miR‐192/ NKRF axis enhances the cisplatin resistance of lung cancer cells through activating the NF‐κB pathway in vitro. Conclusions MiR‐192 plays a crucial role in cisplatin‐resistance of lung cancer cells. Thus, MiR‐192 may represent a therapeutic target for overcoming resistance to cisplatin‐based chemotherapy in lung cancer.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinxin Du
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Chengdu, Sichuan University, China
| |
Collapse
|
8
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Arockiam AJV. Transcriptional expression of miRNAs under glucose depletion/2-deoxy-d-glucose in HCC: A possible genetic footprints of angiogenesis and its hallmarks. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Agwa MM, Abu-Serie MM, Abdelmonsif DA, Moussa N, Elsayed H, Khattab SN, Sabra S. Vitamin D3/phospholipid complex decorated caseinate nanomicelles for targeted delivery of synergistic combination therapy in breast cancer. Int J Pharm 2021; 607:120965. [PMID: 34339814 DOI: 10.1016/j.ijpharm.2021.120965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Targeted delivery of cytotoxic drugs has shown great potential in cancer therapy. In this light, vitamin D3 (vit.D3)-coated micelles were fabricated to encapsulate the cytotoxic drug; etoposide (ETP). Sodium caseinate micelles were first utilized to encapsulate vit.D3 and ETP within their hydrophobic core, then drug-loaded micelles were further decorated with an envelope of vit.D3/ phospholipid complex to enhance the active targeting potency of fabricated micelles via exploiting vit.D3 receptors (VDRs) overexpressed on the outer surface of breast cancer cells. In vitro cytotoxicity studies showed that fabricated micelles exhibited improved anticancer effect on MDA MB-231 and MCF-7 human breast cancer cell lines in comparison to free vit.D3 + ETP without any significant toxicity on normal human lung fibroblast (Wi-38) cells. In vivo biodistribution and efficacy studies in Ehrlich ascites tumor animal model revealed that fabricated micelles manifested improved accumulation in tumor tissue due to active targeting potential of vit.D3 without any remarkable toxicity. More importantly, fabricated micelles resulted in enhanced tumor apoptosis, reduced angiogenesis, invasion and autophagy, besides a decline in the tumor expression levels of both miR-21 and miR-192. Therefore, vit.D3/ETP micelles could serve as a favorable actively targeted anticancer delivery system having a superior effect over the free combination.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally Sabra
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
10
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
11
|
Tang C, Yuan P, Wang J, Zhang Y, Chang X, Jin D, Lei P, Lu Z, Chen B. MiR-192-5p regulates the proliferation and apoptosis of cholangiocarcinoma cells by activating MEK/ERK pathway. 3 Biotech 2021; 11:99. [PMID: 33552829 DOI: 10.1007/s13205-021-02650-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is the second most common liver cancer, characterized by late diagnosis and fatal outcome. Although miR-192-5p has been shown to have a vital role in various cancers, its role in CCA is unknown. Here, we investigated the role of miR-192-5p in CCA cell proliferation and apoptosis, and elucidated its potential mechanism of action. METHODS The miR-192-5p expression in CCA tissues and cell lines was detected by real-time quantitative reverse transcription-polymerase chain reaction. Cell proliferation was analyzed using the cell counting Kit-8 and 5-bromodeoxyuridine staining assays, while apoptosis was examined by flow cytometry and the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling assay. Western blot analysis was used to measure the expression of cell proliferation and apoptosis-related proteins, as well as MEK/ERK signaling pathway-related proteins. RESULTS MiR-192-5p was highly expressed in CCA tissues and cell lines. Overexpression of miR-192-5p significantly promoted CCA proliferation, and inhibited apoptosis. The MEK inhibitor, PD98059, reversed these miR-192-5p-induced effects on MEK/ERK signaling-associated protein expression, proliferation promotion, and apoptosis inhibition in TFK-1 cells. CONCLUSION MiR-192-5p promotes proliferation and suppressed apoptosis of CCA cells via the MEK/ERK pathway, which may be a potential therapeutic strategy for CCA treatment.
Collapse
|
12
|
Ni J, Tian W, Liang S, Wang H, Ren Y. Promoter Methylation-mediated Silencing of the MiR-192-5p Promotes Endometrial Cancer Progression by Targeting ALX1. Int J Med Sci 2021; 18:2510-2520. [PMID: 34104082 PMCID: PMC8176185 DOI: 10.7150/ijms.58954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Epigenetic regulation by promoter methylation-mediated silencing of cancer-related microRNAs plays vital roles in tumorigenesis. MiR-192-5p promotes tumor progression in various human cancers with conflicting biological effects. However, its expression levels and biological functions in endometrial carcinoma (EC) have not been reported. Methods: The methylation status of miR-192-5p in tissue samples and cell lines, was examined using bisulfite sequencing PCR. miR-192-5p expression was also measured. EC cell lines transfected with specifically designed vectors overexpressing miR-192-5p, its target gene ALX1 or both, were constructed. Tumorigenicity of these cell lines were examined by in vitro and in vivo experiments. Dual-luciferase reporter assay were employed to verify the target of miR-192-5p. Results: The promoter region of miR-192-5p gene was highly methylated and its expression significantly repressed in EC samples. Moreover, a higher level of promoter methylation as well as a lower expression of miR-192-5p, was significantly associated with advanced Federation of Gynecology and Obstetrics stage and shorter disease-free survival in patients with curatively resected EC. Functional studies demonstrated that miR-192-5p overexpression inhibited in vitro tumor progression, in vivo tumorigenicity and the expression of several oncoproteins that was highly related to epithelial-to-mesenchymal transition. ALX1 was verified as a direct target of miR-192-5p and demonstrated to mediate the tumor-suppressive function of miR-192-5p. Conclusion: miR-192-5p is a tumor suppressor miRNA that is epigenetically silenced by promoter methylation and may serve as a potential prognostic biomarker in EC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjuan Tian
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanhui Liang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huaying Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yulan Ren
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Li H, He L, Tuo Y, Huang Y, Qian B. Circular RNA hsa_circ_0000282 contributes to osteosarcoma cell proliferation by regulating miR-192/XIAP axis. BMC Cancer 2020; 20:1026. [PMID: 33097010 PMCID: PMC7583201 DOI: 10.1186/s12885-020-07515-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023] Open
Abstract
Background Circular RNAs (circRNAs) have emerged as a novel category of non-coding RNA, which exhibit a pivotal effect on regulating gene expression and biological functions, yet how circRNAs function in osteosarcoma (OSA) still demands further investigation. This study aimed at probing into the function of hsa_circ_0000282 in OSA. Methods The expressions of circ_0000282 and miR-192 in OSA tissues and cell lines were examined by quantitative real-time polymerase chain reaction (qRT-PCR), and the correlation between the expression level of circ_0000282 and clinicopathological features of OSA patients was analyzed. The expressions of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in OSA cells were assayed by Western blot. The proliferation and apoptosis of OSA cells were examined by CCK-8, BrdU and flow cytometry, respectively. Bioinformatics analysis, dual-luciferase reporter gene assay and RIP experiments were employed to predict and validate the targeting relationships between circ_0000282 and miR-192, and between miR-192 and XIAP, respectively. Results Circ_0000282 was highly expressed in OSA tissues and cell lines, which represented positive correlation with Enneking stage of OSA patients and negative correlation with tumor differentiation degree. In vitro experiments confirmed that overexpression of circ_0000282 markedly facilitated OSA cell proliferation and repressed cancer cell apoptosis in comparison to control group. Besides, knockdown of circ_0000282 repressed OSA cell proliferation and promoted apoptosis. Additionally, the binding relationships between circ_0000282 and miR-192, and between miR-192 and XIAP were validated. Circ_0000282 indirectly up-regulated XIAP expression by adsorbing miR-192, thereby playing a role in promoting cancer in OSA. Conclusion Circ_0000282 was a novel oncogenic circRNA in OSA. Circ_0000282/miR-192/XIAP axis regulated OSA cell proliferation apoptosis with competitive endogenous RNA mechanism.
Collapse
Affiliation(s)
- Houkun Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an, 710054, Shaanxi, China.
| | - Limin He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an, 710054, Shaanxi, China
| | - Yuan Tuo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an, 710054, Shaanxi, China
| | - Yansheng Huang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an, 710054, Shaanxi, China
| | - Bing Qian
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, No. 76 Nanguo Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|
14
|
Yin J, Liu JS, Feng M, Li JM, Lu S, Yang M, Cao BR, Lang JY, Zhu XD. Comprehensively investigating the expression levels and the prognostic role of transforming growth factor beta-induced (TGFBI) in glioblastoma multiforme. Transl Cancer Res 2020; 9:6487-6504. [PMID: 35117257 PMCID: PMC8798009 DOI: 10.21037/tcr-20-2906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transforming growth factor beta-induced (TGFBI) protein has been found expressed in several cancer types, and expression levels of TGFBI can affect the cancer patients' outcomes, but the role of TGFBI in glioblastoma multiforme (GBM) remains obscure. METHODS The TGFBI expression levels in GBM were performed via Gene Expression Profiling Interactive Analysis (GEPIA) and UALCAN databases. Further, the mutations types of TGFBI were analyzed by using the cBioportal dataset. LinkedOmics selected correlated genes, kinases, and microRNA (miRNA) targets of TGFBI. GEPIA conducted the prognostic value of TGFBI and correlated genes. Then, the relationship between TGFBI and immune infiltrates was performed by Tumor Immune Estimation Resource (Timer). We compared the TGFBI protein expression levels in GBM and control samples through the Human Protein Atlas (HPA). Finally, the GSCAlite was used to achieve the drugs, and molecules target the TGFBI and significantly correlated genes. RESULTS TGFBI is significantly overexpressed in GBM, but the clinical features do not have considerable influence on TGFBI expression levels. Overexpression of TGFBI acts as an adverse biomarker of GBM. The enrichment function of TGFBI showed that the main biological functions, including extracellular matrix (ECM) organization, angiogenesis, leukocyte migration, T cell activation, cell cycle G2/M phase transition, and growth factor binding. About the significant correlated genes, overexpression of mitogen-activated protein kinase 13 (MAPK13) [Log-rank P=0.08 HR (high) =1.4], myosin IG (MYO1G) [Log-rank P=0.06 HR (high) =1.4], plasminogen activator urokinase receptor (PLAUR) [Log-rank P=0.03 HR (high) =1.5], thrombomodulin (THBD) [Log-rank P=0.028 HR (high) =1.5] indicated the poor prognosis of GBM. Further, TGFBI had a significant association with dendritic cell (DC) infiltrates (cor =0.516, P=9.00e-30). The higher the DC infiltration, the shorter survival of GBM. TGFBI protein expression levels were not significantly different in GBM and normal tissue. Finally, TGFBI is associated with resistance to belinostat, LAQ824, CAY10603, CUDC-101, methotrexate, 5-fluorouracil, and navitoclax. CONCLUSIONS In the present study, we showed TGFBI was overexpressed in GBM, and TGFBI is associated with DC cell infiltrates. Overexpression of TGFBI and high DC infiltration might be an adverse biomarker of GBM. Finally, TGFBI is associated with tumor multi-drug resistance.
Collapse
Affiliation(s)
- Jun Yin
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin-Song Liu
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiao-Ming Li
- Department of Neurosurgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory and Sichuan Province, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Mu Yang
- Radiation Oncology Key Laboratory and Sichuan Province, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Bang-Rong Cao
- Radiation Oncology Key Laboratory and Sichuan Province, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
15
|
Mishan MA, Tabari MAK, Parnian J, Fallahi J, Mahrooz A, Bagheri A. Functional mechanisms of miR-192 family in cancer. Genes Chromosomes Cancer 2020; 59:722-735. [PMID: 32706406 DOI: 10.1002/gcc.22889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
By growing research on the mechanisms and functions of microRNAs (miRNAs, miRs), the role of these noncoding RNAs gained more attention in healthcare. Due to the remarkable regulatory role of miRNAs, any dysregulation in their expression causes cellular functional impairment. In recent years, it has become increasingly apparent that these small molecules contribute to development, cell differentiation, proliferation, apoptosis, and tumor growth. In many studies, the miR-192 family has been suggested as a potential prognostic and diagnostic biomarker and even as a possible therapeutic target for several cancers. However, the mechanistic effects of the miR-192 family on cancer cells are still controversial. Here, we have reviewed each family member of the miR-192 including miR-192, miR-194, and miR-215, and discussed their mechanistic roles in various cancers.
Collapse
Affiliation(s)
- Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Parnian
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Jafar Fallahi
- Molecular Medicine Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkarim Mahrooz
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Cochetti G, Rossi de Vermandois JA, Maulà V, Giulietti M, Cecati M, Del Zingaro M, Cagnani R, Suvieri C, Paladini A, Mearini E. Role of miRNAs in prostate cancer: Do we really know everything? Urol Oncol 2020; 38:623-635. [PMID: 32284256 DOI: 10.1016/j.urolonc.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Many different genetic alterations, as well as complex epigenetic interactions, are the basis of the genesis and progression of prostate cancer (CaP). This is the reason why until now the molecular pathways related to development of this cancer were only partly known, and even less those that determine aggressive or indolent tumour behaviour. MicroRNAs (miRNAs) represent a class of about 22 nucleotides long, small non-coding RNAs, which are involved in gene expression regulation at the post-transcriptional level. MiRNAs play a crucial role in regulating several biological functions and preserving homeostasis, as they carry out a wide modulatory activity on various molecular signalling pathways. MiRNA genes are placed in cancer-related genomic regions or in fragile sites, and they have been proven to be involved in the main steps of carcinogenesis as oncogenes or oncosuppressors in many types of cancer, including CaP. We performed a narrative review to describe the relationship between miRNAs and the crucial steps of development and progression of CaP. The aims of this study were to improve the knowledge regarding the mechanisms underlying miRNA expression and their target genes, and to contribute to understanding the relationship between miRNA expression profiles and CaP.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincenza Maulà
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Del Zingaro
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosy Cagnani
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessio Paladini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
| | - Ettore Mearini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Flammang I, Reese M, Yang Z, Eble JA, Dhayat SA. Tumor-Suppressive miR-192-5p Has Prognostic Value in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2020; 12:E1693. [PMID: 32630552 PMCID: PMC7352756 DOI: 10.3390/cancers12061693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by fast tumor progression and diagnosis at advanced, inoperable stages. Previous studies could demonstrate an involvement of miR-192-5p in epigenetic regulation of visceral carcinomas. Due to contradictory results, however, the clinical utility of miR-192-5p in PDAC has yet to be determined. MiR-192-5p expression was analyzed by RT-qRT-PCR in human PDAC and benign tissue (n = 78), blood serum (n = 81) and serum exosomes (n = 74), as well as in PDAC cell lines (n = 5), chemoresistant cell clones (n = 2), and pancreatic duct cell line H6c7. Analysis of EMT-associated (epithelial-to-mesenchymal transition) proteins was performed by immunohistochemistry and Western blot. MiR-192-5p was deregulated in PDAC as compared to healthy controls (HCs), with downregulation in macrodissected tissue (p < 0.001) and upregulation in blood serum of PDAC UICC (Union for International Cancer Control) stage IV (p = 0.016) and serum exosomes of PDAC UICC stages II to IV (p < 0.001). MiR-192-5p expression in tumor tissue was significantly lower as compared to corresponding peritumoral tissue (PDAC UICC stage II: p < 0.001; PDAC UICC stage III: p = 0.024), while EMT markers ZEB1 and ZEB2 were more frequently expressed in tumor tissue as compared to peritumoral tissue, HCs, and chronic pancreatitis. Tissue-derived (AUC of 0.86; p < 0.0001) and exosomal (AUC of 0.83; p = 0.0004) miR-192-5p could differentiate between PDAC and HCs with good accuracy. Furthermore, high expression of miR-192-5p in PDAC tissue of curatively resected PDAC patients correlated with prolonged overall and recurrence-free survival in multivariate analysis. In vitro, miR-192-5p was downregulated in gemcitabine-resistant cell clones of AsPC-1 (p = 0.029). Transient transfection of MIA PaCa-2 cells with miR-192-5p mimic resulted in downregulation of ZEB2. MiR-192-5p seems to possess a tumor-suppressive role and high potential as a diagnostic and prognostic marker in PDAC.
Collapse
Affiliation(s)
- Isabelle Flammang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Moritz Reese
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Zixuan Yang
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| | - Johannes A. Eble
- Department of Physiological Chemistry and Pathobiochemistry, University of Muenster, Waldeyerstrasse 15, 48149 Muenster, Germany;
| | - Sameer A. Dhayat
- Department of General, Visceral and Transplantation Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1 (W1), 48149 Muenster, Germany; (I.F.); (M.R.); (Z.Y.)
| |
Collapse
|
18
|
Tavakolian S, Goudarzi H, Torfi F, Faghihloo E. Evaluation of microRNA-9 and -192 expression levels as biomarkers in patients suffering from breast cancer. Biomed Rep 2019; 12:30-34. [PMID: 31839947 DOI: 10.3892/br.2019.1257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/02/2019] [Indexed: 12/18/2022] Open
Abstract
Given the global outbreak of breast cancer and its debilitating effect on women's health, it is not surprising that tremendous efforts have been made with an aim of shedding more light on the mechanisms involved in the pathogenesis of this type of cancer. Among the long list of risk factors associated with this malignancy, recently, the role of microRNAs (miRNAs or miRs) has turned into a hotspot for breast cancer investigations. miRNAs approximately 20 nucleotides in length and are located in either an exon or an intron, playing a role in the regulation of gene expression. In the present study, we extracted RNA from both the serum and cancerous tissue of breast cancer patients and after synthesizing the cDNA, we performed quantitative PCR to determine the expression levels of miR-9 and miR-192. The resulting data revealed that while the mRNA expression level of miR-9 was significantly decreased in the breast cancer tissues, there was no noticeable change in the expression level of this miRNA in the serum samples. Likewise, we found that the marked downregulation of miR-192 was only restricted to the cancerous tissues, but was not found in the serum of patients. Based on the meaningful downregulation of the expression of miR-9 and miR-192, this study provides a plausible framework for these miRNAs as effective biomarkers for breast cancer patients.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Farhad Torfi
- Surgical Ward, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| |
Collapse
|