1
|
Wang M, Xue L, Fei Z, Luo L, Zhang K, Gao Y, Liu X, Liu C. Characterization of mitochondrial metabolism related molecular subtypes and immune infiltration in colorectal adenocarcinoma. Sci Rep 2024; 14:24326. [PMID: 39414905 PMCID: PMC11484867 DOI: 10.1038/s41598-024-75482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Colorectal adenocarcinoma (COAD) is the most common subtype of colorectal cancer. Due to the imperfect prognosis of COAD, related prognostic factors and possible mechanisms need to be further investigated. During tumor development, mitochondria help tumor cells survive in a variety of ways, so that further screening of mitochondrial metabolism related targets has positive implications for COAD. We screened the mitochondrial metabolism-related genes (MMRG) associated with the COAD prognosis and explored the MMRG-related molecular subtype characteristics of by unsupervised consensus clustering analysis. Using ESTIMATE and ssGSEA algorithms, we evaluated the immunoinfiltration characteristic landscape of different molecular subtypes defined by MMRG. Combining the expression profiles of differentially expressed genes associated with the MMRG subgroup and the survival characteristics of COAD, we constructed an MMRG prognostic model using LASSO-univariate Cox analysis and successfully validated its impact on independently predicting risk stratification of COAD. The potential clinical value of the MMRG score was subsequently evaluated by subgroup immunoinfiltration characteristics and drug susceptibility prediction analysis. We also offer SEC11A as a new potential target for COAD by single-cell sequencing analysis. The effect of SEC11A on the proliferation, invasion abilities and mitochondrial dysfunction of COAD cells was confirmed through in vitro experiments. Our study provides new insights into the role of MMRG and new target for COAD potential intervention.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lingkai Xue
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Zhenyue Fei
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China
| | - Lei Luo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxi Gao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Chengkui Liu
- Department of Gastrointestinal Surgery, Central Hospital of Zibo, Zibo, China.
| |
Collapse
|
2
|
Shen H, Yi F, Ding Z, Liu W, Liu P, Wang Z, Liu S, Liu Y, Li D. SEC11A contributes to tumour progression of head and neck squamous cell carcinoma. Heliyon 2023; 9:e14958. [PMID: 37025806 PMCID: PMC10070141 DOI: 10.1016/j.heliyon.2023.e14958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is a prevalent disease that has a low survival rate and high recurrence risk. Our study aims to investigate the expression and role of SEC11A in HNSCC. Methods The expression of SEC11A was assessed in 18 pairs of cancerous and adjacent tissues by qRT-PCR and western blotting. Immunohistochemistry was performed in clinical specimen sections to evaluate the expression of SEC11A and its association with outcomes. Furthermore, the functional role of SEC11A in HNSCC tumor proliferation and progression was investigated using the in vitro cell model with lentivirus-mediated SEC11A knockdown. Colony formation and CCK8 assays were conducted to assess cell proliferation potential, while in vitro migration and invasion were examined using wound healing and transwell assays. To determine the tumor formation potential in vivo, a tumor xenograft assay was used. Results In contrast to adjacent normal tissues, SEC11A expression was significantly elevated in HNSCC tissues. SEC11A was mainly localized in the cytoplasm, and its expression was significantly associated with patient prognosis. SEC11A was silenced using shRNA lentivirus in TU212 and TU686 cell lines, and the gene knockdown was confirmed. A series of functional assays demonstrated that SEC11A knockdown reduced cell proliferation, migration and invasion ability in vitro. In addition, the xenograft assay demonstrated that SEC11A knockdown significantly inhibited tumor growth in vivo. Tumor tissue sections of mice showed decreased proliferation potential in the shSEC11A xenografts cells by immunohistochemistry. Conclusion SEC11A knockdown decreased cell proliferation, migration and invasion in vitro and subcutaneous tumorigenesis in vivo. SEC11A is crucial to HNSCC proliferation and progression, and may serve as a new therapeutic target.
Collapse
Affiliation(s)
- Hailong Shen
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Fangzheng Yi
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Zhao Ding
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Weiwei Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Ping Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
- Anhui Public Health Clinical Center, Hefei, Anhui, 230000, PR China
| | | | - Shixian Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Yehai Liu
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
- Corresponding author.
| | - Dapeng Li
- Department of Otolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
- Corresponding author.
| |
Collapse
|
3
|
Hu C, Fan J, He G, Dong C, Zhou S, Zheng Y. Signal peptidase complex catalytic subunit SEC11A upregulation is a biomarker of poor prognosis in patients with head and neck squamous cell carcinoma. PLoS One 2022; 17:e0269166. [PMID: 35653344 PMCID: PMC9162331 DOI: 10.1371/journal.pone.0269166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current study, we aimed to investigate the expression of the five microsomal signal peptidase complex (SPC) subunit genes (SEC11A, SEC11C, SPCS1, SPCS2, and SPCS3) in head and neck squamous cell carcinoma (HNSC) and to explore their prognostic value. Data from the HNSC subset of The Cancer Genome Atlas (TCGA) and one previous single-cell RNA-seq dataset was used. Subgroup analysis was conducted in tumors from different anatomic sites. Gene set enrichment analysis (GSEA), and immune cell infiltration analysis were performed to check the influence of SEC11A on the tumor microenvironment. Among the genes significantly upregulated in the tumor group, only SEC11A expression (as a continuous variable) is independently associated with poorer progression-free survival (PFS) (HR: 2.075, 95%CI: 1.447–2.977, p<0.001) and disease-specific survival (DSS) (HR: 2.023, 95%CI: 1.284–3.187, p = 0.002). Subgroup analysis confirmed the prognostic value in tumors from three anatomic origins, including laryngeal squamous cell carcinoma, oral cavity-related squamous cell carcinoma, and oropharynx-related squamous cell carcinoma. SEC11A is expressed in all subtypes of cells in the tumor microenvironment. Its expression showed a moderate positive correlation with its gene-level copy number (Pearson’s r = 0.53, p<0.001). SEC11A expression was negatively correlated with CD8+ T cells and B cells, but was positively correlated with cancer-associated fibroblast and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. In summary, SEC11A upregulation is a result of gene amplification in head and neck squamous cell carcinoma. Its upregulation might serve as an independent prognostic biomarker and a predictor of the infiltration of certain types of immune cells.
Collapse
Affiliation(s)
- Chunmei Hu
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Gang He
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Dong
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| | - Yun Zheng
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (SZ); (YZ)
| |
Collapse
|
4
|
Yan X, Chen M, Xiao C, Fu J, Sun X, Hu Z, Zhou H. Effect of unfolded protein response on the immune infiltration and prognosis of transitional cell bladder cancer. Ann Med 2021; 53:1048-1058. [PMID: 34187252 PMCID: PMC8253203 DOI: 10.1080/07853890.2021.1918346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer (BC) is one of the most common human malignancies worldwide. Previous researches have shown that the unfolded protein response (UPR) pathway could contribute to the tumorigenesis of BC. However, the role of UPR in the immune infiltration, progression, and prognosis of BC is unclear.Methods: The GSVA and ssGSEA methods were used for assessing the UPR score and immune cells infiltration score in three BC public datasets, respectively. The relationship between the UPR pathway and clinicopathological characteristics was analyzed by the Kruskal-Wallis, Wilcox test, and log-rank test. The association of the UPR pathway with various tumor-infiltrating immune cells was evaluated with the correlation analysis. Univariate Cox regression analysis was performed to identify risk factors significantly associated with prognosis. The predictive models were built based on risk factors and visualized with nomograms. The performance of our models was evaluated with the calibration curve, Harrell's concordance index (c-index), and receiver operating characteristic (ROC) analysis.Results: We found that the UPR pathway and many UPR-related genes were significantly associated with the pathologic grade, tumor type, and invasive progression of transitional cell bladder cancer (TCBC), and a high UPR score predicted a poor prognosis in patients. The UPR score was positively correlated with the infiltration abundance of many tumor immune cells in TCBC. Besides, we constructed predictive models based on the UPR score, and good performance was observed, with c-indexes ranging from 0.74 to 0.87.Conclusions: Our study proved that the UPR pathway may have an important impact on the progression, prognosis, and tumor immune infiltration in TCBC, and the models we built may provide effective and reliable guides for prognosis assessment and treatment decision-making for TCBC patients.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Min Chen
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chiying Xiao
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiandong Fu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xia Sun
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zuohuai Hu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hang Zhou
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Taniyama D, Sakamoto N, Takashima T, Takeda M, Pham QT, Ukai S, Maruyama R, Harada K, Babasaki T, Sekino Y, Hayashi T, Sentani K, Pommier Y, Murai J, Yasui W. Prognostic impact of Schlafen 11 in bladder cancer patients treated with platinum-based chemotherapy. Cancer Sci 2021; 113:784-795. [PMID: 34808009 PMCID: PMC8819307 DOI: 10.1111/cas.15207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
The utility of Schlafen 11 (SLFN11) expression as a predictive biomarker for platinum‐based chemotherapy has been established for cancers from different histologies. However, the therapeutic relevance of SLFN11 in bladder cancer (BC) is unknown. Here, we examined the clinicopathologic significance of SLFN11 expression across 120 BC cases by immunohistochemistry. We divided the cases into two cohorts, one including 50 patients who received adjuvant or neoadjuvant platinum‐based chemotherapy, and the other including 70 BC patients treated by surgical resection without chemotherapy. In the cohort of 50 BC cases treated with platinum‐based chemotherapy, the SLFN11‐positive group (n = 25) showed significantly better overall survival than the SLFN11‐negative group (n = 25, P = .012). Schlafen 11 expression correlated significantly with the expression of luminal subtype marker GATA3. Multivariate analyses identified SLFN11 expression as an independent prognostic predictor (odds ratio, 0.32; 95% confidence interval, 0.11‐0.91; P = .033). Conversely, in the cohort of 70 BC cases not receiving platinum‐based chemotherapy, the SLFN11‐positive group (n = 29) showed significantly worse overall survival than the SLFN11‐negative group (n = 41, P = .034). In vitro analyses using multiple BC cell lines confirmed that SLFN11 KO rendered cells resistant to cisplatin. The epigenetic modifying drugs 5‐azacytidine and entinostat restored SLFN11 expression and resensitized cells to cisplatin and carboplatin in SLFN11‐negative BC cell lines. We conclude that SLFN11 is a predictive biomarker for BC patients who undergo platinum‐based chemotherapy and that the combination of epigenetic modifiers could rescue refractory BC patients to platinum derivatives by reactivating SLFN11 expression.
Collapse
Affiliation(s)
- Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masahiko Takeda
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Quoc Thang Pham
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoichi Ukai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Harada
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Swaminathan G, Shigna A, Kumar A, Byroju VV, Durgempudi VR, Dinesh Kumar L. RNA Interference and Nanotechnology: A Promising Alliance for Next Generation Cancer Therapeutics. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.694838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer is a significant health hazard of the 21st century, and GLOBOCAN predicts increasing cancer incidence in the coming decades. Though several conventional treatment modalities exist, most of them end up causing off-target and debilitating effects, and drug resistance acquisition. Advances in our understanding of tumor molecular biology offer alternative strategies for precise, robust, and potentially less toxic treatment paradigms for circumventing the disease at the cellular and molecular level. Several deregulated molecules associated with tumorigenesis have been developed as targets in RNA interference (RNAi) based cancer therapeutics. RNAi, a post-transcriptional gene regulation mechanism, has significantly gained attention because of its precise multi-targeted gene silencing. Although the RNAi approach is favorable, the direct administration of small oligonucleotides has not been fruitful because of their inherent lower half-lives and instability in the biological systems. Moreover, the lack of an appropriate delivery system to the primary site of the tumor that helps determine the potency of the drug and its reach, has limited the effective medical utilization of these bio-drugs. Nanotechnology, with its unique characteristics of enhanced permeation and better tumor-targeting efficiency, offers promising solutions owing to the various possibilities and amenability for modifications of the nanoparticles to augment cancer therapeutics. Nanoparticles could be made multimodal, by designing and synthesizing multiple desired functionalities, often resulting in unique and potentially applicable biological structures. A small number of Phase I clinical trials with systemically administered siRNA molecules conjugated with nanoparticles have been completed and the results are promising, indicating that, these new combinatorial therapies can successfully and safely be used to inhibit target genes in cancer patients to alleviate some of the disease burden. In this review, we highlight different types of nano-based delivery strategies for engineering Nano-RNAi-based bio drugs. Furthermore, we have highlighted the insights gained from current research that are entering the preclinical evaluation and information about initial clinical developments, shaping the future for next generation cancer therapeutics.
Collapse
|
7
|
Yao Y, Liu XQ, Yang FY, Mu JW. MiR-873-5p modulates progression of tongue squamous cell carcinoma via targeting SEC11A. Oral Dis 2021; 28:1509-1518. [PMID: 33675129 DOI: 10.1111/odi.13830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To explore the effect of miR-873-5p on proliferation, apoptosis, migration, and invasion of tongue squamous cell carcinoma (TSCC) by targeting SEC11A. METHODS Tongue squamous cell carcinoma tissues were collected and performed by qRT-PCR and Western blotting to determine the expression of miR-873-5p and SPC18. SCC9 and CAL-27 cells were transfected and divided into Mock, mimic NC, miR-873-5p mimic, SEC11A, and miR-873-5p mimic + SEC11A groups. Then, a series of experiments including cell count kit 8 (CCK-8), wound healing, Transwell, and flow cytometry were conducted. Besides, Western blotting was used to detect the expression of SPC18 and EGFR pathway-related proteins. RESULTS MiR-873-5p was downregulated while SPC18 was upregulated in TSCC, and miR-873-5p was negatively correlated with SPC18. Dual luciferase reporter gene assay confirmed SEC11A to be a target of miR-873-5p. Cell proliferation, migration, and invasion of SCC9 and CAL-27 cells in miR-873-5p mimic group were decreased with increased cell apoptosis, presenting with downregulations of SPC18 and EGFR pathway-related proteins, while cells in SEC11A group manifested totally different changes. Moreover, the inhibitory effect of miR-873-5p mimic on TSCC cell growth was abolished by SEC11A overexpression. CONCLUSION Overexpression of miR-873-5p may suppress cell proliferation, migration, and invasion, but facilitate apoptosis in TSCC via targeting SEC11A.
Collapse
Affiliation(s)
- Yao Yao
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Xiao-Qin Liu
- Department of Stomatology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Feng-Ying Yang
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Mu
- Department of Stomatology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Ren Z, Liu X, Si Y, Yang D. Long non-coding RNA DDX11-AS1 facilitates gastric cancer progression by regulating miR-873-5p/SPC18 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:572-583. [PMID: 32054332 DOI: 10.1080/21691401.2020.1726937] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastric cancer (GC) is a malignant tumour with high lethality. Accruing evidence elucidates the critical adjusting role of long non-coding RNA (lncRNAs) in human cancers. DDX11 antisense RNA 1 (DDX11-AS1) was previously found to be involved in GC pathogenesis. However, the precise molecular mechanisms of DDX11-AS1 need to be further investigated. In this study, we found that DDX11-AS1 expression was up-regulated in GC tumour tissues and cells. Increased DDX11-AS1 expression was associated with advanced TNM stage and lymph node metastasis. Functionally, knockdown of DDX11-AS1 repressed cell proliferation and clone formation, while induced cell cycle arrest and apoptosis. As expected, DDX11-AS1 overexpression displayed the opposite effect. Mechanically, DDX11-AS1 enhanced SPC18 expression through acting as a ceRNA for miR-873-5p. Furthermore, the inhibitory effect of DDX11-AS1 silencing on malignant biological behaviour of GC cells was attenuated by either miR-873-5p inhibitor or SEC11A up-regulation. Moreover, suppression of DDX11-AS1 also decreased GC tumorigenesis in vivo. In conclusion, DDX11-AS1 may serve as an oncogene in GC progression by sponging miR-873-5p and promoting SPC18 expression, providing a new insight into the mechanisms of DDX11-AS1 and elucidating a promising therapy target in GC.
Collapse
Affiliation(s)
- Zheng Ren
- Department of Digestive Diseases, Henan University Huaihe Hospital, Kaifeng, China
| | - Xiaochun Liu
- Department of Respiratory Medicine, Henan University Huaihe Hospital, Kaifeng, China
| | - Yaoran Si
- Department of Digestive Diseases, Henan University Huaihe Hospital, Kaifeng, China
| | - Desheng Yang
- Department of Digestive Diseases, Henan University Huaihe Hospital, Kaifeng, China
| |
Collapse
|
9
|
Yamamoto Y, Oue N, Asai R, Katsuya N, Uraoka N, Sakamoto N, Sentani K, Tanabe K, Ohdan H, Yasui W. SPC18 Expression Is an Independent Prognostic Indicator of Patients with Esophageal Squamous Cell Carcinoma. Pathobiology 2020; 87:254-261. [PMID: 32564026 DOI: 10.1159/000506956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Esophageal cancer is the sixth most common malignancy worldwide. Signal peptidase complex 18 (SPC18) protein, which is encoded by the SEC11A gene, is one of the subunits of the signal peptidase complex and plays an important role in the secretion of proteins including transforming growth factor α (TGF-α). In this study, we investigated the significance of SPC18 expression in human esophageal squamous cell carcinoma (ESCC). METHODS SPC18 expression was examined by immunohistochemistry. RNA interference was used to inhibit SPC18 expression in ESCC cell lines. To examine cell viability, we performed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. The effects of SPC18 inhibition on epidermal growth factor receptor (EGFR) signaling were analyzed by Western blot. RESULTS In total, 46 (50%) of 92 ESCC cases were positive for SPC18. SPC18 staining was observed more frequently in stage II/III/IV cases than in stage I cases (p = 0.028). We found that SPC18 expression was significantly associated with increased cancer-specific mortality (p = 0.006, log-rank test). SPC18 expression was frequently found in EGFR-positive cases compared with EGFR-negative cases. Cell proliferation and EGFR signaling were inhibited by SPC18 knockdown. CONCLUSION Specific inhibitors of SPC18 may be promising anticancer drugs for patients with ESCC.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan,
| | - Ryuichi Asai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Narutaka Katsuya
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohiro Uraoka
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Tanabe
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|