1
|
Zhang L, Mysore SP. The barn owl in systems and behavioral neuroscience: Progress and promise. Curr Opin Neurobiol 2025; 91:102983. [PMID: 39987690 DOI: 10.1016/j.conb.2025.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/24/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Though well-adapted to their evolutionary niches, animals exhibit a repertoire of behavioral functions that are common across species. Neuroscientific research that promotes the study of similar functions in multiple species, can illuminate shared versus specialized design features of the nervous system, revealing potentially profound insights into the neural basis of behavior and cognition. Here, we advance the idea that the barn owl is an excellent animal model in which to investigate such common functions. We do so by drawing attention to the range of exciting questions that can be asked in the owl beyond those deriving from its evolutionary specializations, by underscoring the variety of complex yet experimentally tractable behaviors it exhibits naturally, by emphasizing its complex network of brain systems, and by highlighting emerging opportunities for the application of modern neural technologies. Our goal is to motivate broader adoption of the powerful barn owl model for behavioral and systems neuroscience.
Collapse
Affiliation(s)
- Lilian Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, USA.
| |
Collapse
|
2
|
Peng B, Huang JJ, Li Z, Zhang LI, Tao HW. Cross-modal enhancement of defensive behavior via parabigemino-collicular projections. Curr Biol 2024; 34:3616-3631.e5. [PMID: 39019036 PMCID: PMC11373540 DOI: 10.1016/j.cub.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Effective detection and avoidance from environmental threats are crucial for animals' survival. Integration of sensory cues associated with threats across different modalities can significantly enhance animals' detection and behavioral responses. However, the neural circuit-level mechanisms underlying the modulation of defensive behavior or fear response under simultaneous multimodal sensory inputs remain poorly understood. Here, we report in mice that bimodal looming stimuli combining coherent visual and auditory signals elicit more robust defensive/fear reactions than unimodal stimuli. These include intensified escape and prolonged hiding, suggesting a heightened defensive/fear state. These various responses depend on the activity of the superior colliculus (SC), while its downstream nucleus, the parabigeminal nucleus (PBG), predominantly influences the duration of hiding behavior. PBG temporally integrates visual and auditory signals and enhances the salience of threat signals by amplifying SC sensory responses through its feedback projection to the visual layer of the SC. Our results suggest an evolutionarily conserved pathway in defense circuits for multisensory integration and cross-modality enhancement.
Collapse
Affiliation(s)
- Bo Peng
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Graduate Program in Biomedical and Biological Sciences, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhong Li
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Center for Neural Circuits and Sensory Processing Disorders, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
3
|
Wang J, Rao X, Huang S, Wang Z, Niu X, Zhu M, Wang S, Shi L. Detection of a temporal salient object benefits from visual stimulus-specific adaptation in avian midbrain inhibitory nucleus. Integr Zool 2024; 19:288-306. [PMID: 36893724 DOI: 10.1111/1749-4877.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Food and predators are the most noteworthy objects for the basic survival of wild animals, and both are often deviant in both spatial and temporal domains and quickly attract an animal's attention. Although stimulus-specific adaptation (SSA) is considered a potential neural basis of salient sound detection in the temporal domain, related research on visual SSA is limited and its relationship with temporal saliency is uncertain. The avian nucleus isthmi pars magnocellularis (Imc), which is central to midbrain selective attention network, is an ideal site to investigate the neural correlate of visual SSA and detection of a salient object in the time domain. Here, the constant order paradigm was applied to explore the visual SSA in the Imc of pigeons. The results showed that the firing rates of Imc neurons gradually decrease with repetitions of motion in the same direction, but recover when a motion in a deviant direction is presented, implying visual SSA to the direction of a moving object. Furthermore, enhanced response for an object moving in other directions that were not presented ever in the paradigm is also observed. To verify the neural mechanism underlying these phenomena, we introduced a neural computation model involving a recoverable synaptic change with a "center-surround" pattern to reproduce the visual SSA and temporal saliency for the moving object. These results suggest that the Imc produces visual SSA to motion direction, allowing temporal salient object detection, which may facilitate the detection of the sudden appearance of a predator.
Collapse
Affiliation(s)
- Jiangtao Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuman Huang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Zhizhong Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Xiaoke Niu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Minjie Zhu
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Songwei Wang
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
| | - Li Shi
- Department of Automation, Zhengzhou University School of Electrical Engineering, Zhengzhou, China
- Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Schryver HM, Mysore SP. Distinct neural mechanisms construct classical versus extraclassical inhibitory surrounds in an inhibitory nucleus in the midbrain attention network. Nat Commun 2023; 14:3400. [PMID: 37296109 PMCID: PMC10256684 DOI: 10.1038/s41467-023-39073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Inhibitory neurons in the midbrain spatial attention network, called isthmi pars magnocellularis (Imc), control stimulus selection by the sensorimotor and attentional hub, the optic tectum (OT). Here, we investigate in the barn owl how classical as well as extraclassical (global) inhibitory surrounds of Imc receptive fields (RFs), fundamental units of Imc computational function, are constructed. We find that focal, reversible blockade of GABAergic input onto Imc neurons disconnects their extraclassical inhibitory surrounds, but leaves intact their classical inhibitory surrounds. Subsequently, with paired recordings and iontophoresis, first at spatially aligned site-pairs in Imc and OT, and then, at mutually distant site-pairs within Imc, we demonstrate that classical inhibitory surrounds of Imc RFs are inherited from OT, but their extraclassical inhibitory surrounds are constructed within Imc. These results reveal key design principles of the midbrain spatial attention circuit and highlight the critical importance of competitive interactions within Imc for its operation.
Collapse
Affiliation(s)
- Hannah M Schryver
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Currently, Allen Institute, Seattle, WA, USA
| | - Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
5
|
Whyland KL, Masterson SP, Slusarczyk AS, Bickford ME. Synaptic properties of mouse tecto-parabigeminal pathways. Front Syst Neurosci 2023; 17:1181052. [PMID: 37251004 PMCID: PMC10213440 DOI: 10.3389/fnsys.2023.1181052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The superior colliculus (SC) is a critical hub for the generation of visually-evoked orienting and defensive behaviors. Among the SC's myriad downstream targets is the parabigeminal nucleus (PBG), the mammalian homolog of the nucleus isthmi, which has been implicated in motion processing and the production of defensive behaviors. The inputs to the PBG are thought to arise exclusively from the SC but little is known regarding the precise synaptic relationships linking the SC to the PBG. In the current study, we use optogenetics as well as viral tracing and electron microscopy in mice to better characterize the anatomical and functional properties of the SC-PBG circuit, as well as the morphological and ultrastructural characteristics of neurons residing in the PBG. We characterized GABAergic SC-PBG projections (that do not contain parvalbumin) and glutamatergic SC-PBG projections (which include neurons that contain parvalbumin). These two terminal populations were found to converge on different morphological populations of PBG neurons and elicit opposing postsynaptic effects. Additionally, we identified a population of non-tectal GABAergic terminals in the PBG that partially arise from neurons in the surrounding tegmentum, as well as several organizing principles that divide the nucleus into anatomically distinct regions and preserve a coarse retinotopy inherited from its SC-derived inputs. These studies provide an essential first step toward understanding how PBG circuits contribute to the initiation of behavior in response to visual signals.
Collapse
Affiliation(s)
| | | | | | - Martha E. Bickford
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
6
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
7
|
Wang J, Qian L, Wang S, Shi L, Wang Z. Directional Preference in Avian Midbrain Saliency Computing Nucleus Reflects a Well-Designed Receptive Field Structure. Animals (Basel) 2022; 12:1143. [PMID: 35565569 PMCID: PMC9105111 DOI: 10.3390/ani12091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 11/20/2022] Open
Abstract
Neurons responding sensitively to motions in several rather than all directions have been identified in many sensory systems. Although this directional preference has been demonstrated by previous studies to exist in the isthmi pars magnocellularis (Imc) of pigeon (Columba livia), which plays a key role in the midbrain saliency computing network, the dynamic response characteristics and the physiological basis underlying this phenomenon are unclear. Herein, dots moving in 16 directions and a biologically plausible computational model were used. We found that pigeon Imc's significant responses for objects moving in preferred directions benefit the long response duration and high instantaneous firing rate. Furthermore, the receptive field structures predicted by a computational model, which captures the actual directional tuning curves, agree with the real data collected from population Imc units. These results suggested that directional preference in Imc may be internally prebuilt by elongating the vertical axis of the receptive field, making predators attack from the dorsal-ventral direction and conspecifics flying away in the ventral-dorsal direction, more salient for avians, which is of great ecological and physiological significance for survival.
Collapse
Affiliation(s)
- Jiangtao Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.W.); (L.Q.); (S.W.)
| | - Longlong Qian
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.W.); (L.Q.); (S.W.)
| | - Songwei Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.W.); (L.Q.); (S.W.)
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.W.); (L.Q.); (S.W.)
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; (J.W.); (L.Q.); (S.W.)
| |
Collapse
|
8
|
Mahajan NR, Mysore SP. Donut-like organization of inhibition underlies categorical neural responses in the midbrain. Nat Commun 2022; 13:1680. [PMID: 35354821 PMCID: PMC8967821 DOI: 10.1038/s41467-022-29318-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Categorical neural responses underlie various forms of selection and decision-making. Such binary-like responses promote robust signaling of the winner in the presence of input ambiguity and neural noise. Here, we show that a 'donut-like' inhibitory mechanism in which each competing option suppresses all options except itself, is highly effective at generating categorical neural responses. It surpasses motifs of feedback inhibition, recurrent excitation, and divisive normalization invoked frequently in decision-making models. We demonstrate experimentally not only that this mechanism operates in the midbrain spatial selection network in barn owls, but also that it is necessary for categorical signaling by it. The functional pattern of neural inhibition in the midbrain forms an exquisitely structured 'multi-holed' donut consistent with this network's combinatorial inhibitory function for stimulus selection. Additionally, modeling reveals a generalizable neural implementation of the donut-like motif for categorical selection. Self-sparing inhibition may, therefore, be a powerful circuit module central to categorization.
Collapse
Affiliation(s)
- Nagaraj R Mahajan
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shreesh P Mysore
- Departments of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Asogwa NC, Toji N, He Z, Shao C, Shibata Y, Tatsumoto S, Ishikawa H, Go Y, Wada K. Nicotinic acetylcholine receptors in a songbird brain. J Comp Neurol 2022; 530:1966-1991. [PMID: 35344610 DOI: 10.1002/cne.25314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission and cell signaling, which contribute to learning, memory, and the execution of motor skills. Birdsong is a complex learned motor skill in songbirds. Although the existence of 15 nAChR subunits has been predicted in the avian genome, their expression patterns and potential contributions to song learning and production have not been comprehensively investigated. Here, we cloned all the 15 nAChR subunits (ChrnA1-10, B2-4, D, and G) from the zebra finch brain and investigated the mRNA expression patterns in the neural pathways responsible for the learning and production of birdsong during a critical period of song learning. Although there were no detectable hybridization signals for ChrnA1, A6, A9, and A10, the other 11 nAChR subunits were uniquely expressed in one or more major subdivisions in the song nuclei of the songbird brain. Of these 11 subunits, ChrnA3-5, A7, and B2 were differentially regulated in the song nuclei compared with the surrounding anatomically related regions. ChrnA5 was upregulated during the critical period of song learning in the lateral magnocellular nucleus of the anterior nidopallium. Furthermore, single-cell RNA sequencing revealed ChrnA7 and B2 to be the major subunits expressed in neurons of the vocal motor nuclei HVC and robust nucleus of the arcopallium, indicating the potential existence of ChrnA7-homomeric and ChrnB2-heteromeric nAChRs in limited cell populations. These results suggest that relatively limited types of nAChR subunits provide functional contributions to song learning and production in songbirds.
Collapse
Affiliation(s)
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Ziwei He
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroe Ishikawa
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
- Department of Physiological Sciences, National Institute for Physiological Sciences, Okazaki, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Mysore SP, Kothari NB. Mechanisms of competitive selection: A canonical neural circuit framework. eLife 2020; 9:e51473. [PMID: 32431293 PMCID: PMC7239658 DOI: 10.7554/elife.51473] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/02/2020] [Indexed: 01/25/2023] Open
Abstract
Competitive selection, the transformation of multiple competing sensory inputs and internal states into a unitary choice, is a fundamental component of animal behavior. Selection behaviors have been studied under several intersecting umbrellas including decision-making, action selection, perceptual categorization, and attentional selection. Neural correlates of these behaviors and computational models have been investigated extensively. However, specific, identifiable neural circuit mechanisms underlying the implementation of selection remain elusive. Here, we employ a first principles approach to map competitive selection explicitly onto neural circuit elements. We decompose selection into six computational primitives, identify demands that their execution places on neural circuit design, and propose a canonical neural circuit framework. The resulting framework has several links to neural literature, indicating its biological feasibility, and has several common elements with prominent computational models, suggesting its generality. We propose that this framework can help catalyze experimental discovery of the neural circuit underpinnings of competitive selection.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ninad B Kothari
- Department of Psychological and Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
11
|
Categorical Signaling of the Strongest Stimulus by an Inhibitory Midbrain Nucleus. J Neurosci 2020; 40:4172-4184. [PMID: 32300047 DOI: 10.1523/jneurosci.0042-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/04/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
The nucleus isthmi pars magnocellularis (Imc), a group of inhibitory neurons in the midbrain tegmentum, is a critical component of the spatial selection network in the vertebrate midbrain. It delivers long-range inhibition among different portions of the space map in the optic tectum (OT), thereby mediating stimulus competition in the OT. Here, we investigate the properties of relative strength-dependent competitive interactions within the Imc, in barn owls of both sexes. We find that when Imc neurons are presented simultaneously with one stimulus inside the receptive field and a second, competing stimulus outside, they exhibit gradual or switch-like response profiles as a function of relative stimulus strength. They do so both when the two stimuli are of the same sensory modality (both visual) or of different sensory modalities (visual and auditory). Moreover, Imc neurons signal the strongest stimulus in a dynamically flexible manner, indicating that Imc responses reflect an online comparison between the strengths of the competing stimuli. Notably, Imc neurons signal the strongest stimulus more categorically, and earlier than the OT. Paired recordings at spatially aligned sites in the Imc and OT reveal that although some properties of stimulus competition, such as the bias of competitive response profiles, are correlated, others such as the steepness of response profiles, are set independently. Our results demonstrate that the Imc is itself an active site of competition, and may be the first site in the midbrain selection network at which stimulus competition is resolved.SIGNIFICANCE STATEMENT This work sheds light on the functional properties of a small group of inhibitory neurons in the vertebrate midbrain that play a key part in how the brain selects a target among competitors. A better understanding of the functioning of these neurons is an important building block for the broader understanding of how distracters are suppressed, and of spatial attention and its dysfunction.
Collapse
|