1
|
Athiel Y, Cariot L, Jouannic JM, Maillet C, Mauffré V, Adam C, Huet H, Larghero J, Nasone J, Guilbaud L. Safety and efficacy of human umbilical cord-derived mesenchymal stromal cells in fetal ovine myelomeningocele repair. Stem Cell Res Ther 2024; 15:444. [PMID: 39568021 PMCID: PMC11580231 DOI: 10.1186/s13287-024-03991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the safety and efficacy of human umbilical cord mesenchymal stromal cells (hUC-MSCs) patch used as an adjuvant therapy in fetal myelomeningocele (MMC) surgery in the ovine model. METHODS hUC-MSCs were isolated from human umbilical cords (UC) using the explant method, cultured and characterized. hUC-MSCs were then embedded in a fibrin patch. MMC were surgically created at 75 days of gestation and repaired at 89 days of gestation in sheep fetuses. Two groups were compared: the hUC-MSCs group in which MMC was repaired using a cellular patch and the control group, in which MMC was repaired using an acellular patch. Safety was evaluated by clinical ewes' monitoring during gestation, and clinical and histological examinations of lambs after birth. Efficacy was assessed by clinical neurological evaluation at 2 and 24 h of life using the sheep locomotor rating scale and by histological analyses. RESULTS Among the 17 operated lambs, nine were born alive: six in the hUC-MSCs group and three in the control group. Overall fetal loss was 47% (8/17) without differences between the two groups. No fever was reported in ewes. No tumors were detected in clinical and histological examinations in the lambs. At 24 h of life, mean Sheep Locomotor Rating score was higher in the hUC-MSCs group than in the control group: 15.0 versus 2.0 (p = 0.07). Histological analyses showed a higher large neurons density in the hUC-MSCs group in comparison with the control group: 9.9 versus 6.3/mm2 of gray matter (p = 0.04). Lambs in the hUC-MSCs group had lower fibrosis around the spinal cord and at the level of the MMC scar: 70.9 versus 253.7 μm (p = 0.10) and 691.3 versus 1684.4 μm (p = 0,18), respectively. CONCLUSIONS Ovine fetal repair of MMC using human UC-MSCs seems to be an effective and safe procedure.
Collapse
Affiliation(s)
- Yoann Athiel
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Laura Cariot
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Jean-Marie Jouannic
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Corentin Maillet
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Vincent Mauffré
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Clovis Adam
- Service d'anatomopathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Hélène Huet
- École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jérôme Larghero
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Justine Nasone
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France
| | - Lucie Guilbaud
- Service de médecine foetale, DMU ORIGYN, APHP, Hôpital Trousseau, Sorbonne Université, Paris, France.
- Unité de Thérapie Cellulaire, Université Paris Cité, AP-HP, Hôpital Saint-Louis, U976 et CIC de Biothérapies, INSERM, Paris, France.
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France.
| |
Collapse
|
2
|
Athiel Y, Jouannic JM, Mauffré V, Dehan C, Adam C, Blot S, Lallemant P, De Saint Denis T, Larghero J, Nasone J, Guilbaud L. Allogenic umbilical cord-derived mesenchymal stromal cells improve motor function in prenatal surgical repair of myelomeningocele: An ovine model study. BJOG 2024; 131:759-767. [PMID: 37492999 DOI: 10.1111/1471-0528.17624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVE To investigate the effects of an adjuvant allogenic umbilical cord mesenchymal stromal cell (UC-MSC) patch applied during fetal surgery on motor and sphincter function in the ovine MMC model. DESIGN MMC defects were surgically created at 75 days of gestation and repaired 14 days later. POPULATION Ovine MMC model: fetal lambs. METHODS We compared lambs that received a UC-MSC patch with a control group of lambs that received an acellular patch. MAIN OUTCOME MEASURES Clinical neurological assessment was performed at 2 and 24 hours of life and included determination of the Sheep Locomotor Rating scale (SLR), which has been validated in the ovine MMC model. Electrophysical examinations, spine scans and histological analyses were also performed. RESULTS Of the 13 operated lambs, nine were born alive: five had of these had received a UC-MSC patch and four an acellular patch. At 24 hours of life, lambs in the UC-MSC group had a significantly higher score (14 versus 5, P = 0.04). Amyotrophy was significantly more common in the control group (75% versus 0%, P = 0.02). All the lambs in the control group and none of those in the UC-MSC group were incontinent. No significant differences were observed between the UC-MSC and control groups in terms of the presence of spontaneous EMG activity, nerve conduction or spinal evoked potentials. In the microscopic examination, lambs in the UC-MSC group had less fibrosis between the spinal cord and the dermis (mean thickness, 453 versus 3921 μm, P = 0.03) and around the spinal cord (mean thickness, 47 versus 158 μm, P < 0.001). Examination of the spinal cord in the area of the MMC defect showed a higher large neuron density in the UC-MSC group (14.5 versus 5.6 neurons/mm2, P < 0.001). No tumours were observed. CONCLUSIONS Fetal repair of MMC using UC-MSC patches improves motor and sphincter function as well as spinal preservation and reduction of fibrosis.
Collapse
Affiliation(s)
- Yoann Athiel
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
| | - Jean-Marie Jouannic
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
- Working Group Spina Bifida and Other Dysraphisms, European Reference Network ITHACA, Paris, France
| | - Vincent Mauffré
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, France
| | - Coralie Dehan
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maison-Alfort, France
| | - Clovis Adam
- Service d'anatomopathologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Stéphane Blot
- U955-IMRB, Inserm, École Nationale Vétérinaire d'Alfort, Unité de Neurologie, Maisons-Alfort, France
| | - Pauline Lallemant
- National Reference Center for Rare Disease: Vertebral and Spinal Cord Anomalies (MAVEM Center), AP-HP, Trousseau Hospital, Paris, France
- Sorbonne University, AP-HP, Trousseau Hospital, Paris, France
| | - Timothé De Saint Denis
- Service de Neurochirurgie Pédiatrique, Centre de Référence Chiari, Syringomyélie et Malformations du Rachis et de la Moelle C-MAVEM, et Centre de Référence des Malformations Craniofaciales-CRMR, Paris, France
| | - Jérôme Larghero
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Justine Nasone
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Unité de Thérapie Cellulaire et Centre MEARY de Thérapie Cellulaire et Génique, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Lucie Guilbaud
- Université Paris Cité, INSERM, U976 et Centre d'Investigation Clinique en Biothérapies CIC-BT CBT501, INSERM, Paris, France
- Service de médecine fœtale, APHP, Hôpital Trousseau, DMU ORIGYNE, Sorbonne Université, Paris, France
| |
Collapse
|
3
|
Lee SY, Du Y, Hassan AES, Brown E, Saadai P, Hirose S, Wang A, Farmer DL. Evolution and Variations of the Ovine Model of Spina Bifida. Fetal Diagn Ther 2023; 50:491-500. [PMID: 37393899 PMCID: PMC10757987 DOI: 10.1159/000531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Spina bifida is the most common congenital anomaly of the central nervous system and the first non-fatal fetal lesions to be addressed by fetal intervention. While research in spina bifida has been performed in rodent, nonhuman primate, and canine models, sheep have been a model organism for the disease. This review summarizes the history of development of the ovine model of spina bifida, previous applications, and translation into clinical studies. Initially used by Meuli et al. [Nat Med. 1995;1(4):342-7], fetal myelomeningocele defect creation and in utero repair demonstrated motor function preservation. The addition of myelotomy in this model can reproduce hindbrain herniation malformations, which is the leading cause of mortality and morbidity in humans. Since inception, the ovine models have been validated numerous times as the ideal large animal model for fetal repair, with both locomotive scoring and spina bifida defect scoring adding to the rigor of this model. The ovine model has been used to study different methods of myelomeningocele defect repair, the application of various tissue engineering techniques for neuroprotection and bowel and bladder function. The results of these large animal studies have been translated into human clinical trials including Management of Meningocele Study (MOMS) trial that established current standard of care for prenatal repair of spina bifida defects, and the ongoing trials including the Cellular Therapy for In Utero Repair of Myelomeningocele (CuRe) trial using a stem cell patch for repair. The advancement of these life savings and life-altering therapies began in sheep models, and this notable model continues to be used to further the field including current work with stem cell therapy.
Collapse
Affiliation(s)
- Su Yeon Lee
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA,
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA,
| | - Yimeng Du
- University of California Davis School of Medicine, Sacramento, California, USA
| | - Abd-Elrahman Said Hassan
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Erin Brown
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Payam Saadai
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Shinjiro Hirose
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| | - Diana L Farmer
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, Sacramento, California, USA
- Center for Surgical Bioengineering, University of California Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Theodorou CM, Stokes SC, Jackson JE, Pivetti CD, Kumar P, Yamashiro KJ, Paxton ZJ, Reynaga L, Hyllen AA, Wang A, Farmer DL. Efficacy of clinical-grade human placental mesenchymal stromal cells in fetal ovine myelomeningocele repair. J Pediatr Surg 2022; 57:753-758. [PMID: 34217509 PMCID: PMC9365331 DOI: 10.1016/j.jpedsurg.2021.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.
Collapse
Affiliation(s)
- Christina M. Theodorou
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA,Corresponding author information: Christina Theodorou, Department of Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, , Phone: 916-453-2080
| | - Sarah C. Stokes
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Jordan E. Jackson
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Christopher D. Pivetti
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Kaeli J. Yamashiro
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Zachary J. Paxton
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Alicia A. Hyllen
- Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Aijun Wang
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| | - Diana L. Farmer
- Department of Surgery, Division of Pediatric General, Thoracic, and Fetal Surgery. University of California Davis Medical Center. Sacramento, CA,Surgical Bioengineering Laboratory, University of California Davis Medical Center. Sacramento, CA
| |
Collapse
|
5
|
Preliminary Results of a Reverse Thermal Gel Patch for Fetal Ovine Myelomeningocele Repair. J Surg Res 2021; 270:113-123. [PMID: 34655937 DOI: 10.1016/j.jss.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Prenatal surgical closure of Myelomeningocele (MMC) is considered part of the current age armamentarium. Clinical data has demonstrated the need for innovative patches to maximize the benefits and decrease the risks of this approach. Our team has developed a minimally invasive reverse thermal gel (RTG) patch with cellular scaffolding properties. Here, we demonstrate the initial gross and microscopic histological effects of this RTG patch in the fetal ovine model of MMC. MATERIALS AND METHODS A fetal ovine MMC defect was created at 68-75 days gestation, RTG patch application or untreated at 100-103 days, and harvest at 135-140 days. The RTG was applied to the defect and secured in place with an overlay sealant. Defect areas underwent gross and microscopic analysis for inflammation and skin development. Brains were analyzed for hindbrain herniation and hydrocephalus. RESULTS The untreated fetus (n = 1) demonstrated an open defect lacking tissue coverage, evidence of spinal cord injury, increased caspase-3, Iba1 and GFAP in spinal cord tissues, and hindbrain herniation and ventricular dilation. RTG treated fetuses (n = 3) demonstrated defect healing with well-organized dermal and epidermal layers throughout the entire healed tissue area overlaying the defect with minimal inflammation, reduced caspase-3, Iba1 and GFAP in spinal cord tissues, and no hindbrain herniation or ventricular dilation. CONCLUSION An RTG patch applied to MMC defects in fetal sheep promoted skin coverage over the defect, was associated with minimal inflammation of the spinal cord tissues and prevented brain abnormalities. The present findings provide exciting results for future comprehensive radiological, functional, and mechanistic evaluation of the RTG.
Collapse
|
6
|
Stokes SC, Yamashiro KJ, Vanover MA, Galganski LA, Jackson JE, Theodorou CM, Pivetti CD, Farmer DL, Wang A. Preliminary Evaluation of a Novel Fetal Guinea Pig Myelomeningocele Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2180883. [PMID: 34423032 PMCID: PMC8378975 DOI: 10.1155/2021/2180883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/02/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Translational models of myelomeningocele (MMC) are needed to test novel in utero interventions. An ideal animal model for MMC has locomotor function at birth and is low cost enough to allow for high throughput. The rat MMC model is limited by immature locomotor function at birth. The ovine MMC model is a costly surgical model. Guinea pigs are uniquely suited for an MMC model being a small animal model with locomotor function at birth. We aimed to develop a retinoic acid (RA) model of MMC in the guinea pig and to evaluate if pregnant guinea pigs could tolerate uterine manipulation. METHODS Time-mated Dunkin Hartley guinea pig dams were dosed with 60 mg/kg of RA between gestation age (GA) 12 and 15 days in the development of an RA model. Fetuses were grossly evaluated for MMC lesions at Cesarean section after GA 31 days. Evaluation of the ability of pregnant guinea pig dams to tolerate uterine surgical intervention was performed by hysterotomy of a separated group of time-mated guinea pigs at GA 45, 50, and 55. RESULTS Forty-two pregnant guinea pigs were dosed with RA, with a total of 189 fetuses. The fetal demise rate was 38% (n = 71). A total of 118 fetuses were viable, 83% (n = 98) were normal fetuses, 8% (n = 10) had a neural tube defect, and 8% (n = 10) had a hematoma or other anomalies. No fetuses developed an MMC defect. None of the fetuses that underwent hysterotomy survived to term. CONCLUSION RA dosed at 60 mg/kg in guinea pigs between GA 12 and 15 did not result in MMC. Dunkin Hartley guinea pigs did not tolerate a hysterotomy near term in our surgical model. Further work is needed to determine if MMC can be induced in guinea pigs with alternate RA dosing.
Collapse
Affiliation(s)
- Sarah C. Stokes
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Kaeli J. Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Melissa A. Vanover
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Laura A. Galganski
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | - Jordan E. Jackson
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
| | | | - Christopher D. Pivetti
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Diana Lee Farmer
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children Northern California, Sacramento, CA, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, CA, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospitals for Children Northern California, Sacramento, CA, USA
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, USA
| |
Collapse
|
7
|
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. J Tissue Eng 2020; 11:2041731420943833. [PMID: 32782773 PMCID: PMC7383650 DOI: 10.1177/2041731420943833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Studying how the fetal spinal cord regenerates in an ex vivo model of spina bifida repair may provide insights into the development of new tissue engineering treatment strategies to better optimize neurologic function in affected patients. Here, we developed hydrogel surgical patches designed for prenatal repair of myelomeningocele defects and demonstrated viability of both human and rat neural progenitor donor cells within this three-dimensional scaffold microenvironment. We then established an organotypic slice culture model using transverse lumbar spinal cord slices harvested from retinoic acid–exposed fetal rats to study the effect of fibrin hydrogel patches ex vivo. Based on histology, immunohistochemistry, gene expression, and enzyme-linked immunoabsorbent assays, these experiments demonstrate the biocompatibility of fibrin hydrogel patches on the fetal spinal cord and suggest this organotypic slice culture system as a useful platform for evaluating mechanisms of damage and repair in children with neural tube defects.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kendal A Walker
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Guihua Jiang
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Julie Di Bernardo
- Section of Pediatric Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA.,Fetal Program, Johns Hopkins Children's Center, Baltimore, MD, USA
| |
Collapse
|