1
|
Akiba K, Matsubara K, Hattori A, Fukami M. Intragenic duplication of PHEX in a girl with X-linked hypophosphatemia: a case report with review of literature. Endocr J 2025; 72:413-419. [PMID: 39710377 PMCID: PMC11997267 DOI: 10.1507/endocrj.ej24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown. In this study, we determined the precise genomic structure and the XCI status of a girl with XLH who showed short stature and bowing of the legs at 2 years old. Laboratory tests revealed low levels of serum phosphate and elevated levels of alkaline phosphatase and fibroblast growth factor 23. Multiplex ligation-dependent probe amplification and targeted long-read sequencing revealed that she carried a 24.6-kb intragenic duplication of PHEX. The duplication was tandemly aligned in a head-to-tail orientation. The duplication breakpoints shared a 2-bp microhomology, indicating that this CNV resulted from a replication-based error. Trio sequencing results showed that the duplication was a de novo CNV that occurred on the paternally-derived allele. DNA methylation analysis demonstrated random XCI. A literature review of 12 previously reported cases of intragenic CNVs of PHEX revealed that the deletions/duplications can be ascribed to replication-based errors. Our findings and those of previous studies indicate that XLH-causative CNVs in PHEX predominantly arise from replication-based errors. Thus, the genomic region surrounding PHEX may be vulnerable to replication-based errors during gametogenesis or early embryogenesis. Our study provides supporting evidence that heterozygous PHEX variants can lead to XLH in women with random XCI.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo 183-8561, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
2
|
Liu Y, Zhu J, Zhou S, Hou Y, Yan Z, Ao X, Wang P, Zhou L, Chen H, Liang X, Guan H, Gao S, Xie D, Gu Y, Zhou P. Low-dose ionizing radiation-induced RET/PTC1 rearrangement via the non-homologous end joining pathway to drive thyroid cancer. MedComm (Beijing) 2024; 5:e690. [PMID: 39135916 PMCID: PMC11318340 DOI: 10.1002/mco2.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled-coil domain containing 6 [CCDC6]-rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings. This study aims to elucidate mechanism between RET/PTC1 rearrangement and IR in PTC. N-thy-ori-3-1 cells were subjected to varying doses of IR (2/1/0.5/0.2/0.1/0.05 Gy) of IR at different days, and result showed low-dose IR-induced RET/PTC1 rearrangement in a dose-dependent manner. RET/PTC1 has been observed to promote PTC both in vivo and in vitro. To delineate the role of different DNA repair pathways, SCR7, RI-1, and Olaparib were employed to inhibit non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ), respectively. Notably, inhibiting NHEJ enhanced HR repair efficiency and reduced IR-induced RET/PTC1 rearrangement. Conversely, inhibiting HR increased NHEJ repair efficiency and subsequent RET/PTC1 rearrangement. The MMEJ did not show a markable role in this progress. Additionally, inhibiting DNA-dependent protein kinase catalytic subunit (DNA-PKcs) decreased the efficiency of NHEJ and thus reduced IR-induced RET/PTC1 rearrangement. To conclude, the data suggest that NHEJ, rather than HR or MMEJ, is the critical cause of IR-induced RET/PTC1 rearrangement. Targeting DNA-PKcs to inhibit the NHEJ has emerged as a promising therapeutic strategy for addressing IR-induced RET/PTC1 rearrangement in PTC.
Collapse
Affiliation(s)
- Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shenghui Zhou
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Yifan Hou
- College of Life SciencesHebei UniversityBaodingChina
| | - Ziyan Yan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Xingkun Ao
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Ping Wang
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Huixi Chen
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Xinxin Liang
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
| | - Hua Guan
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Shanshan Gao
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Dafei Xie
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| |
Collapse
|
3
|
Ogiwara Y, Kobori Y, Suzuki E, Hattori A, Tanase-Nakao K, Osaka A, Iwahata T, Okada H, Kuroki Y, Fukami M. Isodicentric Y Chromosome with Multiple Breakpoints in the Pseudoautosomal Region 1. Cytogenet Genome Res 2024; 164:133-138. [PMID: 39074465 DOI: 10.1159/000540634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
INTRODUCTION Isodicentric Y chromosomes are relatively common structural variants of the human genome. The underlying mechanism of isodicentric Y chromosomes with short arm breakpoints [idic(Yq)] remains to be clarified. CASE PRESENTATION We encountered a Japanese man with azoospermia and mild short stature. G-banding and array-based comparative genomic hybridization indicated that his karyotype was 45,X/46,X,idic(Y)(qter→p11.32::p11.32→qter) with a ∼1.8 Mb terminal deletion. Whole-genome sequencing suggested that the Y chromosome had four breakpoints in a ∼7 kb region of the pseudoautosomal region 1 (PAR1). CONCLUSION This case was assumed to have an idic(Yq) resulting from multiple DNA double-strand breaks in PAR1. This rearrangement may have been facilitated by the PAR1-specific chromatin architecture. The clinical features of the patient can be ascribed to SHOX haploinsufficiency and the presence of a 45,X cell line, although copy-number gains of some Yq genes and the size reduction of PAR1 may also contribute to his spermatogenic failure.
Collapse
Affiliation(s)
- Yasuko Ogiwara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Yoshitomo Kobori
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kanako Tanase-Nakao
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akiyoshi Osaka
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Toshiyuki Iwahata
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Hiroshi Okada
- International Center for Reproductive Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Japan
| | - Yoko Kuroki
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Collaborative Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
4
|
Kuroki Y, Hattori A, Matsubara K, Fukami M. Long-read next-generation sequencing for molecular diagnosis of pediatric endocrine disorders. Ann Pediatr Endocrinol Metab 2024; 29:156-160. [PMID: 38956752 PMCID: PMC11220396 DOI: 10.6065/apem.2448028.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Recent advances in long-read next-generation sequencing (NGS) have enabled researchers to identify several pathogenic variants overlooked by short-read NGS, array-based comparative genomic hybridization, and other conventional methods. Long-read NGS is particularly useful in the detection of structural variants and repeat expansions. Furthermore, it can be used for mutation screening in difficultto- sequence regions, as well as for DNA-methylation analyses and haplotype phasing. This mini-review introduces the usefulness of long-read NGS in the molecular diagnosis of pediatric endocrine disorders.
Collapse
Affiliation(s)
- Yoko Kuroki
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keiko Matsubara
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
5
|
Kanezawa K, Yagasaki H, Arakawa A, Hoshi R, Uehara S, Morioka I. Malignant melanoma in a 12-year-old boy 17 months after completing hepatoblastoma treatment. Cancer Rep (Hoboken) 2024; 7:e2118. [PMID: 38801212 PMCID: PMC11129619 DOI: 10.1002/cnr2.2118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/21/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Melanoma is rare as a secondary malignant neoplasm among childhood cancer survivors. CASE We report a case of a 12-year-old boy who developed malignant melanoma with systemic metastases 17 months after completing treatment for hepatoblastoma. The diagnosis was made unexpectedly based on a bone marrow examination. The patient did not respond to immune checkpoint inhibitor therapy and died 6 weeks after being diagnosed with melanoma. Whole-exome sequencing to examine 103 genes associated with cancer predisposition did not identify any germ-line variants. CONCLUSION This case study provides a unique example of melanoma in a childhood cancer survivor following hepatoblastoma treatment but does not identify any candidate variant to link hepatoblastoma and melanoma.
Collapse
Affiliation(s)
- Koji Kanezawa
- PediatricsNihon University Itabashi HospitalTokyoJapan
| | | | - Ayumu Arakawa
- Department of Pediatric OncologyNational Cancer Center HospitalTokyoJapan
| | - Reina Hoshi
- Pediatric SurgeryNihon University Itabashi HospitalTokyoJapan
| | | | | |
Collapse
|
6
|
Laufer VA, Glover TW, Wilson TE. Applications of advanced technologies for detecting genomic structural variation. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108475. [PMID: 37931775 PMCID: PMC10792551 DOI: 10.1016/j.mrrev.2023.108475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas W Glover
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Thomas E Wilson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Ogiwara Y, Hattori A, Ikegawa K, Hasegawa Y, Kuroki Y, Miyado M, Fukami M. Optical Genome Mapping for a Patient with a Congenital Disorder and Chromosomal Translocation. Cytogenet Genome Res 2023; 162:617-624. [PMID: 37231804 DOI: 10.1159/000531103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
We performed optical genome mapping (OGM), a newly developed cytogenetic technique, for a patient with a disorder of sex development (DSD) and a 46,XX,t(9;11)(p22;p13) karyotype. The results of OGM were validated using other methods. OGM detected a 9;11 reciprocal translocation and successfully mapped its breakpoints to small regions of 0.9-12.3 kb. OGM identified 46 additional small structural variants, only three of which were detected by array-based comparative genomic hybridization. OGM suggested the presence of complex rearrangements on chromosome 10; however, these variants appeared to be artifacts. The 9;11 translocation was unlikely to be associated with DSD, while the pathogenicity of the other structural variants remained unknown. These results indicate that OGM is a powerful tool for detecting and characterizing chromosomal structural variations, although the current methods of OGM data analyses need to be improved.
Collapse
Affiliation(s)
- Yasuko Ogiwara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kento Ikegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yoko Kuroki
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Tamura T, Shimojima Yamamoto K, Imaizumi T, Yamamoto H, Miyamoto Y, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Breakpoint analysis for cytogenetically balanced translocation revealed unexpected complex structural abnormalities and suggested the position effect for MEF2C. Am J Med Genet A 2023; 191:1632-1638. [PMID: 36916329 DOI: 10.1002/ajmg.a.63182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
Many disease-causing genes have been identified by determining the breakpoints of balanced chromosomal translocations. Recent progress in genomic analysis has accelerated the analysis of chromosomal translocation-breakpoints at the nucleotide level. Using a long-read whole-genome sequence, we analyzed the breakpoints of the cytogenetically balanced chromosomal translocation t(5;15)(q21;26.3), which was confirmed to be of de novo origin, in a patient with a neurodevelopmental disorder. The results showed complex rearrangements with seven fragments consisting of five breakpoint-junctions (BJs). Four of the five BJs showed microhomologies of 1-3-bp, and only one BJ displayed a signature of blunt-end ligation, indicating chromothripsis as the underlying mechanism. Although the BJs did not disrupt any disease-causing gene, the clinical features of the patient were compatible with MEF2C haploinsufficiency syndrome. Complex rearrangements were located approximately 2.5-Mb downstream of MEF2C. Therefore, position effects were considered the mechanism of the occurrence of MEF2C haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisako Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yusaku Miyamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
9
|
Irregularities in Meiotic Prophase I as Prerequisites for Reproductive Isolation in Experimental Hybrids Carrying Robertsonian Translocations. DIVERSITY 2023. [DOI: 10.3390/d15030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The basic causes of postzygotic isolation can be elucidated if gametogenesis is studied, which is a drastically different process in males and females. As a step toward clarifying this problem, we obtained an experimental inbred lineage of the eastern mole vole Ellobius tancrei, whose founder animals were animals with identical diploid numbers 2n = 50 but with different Robertsonian translocations (Rb), namely 2Rb4.12 and 2Rb9.13 in the female and 2Rb.2.18 and 2Rb5.9 in the male. Here, we analyzed strictly inbred hybrids (F1, fertile and F10, sterile) using immunocytochemical methods in order to study spermatocytes during the meiotic prophase I. Previously, the presence of trivalents was assumed to have no significant effect on spermatogenesis and fertility in hybrids, but we demonstrated that spermatogenesis might be disturbed due to the cumulative effects of the retarded synapses of Rb bivalents as well as trivalents and their associations with XX sex bivalents. Alterations in the number of gametes due to the described processes led to a decrease in reproductive capacity up to sterility and can be examined as a mechanism for reproductive isolation, thus starting speciation.
Collapse
|
10
|
Tamura T, Yamamoto Shimojima K, Okamoto N, Yagasaki H, Morioka I, Kanno H, Minakuchi Y, Toyoda A, Yamamoto T. Long-read sequence analysis for clustered genomic copy number aberrations revealed architectures of intricately intertwined rearrangements. Am J Med Genet A 2023; 191:112-119. [PMID: 36282026 DOI: 10.1002/ajmg.a.62997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Most chromosomal aberrations revealed by chromosomal microarray testing (CMA) are simple; however, very complex chromosomal structural rearrangements can also be found. Although the mechanism of structural rearrangements has been gradually revealed, not all mechanisms have been elucidated. We analyzed the breakpoint-junctions (BJs) of two or more clustered copy number variations (CNVs) in the same chromosome arms to understand their conformation and the mechanism of complex structural rearrangements. Combining CMA with long-read whole-genome sequencing (WGS) analysis, we successfully determined all BJs for the clustered CNVs identified in four patients. Multiple CNVs were intricately intertwined with each other, and clustered CNVs in four patients were involved in global complex chromosomal rearrangements. The BJs of two clustered deletions identified in two patients showed microhomologies, and their characteristics were explained by chromothripsis. In contrast, the BJs in the other two patients, who showed clustered deletions and duplications, consisted of blunt-end and nontemplated insertions. These findings could be explained only by alternative nonhomologous end-joining, a mechanism related to polymerase theta. All the patients had at least one inverted segment. Three patients showed cryptic aberrations involving a disruption and a deletion/duplication, which were not detected by CMA but were first identified by WGS. This result suggested that complex rearrangements should be considered if clustered CNVs are observed in the same chromosome arms. Because CMA has potential limitations in genotype-phenotype correlation analysis, a more detailed analysis by whole genome examination is recommended in cases of suspected complex structural aberrations.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Yamamoto Shimojima
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yohei Minakuchi
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
11
|
A Maternally Inherited Rare Case with Chromoanagenesis-Related Complex Chromosomal Rearrangements and De Novo Microdeletions. Diagnostics (Basel) 2022; 12:diagnostics12081900. [PMID: 36010250 PMCID: PMC9406357 DOI: 10.3390/diagnostics12081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Chromoanagenesis is a phenomenon of highly complex rearrangements involving the massive genomic shattering and reconstitution of chromosomes that has had a great impact on cancer biology and congenital anomalies. Complex chromosomal rearrangements (CCRs) are structural alterations involving three or more chromosomal breakpoints between at least two chromosomes. Here, we present a 3-year-old boy exhibiting multiple congenital malformations and developmental delay. The cytogenetic analysis found a highly complex CCR inherited from the mother involving four chromosomes and five breakpoints due to forming four derivative chromosomes (2, 3, 6 and 11). FISH analysis identified an ultrarare derivative chromosome 11 containing three parts that connected the 11q telomere to partial 6q and 3q fragments. We postulate that this derivative chromosome 11 is associated with chromoanagenesis-like phenomena by which DNA repair can result in a cooccurrence of inter-chromosomal translocations. Additionally, chromosome microarray studies revealed that the child has one subtle maternal-inherited deletion at 6p12.1 and two de novo deletions at 6q14.1 and 6q16.1~6q16.3. Here, we present a familial CCR case with rare rearranged chromosomal structures and the use of multiple molecular techniques to delineate these genomic alterations. We suggest that chromoanagenesis may be a possible mechanism involved in the repair and reconstitution of these rearrangements with evidence for increasing genomic imbalances such as additional deletions in this case.
Collapse
|
12
|
Córdova-Fletes C, Rivera H, Aguayo-Orozco TA, Martínez-Jacobo LA, Garza-González E, Robles-Espinoza CD, Basurto-Lozada P, Avalos-Gómez HG, Esparza-García E, Domínguez-Quezada MG. A chromoanagenesis-driven ultra-complex t(5;7;21)dn truncates neurodevelopmental genes in a disabled boy as revealed by whole-genome sequencing. Eur J Med Genet 2022; 65:104579. [PMID: 35933106 DOI: 10.1016/j.ejmg.2022.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/30/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Germline or constitutional chromoanagenesis-related complex chromosomal rearrangements (CCRs) are rare, apparently "all-at-once", catastrophic events that occur in a single cell cycle, exhibit an unexpected complexity, and sometimes correlate with a severe abnormal phenotype. The term chromoanagenesis encompasses three distinct phenomena, namely chromothripsis, chromoanasynthesis, and chromoplexy. Herein, we found hallmarks of chromothripsis and chromoplexy in an ultra-complex t(5; 7;21)dn involving several disordered breakpoint junctions (BPJs) accompanied by some microdeletions and the disruption of neurodevelopmental genes in a patient with a phenotype resembling autosomal dominant MRD44 (OMIM 617061). G-banded chromosomes and FISH showed that the CCR implied the translocation of the 5p15.2→pter segment onto 7q11.23; in turn, the fragment 7q11.23→qter of der(7) separated into two pieces: the segment q11.23→q32 translocated onto 5p15.2 and fused to 21q22.1→ter in the der(5) while the distal 7q32→qter segment translocated onto der(21) at q22.1. Subsequent whole-genome sequencing unveiled that CCT5, CMBL, RETREG1, MYO10, and TRIO from der(5), IMMP2L, TES, VPS37D, DUS4L, TYW1B, and FEZF1-AS1 from der(7), and TIAM1 and SOD1 from der(21), were disrupted by BPJs, whereas some other genes (predicted to be haplosufficient or inconsequential) were completely deleted. Although remarkably CCT5, TRIO, TES, MYO10, and TIAM1 (and even VPS37D) cooperate in key biological processes for normal neuronal development such as cell adhesion, migration, growth, and/or cytoskeleton formation, the disruption of TRIO most likely caused the patient's MRD44-like phenotype, including intellectual disability, microcephaly, finger anomalies, and facial dysmorphia. Our observation represents the first truncation of TRIO related to a chromoanagenesis event and therefore expands the mutational spectrum of this crucial gene. Moreover, our findings indicate that more than one mechanism is involved in modeling the architecture of ultra-complex rearrangements.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| | - Horacio Rivera
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Thania Alejandra Aguayo-Orozco
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico; División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Lizeth Alejandra Martínez-Jacobo
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico; Wellcome Sanger Institute, Hinxton, UK
| | - Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Santiago de Querétaro, Mexico
| | | | - Eduardo Esparza-García
- Hospital de Pediatría, UMAE-CMNO, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico.
| |
Collapse
|
13
|
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet 2022; 15:23. [PMID: 35701783 PMCID: PMC9199198 DOI: 10.1186/s13039-022-00600-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.
Collapse
Affiliation(s)
- Bruna Burssed
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Teixeira Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
16
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
17
|
Zhang S, Zhu J, Qi H, Xu L, Cai L, Meng R. De novo balanced reciprocal translocation mosaic t(1;3)(q42;q25) detected by prenatal genetic diagnosis: a fetus conceived using preimplantation genetic testing due to a t(12;14)(q22;q13) balanced paternal reciprocal translocation. Mol Cytogenet 2021; 14:55. [PMID: 34863242 PMCID: PMC8645079 DOI: 10.1186/s13039-021-00576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/12/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION De novo balanced reciprocal translocations mosaicism in fetus conceived using preimplantation genetic testing from a different balanced translocation carrier parent has been rarely reported. METHODS Chromosomal microarray analysis, karyotype analysis and fluorescent in situ hybridization were performed to verify the type and heredity of the rearrangement. STR analysis was conducted to identify potential contamination and verify kinship. In addition, a local BLAST engine was performed to locate potentially homologous segments which might contribute to the translocation in breakpoints of chromosome. RESULTS A rare de novo balanced reciprocal translocations mosaicism mos 46,XY,t(1;3)(q42;q25)[40]/46,XY[39] was diagnosed in a fetus conceived using preimplantation genetic testing due to a 46,XY,t(12;14)(q22;q13) balanced translocation carrier father through multiplatform genetic techniques. Two of the largest continuous high homology segments were identified in chromosomal band 1q42.12 and 3q25.2. At the 21-months follow up, infant has achieved all psychomotor development milestones as well as growth within the normal reference range. CONCLUSION We present a prenatal diagnosis of a rare de novo balanced reciprocal translocations mosaicism in a fetus who conceived by preimplantation genetic testing. The most reasonable driving mechanism was that a de novo mitotic error caused by nonallelic homologous recombination between 1q42.12 and 3q25.2 in a zygote within the first or early cell divisions, which results in a mosaic embryo with the variant present in a half proportion of cells.
Collapse
Affiliation(s)
- Shaoqin Zhang
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Jianjiang Zhu
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Hong Qi
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China.
| | - Limei Xu
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Lirong Cai
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| | - Ran Meng
- Prenatal Diagnosis Center, Beijing Haidian Maternal and Child Health Hospital, No.53 Suzhou Street, Haidian District, Beijing, 100080, People's Republic of China
| |
Collapse
|
18
|
Liehr T. Molecular Cytogenetics in the Era of Chromosomics and Cytogenomic Approaches. Front Genet 2021; 12:720507. [PMID: 34721522 PMCID: PMC8548727 DOI: 10.3389/fgene.2021.720507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/22/2021] [Indexed: 02/04/2023] Open
Abstract
Here the role of molecular cytogenetics in the context of yet available all other cytogenomic approaches is discussed. A short introduction how cytogenetics and molecular cytogenetics were established is followed by technical aspects of fluorescence in situ hybridization (FISH). The latter contains the methodology itself, the types of probe- and target-DNA, as well as probe sets. The main part deals with examples of modern FISH-applications, highlighting unique possibilities of the approach, like the possibility to study individual cells and even individual chromosomes. Different variants of FISH can be used to retrieve information on genomes from (almost) base pair to whole genomic level, as besides only second and third generation sequencing approaches can do. Here especially highlighted variations of FISH are molecular combing, chromosome orientation-FISH (CO-FISH), telomere-FISH, parental origin determination FISH (POD-FISH), FISH to resolve the nuclear architecture, multicolor-FISH (mFISH) approaches, among other applied in chromoanagenesis studies, Comet-FISH, and CRISPR-mediated FISH-applications. Overall, molecular cytogenetics is far from being outdated and actively involved in up-to-date diagnostics and research.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
19
|
Hiatt SM, Lawlor JM, Handley LH, Ramaker RC, Rogers BB, Partridge EC, Boston LB, Williams M, Plott CB, Jenkins J, Gray DE, Holt JM, Bowling KM, Bebin EM, Grimwood J, Schmutz J, Cooper GM. Long-read genome sequencing for the molecular diagnosis of neurodevelopmental disorders. HGG ADVANCES 2021; 2:100023. [PMID: 33937879 PMCID: PMC8087252 DOI: 10.1016/j.xhgg.2021.100023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Exome and genome sequencing have proven to be effective tools for the diagnosis of neurodevelopmental disorders (NDDs), but large fractions of NDDs cannot be attributed to currently detectable genetic variation. This is likely, at least in part, a result of the fact that many genetic variants are difficult or impossible to detect through typical short-read sequencing approaches. Here, we describe a genomic analysis using Pacific Biosciences circular consensus sequencing (CCS) reads, which are both long (>10 kb) and accurate (>99% bp accuracy). We used CCS on six proband-parent trios with NDDs that were unexplained despite extensive testing, including genome sequencing with short reads. We identified variants and created de novo assemblies in each trio, with global metrics indicating these datasets are more accurate and comprehensive than those provided by short-read data. In one proband, we identified a likely pathogenic (LP), de novo L1-mediated insertion in CDKL5 that results in duplication of exon 3, leading to a frameshift. In a second proband, we identified multiple large de novo structural variants, including insertion-translocations affecting DGKB and MLLT3, which we show disrupt MLLT3 transcript levels. We consider this extensive structural variation likely pathogenic. The breadth and quality of variant detection, coupled to finding variants of clinical and research interest in two of six probands with unexplained NDDs, support the hypothesis that long-read genome sequencing can substantially improve rare disease genetic discovery rates.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ryne C. Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David E. Gray
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - James M. Holt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Kevin M. Bowling
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35924, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | |
Collapse
|
20
|
Pellestor F, Gaillard JB, Schneider A, Puechberty J, Gatinois V. Chromoanagenesis, the mechanisms of a genomic chaos. Semin Cell Dev Biol 2021; 123:90-99. [PMID: 33608210 DOI: 10.1016/j.semcdb.2021.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Designated under the name of chromoanagenesis, the phenomena of chromothripsis, chromanasynthesis and chromoplexy constitute new types of complex rearrangements, including many genomic alterations localized on a few chromosomal regions, and whose discovery over the last decade has changed our perception about the formation of chromosomal abnormalities and their etiology. Although exhibiting specific features, these new catastrophic mechanisms generally occur within a single cell cycle and their emergence is closely linked to genomic instability. Various non-exclusive exogenous or cellular mechanisms capable of generating chromoanagenesis have been evoked. However, recent experimental data shed light on 2 major processes, which following a defect in the mitotic segregation of chromosomes, can generate a cascade of cellular events leading to chromoanagenesis. These mechanisms are the formation of micronuclei integrating isolated chromosomal material, and the occurrence of chromatin bridges around chromosomal material resulting from telomeric fusions. In both cases, the cellular and molecular mechanisms of fragmentation, repair and transmission of damaged chromosomal material are consistent with the features of chromoanagenesis-related complex chromosomal rearrangements. In this review, we introduce each type of chromoanagenesis, and describe the experimental models that have allowed to validate the existence of chromoanagenesis events and to better understand their cellular mechanisms of formation and transmission, as well as their impact on the stability and the plasticity of the genome.
Collapse
Affiliation(s)
- F Pellestor
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France.
| | - J B Gaillard
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - A Schneider
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - J Puechberty
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France
| | - V Gatinois
- Unit of Chromosomal Genetics and Research Plateform Chromostem, Department of Medical Genetics, Arnaud de Villeneuve Hospital, Montpellier CHU, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 5 34295, France; INSERM 1183 Unit "Genome and Stem Cell Plasticity in Development and Aging" Institute of Regenerative Medecine and Biotherapies, St Eloi Hospital, Montpellier, France
| |
Collapse
|
21
|
Pathogenic 12-kb copy-neutral inversion in syndromic intellectual disability identified by high-fidelity long-read sequencing. Genomics 2020; 113:1044-1053. [PMID: 33157260 DOI: 10.1016/j.ygeno.2020.10.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/08/2020] [Accepted: 10/31/2020] [Indexed: 01/07/2023]
Abstract
We report monozygotic twin girls with syndromic intellectual disability who underwent exome sequencing but with negative pathogenic variants. To search for variants that are unrecognized by exome sequencing, high-fidelity long-read genome sequencing (HiFi LR-GS) was applied. A 12-kb copy-neutral inversion was precisely identified by HiFi LR-GS after trio-based variant filtering. This inversion directly disrupted two genes, CPNE9 and BRPF1, the latter of which attracted our attention because pathogenic BRPF1 variants have been identified in autosomal dominant intellectual developmental disorder with dysmorphic facies and ptosis (IDDDFP), which later turned out to be clinically found in the twins. Trio-based HiFi LR-GS together with haplotype phasing revealed that the 12-kb inversion occurred de novo on the maternally transmitted chromosome. This study clearly indicates that submicroscopic copy-neutral inversions are important but often uncharacterized culprits in monogenic disorders and that long-read sequencing is highly advantageous for detecting such inversions involved in genetic diseases.
Collapse
|