1
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025; 21:964-987. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Lee JA, Bae DH, Choi WH, Cho CH, Bang YS, Yoo J. Effects of Sevoflurane Exposure on Fetal Brain Development Using Cerebral Organoids. J Mol Neurosci 2022; 72:2440-2450. [PMID: 36478139 DOI: 10.1007/s12031-022-02080-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Sevoflurane is a safe and well-known inhaled anesthetic. Given that sevoflurane can be delivered to developing fetuses through the mother, it is critical to determine whether this agent affects fetal neurodevelopment. Recent research has sought to determine whether sevoflurane affects fetal brain development when the mother is exposed during the second to third trimester of pregnancy, considered to be the crucial period for the development of nervous system. However, even though the first trimester is a critical period for fetal organogenesis and the most susceptible time to teratogen exposure, research regarding the effects of sevoflurane on organogenesis, especially on brain development, is insufficient. In the present study, human embryonic stem cells (hESC)-derived cerebral organoids were exposed to sevoflurane during the time corresponding to the first trimester to investigate the effect of early sevoflurane exposure on fetal brain development, specifically the processes of neuronal differentiation and maturation. Organoid size exposed to the intermediate concentration of sevoflurane did not differ from control, immunofluorescence demonstrated that sevoflurane temporarily decreased the size of SOX2 + /N-cad + ventricular zone structures only during the mid-time point, and upregulated expression of TUJ1 and MAP2 only during the early time point. However, all markers returned to normal levels, and organoids formed normal cortical structures at the late time point. Our results suggest that maternal sevoflurane exposure during the first trimester of pregnancy can cause abnormal neuronal differentiation in the fetal brain. However, considering the recovery observed in later periods, sevoflurane exposure might not have lasting impacts on fetal brain development.
Collapse
Affiliation(s)
- Jae A Lee
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.,R&D Institute, ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Chang-Hoon Cho
- R&D Institute, ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea
| | - Yun-Sic Bang
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. .,Department of Anesthesiology and Pain Medicine, CHA Bundang Medical Center, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology and CHA Organoid Research Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea. .,R&D Institute, ORGANOIDSCIENCES, Ltd., Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
3
|
Yang Z, Hu S, He Y, Ji L. LINC00665 rescues bupivacaine induced neurotoxicity in human neural cell of SH-SY5Y through has-miR-34a-5p. Brain Res Bull 2021; 177:210-216. [PMID: 34626694 DOI: 10.1016/j.brainresbull.2021.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Excessive application of local anesthetics, bupivacaine (BUP) may induce neurotoxicity and lead to neurologic dysfunctions in human brains. Yet, the exact molecular mechanisms underlying BUP-induced neurotoxicity was not fully understood. In this study, we utilized an in vitro SH-SY5Y cell culture model to explore the functional mechanism of long intergenic non-protein coding RNA 665 (LINC00665) in regulating BUP-induced neurotoxicity. METHODS SH-SY5Y cells were induced with BUP in vitro, and their viability and apoptosis were monitored. BUP-induced LINC00665 expression was also monitored, by qRT-PCR. LINC00665 was then overexpressed in SH-SY5Y cells, and its effects on BUP-induced neurotoxicity were investigated. The downstream target transcript of LINC00665, human mature microRNA-34a-5p (hsa-miR-34a-5p) was investigated in BUP-induced SH-SY5Y cells. Co-regulation of LINC00665 / hsa-miR-132-3p epigenetic axis was further examined on BUP-induced apoptosis in SH-SY5Y cells. RESULTS BUP reduced cell viability, induced apoptosis and downregulated LINC00665 in SH-SY5Y cells. LINC00665 overexpression rescued BUP-induced neurotoxicity in SH-SY5Y cells. Hsa-miR-34a-5p expression was directly correlated with BUP treatment and LINC00665 overexpression in SH-SY5Y cells. Upregulating hsa-miR-34a-5p reversed the rescuing effects of LINC00665 on BUP-induced SH-SY5Y apoptosis. CONCLUSIONS BUP-induced neurotoxicity in human neural cells may be regulated by the epigenetic axis of LINC00665 / hsa-miR-34a-5p.
Collapse
Affiliation(s)
- Zhoujing Yang
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Sheng Hu
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Yinbin He
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China
| | - Ling Ji
- Anesthesiology & Perioperative Medicine Centre, Xi'an People's Hospital, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|