1
|
Shah FA. Revisiting the physical and chemical nature of the mineral component of bone. Acta Biomater 2025; 196:1-16. [PMID: 39892685 DOI: 10.1016/j.actbio.2025.01.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
The physico-chemical characteristics of bone mineral remain heavily debated. On the nanoscale, bone mineral resides both inside and outside the collagen fibril as distinct compartments fused together into a cohesive continuum. On the micrometre level, larger aggregates are arranged in a staggered pattern described as crossfibrillar tessellation. Unlike geological and synthetic hydroxy(l)apatite, bone mineral is a unique form of apatite deficient in calcium and hydroxyl ions with distinctive carbonate and acid phosphate substitutions (CHAp), together with a minor contribution of amorphous calcium phosphate as a surface layer around a crystalline core of CHAp. In mammalian bone, an amorphous solid phase has not been observed, though an age-dependent shift in the amorphous-to-crystalline character is observed. Although octacalcium phosphate has been postulated as a bone mineral precursor, there is inconsistent evidence of calcium phosphate phases other than CHAp in the extracellular matrix. In association with micropetrosis, magnesium whitlockite is occasionally detected, indicating pathological calcification rather than a true extracellular matrix component. Therefore, the terms 'biomimetic' or 'bone-like' should be used cautiously in descriptions of synthetic biomaterials. The practice of reporting the calcium-to-phosphorus ratio (Ca/P) as proxy for bone mineral maturity oversimplifies the chemistry since both Ca2+ and PO43- ions are partially substituted. Moreover, non-mineral sources of phosphorus are ignored. Alternative compositional metrics should be considered. In the context of bone tissue and bone mineral, the term 'mature' must be used carefully, with clear criteria that consider both compositional and structural parameters and the potential impact on mechanical properties. STATEMENT OF SIGNIFICANCE: Bone mineral exhibits a unique hierarchical structure and is classified into intrafibrillar and extrafibrillar mineral compartments with distinct physico-chemical characteristics. The dynamic nature of bone mineral, i.e., evolving chemical composition and physical form, is poorly understood. For instance, bone mineral is frequently described as "hydroxy(l)apatite", even though the OH- content of mature bone mineral is negligible. Moreover, the calcium-to-phosphorus ratio is often taken as an indicator of bone mineral maturity without acknowledging substitutions at calcium and phosphate sites. This review takes a comprehensive look at the structure and composition of bone mineral, highlighting how experimental data are misinterpreted and unresolved concerns that warrant further investigation, which have implications for characterisation of bone material properties and development of bone repair biomaterials.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg Sweden.
| |
Collapse
|
2
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Shah FA. High-resolution Raman spectroscopy reveals compositional differences between pigmented incisor enamel and unpigmented molar enamel in Rattus norvegicus. Sci Rep 2023; 13:12301. [PMID: 37516744 PMCID: PMC10387050 DOI: 10.1038/s41598-023-38792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Dental enamel is a peculiar biological tissue devoid of any self-renewal capacity as opposed to bone. Thus, a thorough understanding of enamel composition is essential to develop novel strategies for dental enamel repair. While the mineral found in bone and dental enamel is generally viewed as the biologically-produced equivalent of hydroxy(l)apatite, the formation of these bioapatites is controlled by different organic matrix frameworks-mainly type-I collagen in bone and amelogenin in enamel. In lower vertebrates, such as rodents, two distinct types of enamel are produced. Iron-containing pigmented enamel protects the continuously growing incisor teeth while magnesium-rich unpigmented enamel covers the molar teeth. Using high-resolution Raman spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy, this work explores the differences in acid phosphate (HPO42-), carbonate (CO32-), hydroxyl (OH-), iron, and magnesium content of pigmented incisor enamel and unpigmented molar enamel of Sprague Dawley rats. Bundles of hydroxy(l)apatite nanowires comprise the enamel prisms, where prisms in pigmented enamel are wider and longer than those in unpigmented molars. In contrast to magnesium-rich unpigmented enamel, higher mineral crystallinity, and higher HPO42- and OH- levels are hallmark features of iron-rich pigmented enamel. Furthermore, the apparent absence of iron oxides or oxy(hydroxides) indicates that iron is introduced into the apatite lattice at the expense of calcium, albeit in amounts that do not alter the Raman signatures of the PO43- internal modes. Compositional idiosyncrasies of iron-rich pigmented and nominally iron-free unpigmented enamel offer new insights into enamel biomineralisation supporting the notion that, in rodents, ameloblast function differs significantly between the incisors and the molars.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Shah FA. The many facets of micropetrosis - Magnesium whitlockite deposition in bisphosphonate-exposed human alveolar bone with osteolytic metastasis. Micron 2023; 168:103441. [PMID: 36924676 DOI: 10.1016/j.micron.2023.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The lacuno-canalicular space of apoptotic osteocytes eventually becomes mineralised in vivo. This condition is known as micropetrosis and is a fundamental characteristic of ageing bone. Increased prevalence of such hypermineralised osteocyte lacunae is viewed as a structural marker of impaired bone function - both mechanical and biological. Within the lacuno-canalicular space, mineralised apoptotic debris typically occurs as micrometre-sized, spherical nodules of magnesium-rich, carbonated apatite. Moreover, characteristically facetted, rhomboidal nodules of magnesium whitlockite [Mg-whitlockite; Ca18Mg2(HPO4)2(PO4)12] have been reported in human alveolar bone exposed to the bisphosphonate alendronate. This work provides supporting evidence for Mg-whitlockite formation in the alveolar bone of a 70-year-old male exposed to the bisphosphonate zoledronic acid to suppress osteolytic changes in skeletal metastasis. Backscattered electron scanning electron microscopy (BSE-SEM) revealed spherical and rhomboidal nodules within the lacuno-canalicular space. A variant of spherical nodules exhibited a fuzzy surface layer comprising radially extending acicular crystallites. The rhomboidal nodules ranged between ∼200 nm to ∼2.4 µm across the widest dimension (652 ± 331 nm). Micro-Raman spectroscopy and energy dispersive X-ray spectroscopy confirmed that rhomboidal nodules are compositionally distinct from spherical nodules, exhibiting higher Mg content and lower Ca/P ratio. Formation of Mg-whitlockite within osteocyte lacunae is multifactorial in nature and suggests altered bone biomineralisation. Nevertheless, the underlying mechanism(s) and sequence of events remain poorly understood and warrant further investigation. The possibility to discriminate between carbonated apatite and Mg-whitlockite nodules within osteocyte lacunae, based on particle morphology, attests to the diagnostic potential of BSE-SEM with or without additional analyses of material composition.
Collapse
Affiliation(s)
- Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Shah FA, Jolic M, Micheletti C, Omar O, Norlindh B, Emanuelsson L, Engqvist H, Engstrand T, Palmquist A, Thomsen P. Bone without borders - Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioact Mater 2023; 19:103-114. [PMID: 35441115 PMCID: PMC9005875 DOI: 10.1016/j.bioactmat.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
Calcium phosphates (CaP) represent an important class of osteoconductive and osteoinductive biomaterials. As proof-of-concept, we show how a multi-component CaP formulation (monetite, beta-tricalcium phosphate, and calcium pyrophosphate) guides osteogenesis beyond the physiological envelope. In a sheep model, hollow dome-shaped constructs were placed directly over the occipital bone. At 12 months, large amounts of bone (∼75%) occupy the hollow space with strong evidence of ongoing remodelling. Features of both compact bone (osteonal/osteon-like arrangements) and spongy bone (trabeculae separated by marrow cavities) reveal insights into function/need-driven microstructural adaptation. Pores within the CaP also contain both woven bone and vascularised lamellar bone. Osteoclasts actively contribute to CaP degradation/removal. Of the constituent phases, only calcium pyrophosphate persists within osseous (cutting cones) and non-osseous (macrophages) sites. From a translational perspective, this multi-component CaP opens up exciting new avenues for osteotomy-free and minimally-invasive repair of large bone defects and augmentation of the dental alveolar ridge.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Jurašeková Z, Fabriciová G, Silveira LF, Lee YN, Gutak JM, Ataabadi MM, Kundrát M. Raman Spectra and Ancient Life: Vibrational ID Profiles of Fossilized (Bone) Tissues. Int J Mol Sci 2022; 23:10689. [PMID: 36142598 PMCID: PMC9502200 DOI: 10.3390/ijms231810689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Raman micro-spectroscopy is a non-destructive and non-contact analytical technique that combines microscopy and spectroscopy, thus providing a potential for non-invasive and in situ molecular identification, even over heterogeneous and rare samples such as fossilized tissues. Recently, chemical imaging techniques have become an increasingly popular tool for characterizing trace elements, isotopic information, and organic markers in fossils. Raman spectroscopy also shows a growing potential in understanding bone microstructure, chemical composition, and mineral assemblance affected by diagenetic processes. In our lab, we have investigated a wide range of different fossil tissues, mainly of Mesozoic vertebrates (from Jurassic through Cretaceous). Besides standard spectra of sedimentary rocks, including pigment contamination, our Raman spectra also exhibit interesting spectral features in the 1200-1800 cm-1 spectral range, where Raman bands of proteins, nucleic acids, and other organic molecules can be identified. In the present study, we discuss both a possible origin of the observed bands of ancient organic residues and difficulties with definition of the specific spectral markers in fossilized soft and hard tissues.
Collapse
Affiliation(s)
- Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Luis F. Silveira
- Museu de Zoologia da Universidade de São Paulo, Caixa Postal 42.494, São Paulo 04218-970, Brazil
| | - Yuong-Nam Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Jaroslav M. Gutak
- Department of Geology, Geodesy, and Life Security, Institute of Mining and Geosystems, Siberian State Industrial University, Kirov Street 42, 654007 Novokuznetsk, Russia
| | - Majid Mirzaie Ataabadi
- Department of Geology, Faculty of Science, University of Zanjan, Zanjan 4537138791, Iran
| | - Martin Kundrát
- PaleoBioImaging Lab, Evolutionary Biodiversity Research Group, Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| |
Collapse
|
7
|
Sayardoust S, Norstedt W, Shah FA. The long-term impact of alveolar ridge preservation with xenograft bone mineral on peri-implant health after 5 years in function: A retrospective cohort study of 108 patients assessed clinically and radiologically. Clin Exp Dent Res 2022; 8:640-649. [PMID: 35510846 PMCID: PMC9209797 DOI: 10.1002/cre2.583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives When teeth are lost, dental implants contribute to improved oral function and quality of life. Limitations in dental implant placement arising from poor bone anatomy may be circumvented via alveolar ridge preservation (ARP). The aim is to evaluate the long‐term impact of ARP on peri‐implant health and the relationship with common risk indicators such as smoking and history of periodontitis. Materials and Methods One hundred and eight patients were enrolled in this retrospective cohort study with 308 implants. Of these, ∼41% were placed in bone sites that had previously received ARP with deproteinized bovine bone mineral xenograft. Association between baseline variables: ARP, age, gender, number of implants per patient, anatomical site, smoking, and previous history of grade III/IV periodontitis, and outcome variables: mucositis, peri‐implantitis, implant loss, full‐mouth plaque score (FMPS), full‐mouth bleeding score, and marginal bone loss (MBL) was evaluated using both univariate and multivariate models. Results After 5 years, the overall survival rate was 93.7%. The occurrence of peri‐implantitis was 21.3% and the extent of MBL was ~2.2 mm. Both peri‐implantitis occurrence and MBL were comparable between ARP+ and ARP−. Smoking is associated with higher FMPS and MBL. Conclusions The findings indicate that peri‐implant health can be maintained around dental implants for up to 5 years in ARP+ sites using Bio‐Oss®. Smoking is a major risk indicator for peri‐implantitis, whereas the association between history of periodontitis and the risk of peri‐implantitis, based on this specific, well‐maintained cohort and the specific implants used, remains inconclusive.
Collapse
Affiliation(s)
- Shariel Sayardoust
- Centre for Oral Health, School of Health and WelfareJönköping UniversityJönköpingSweden
- Department of PeriodontologyInstitute for Postgraduate Dental EducationJönköpingSweden
- Department of Biomaterials, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wilhelm Norstedt
- Department of PeriodontologyInstitute for Postgraduate Dental EducationJönköpingSweden
| | - Furqan A. Shah
- Department of Biomaterials, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|