1
|
Yalaz M, Höft M, Maling N, Butz M, Juárez Paz LM, Boe P, Bahners BH, Schnitzler A, Helmers AK, Deuschl G. Detection of deep brain stimulation lead position and orientation in patients using magnetoencephalography. Clin Neurophysiol 2025; 173:221-228. [PMID: 40239270 DOI: 10.1016/j.clinph.2025.02.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 01/18/2025] [Accepted: 02/28/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Deep brain stimulation (DBS) programming in patients with directional DBS requires precise lead position and orientation knowledge. Current computed tomography (CT)-based methods expose patients to radiation. This study investigates a non-radiation-based magnetic detection approach using magnetoencephalography (MEG) in four Parkinson's disease patients. METHODS MEG recordings were performed under omnidirectional and directional electrode configurations. Three patients were measured with individualized head-casts to minimize head movement. Magnetic detection was applied to determine DBS lead's position and orientation, compared with those derived from postoperative CT imaging. RESULTS Conventional MEG recordings without head-casts achieved lead position and orientation accuracies of up to 17.3 mm and 24.1°. The use of head-casts improved accuracies to 5.8 ± 1.3 mm and 8.8 ± 2.2° at best. Higher mean errors indicate the presence of systematic biases, primarily caused by the MEG system's limited spatial precision. Reduced error variability demonstrates potential for 1-2 mm localization and 2-4° orientation accuracy. CONCLUSIONS While magnetic lead position detection is inferior to established approaches, DBS lead orientation could be determined with sufficient accuracy for potential clinical use. Advances in MEG technology may offer improvements in spatial precision and detection accuracy. SIGNIFICANCE This method may serve as a radiation-free alternative to imaging-based approaches.
Collapse
Affiliation(s)
- Mevlüt Yalaz
- Department of Electrical and Information Engineering, Kiel University, Germany; Department of Neurology, Kiel University, Germany.
| | - Michael Höft
- Department of Electrical and Information Engineering, Kiel University, Germany
| | | | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | | | - Patrick Boe
- Department of Electrical and Information Engineering, Kiel University, Germany
| | - Bahne H Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
2
|
Jensen MA, Neimat JS, Kerezoudis P, Ali R, Richardson RM, Halpern CH, Ojemann SG, Ponce FA, Lee KH, Haugen LM, Permezel FE, Klassen BT, Kondziolka D, Miller KJ. Principles of Stereotactic Surgery. Oper Neurosurg (Hagerstown) 2025; 28:303-321. [PMID: 39627171 PMCID: PMC11809997 DOI: 10.1227/ons.0000000000001422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Stereotactic procedures are used to manage a diverse set of patients across a variety of clinical contexts. The stereotactic devices and software used in these procedures vary between surgeons, but the fundamental principles that constitute safe and accurate execution do not. The aim of this work is to describe these principles to equip readers with a generalizable knowledge base to execute and understand stereotactic procedures. METHODS A combination of a review of the literature and empirical experience from several experienced surgeons led to the creation of this work. Thus, this work is descriptive and qualitative by nature, and the literature is used to support instead of generate the ideas of this framework. RESULTS The principles detailed in this work are categorized based on 5 clinical domains: imaging, registration, mechanical accuracy, target planning and adjustment, and trajectory planning and adjustment. Illustrations and tables are used throughout to convey the concepts in an efficient manner. CONCLUSION Stereotactic procedures are complex, requiring a thorough understanding of each step of the workflow. The concepts described in this work enable functional neurosurgeons with the fundamental knowledge necessary to provide optimal patient care.
Collapse
Affiliation(s)
- Michael A. Jensen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | | | - Rushna Ali
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - R. Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Casey H. Halpern
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Health Neurosciences Center, Denver, Colorado, USA
| | - Francisco A. Ponce
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura M. Haugen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Kai J. Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Büchele F, Stieglitz L, Baumann CR. Should asleep deep brain stimulation in Parkinson's disease be preferred over the awake approach? - Cons. Swiss Med Wkly 2024; 154:3855. [PMID: 39137444 DOI: 10.57187/s.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
No abstract available.
Collapse
Affiliation(s)
- Fabian Büchele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
4
|
Knorr P, Winkler D, Kropla F, Möbius R, Müller M, Scholz S, Grunert R. Development of a 3D-printed, patient-specific stereotactic system for bihemispheric deep brain stimulation. 3D Print Med 2023; 9:29. [PMID: 37831407 PMCID: PMC10571275 DOI: 10.1186/s41205-023-00193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
The aim of the project was to develop a patient-specific stereotactic system that allows simultaneous and thus time-saving treatment of both cerebral hemispheres and that contains all spatial axes and can be used as a disposable product. Furthermore, the goal was to reduce the size and weight of the stereotactic system compared to conventional systems to keep the strain on the patient, who is awake during the operation, to a minimum. In addition, the currently mandatory computed tomography should be avoided in order not to expose the patient to harmful X-ray radiation as well as to eliminate errors in the fusion of CT and MRI data.3D printing best meets the requirements in terms of size and weight: on the one hand, the use of plastic has considerable potential for weight reduction. On the other hand, the free choice of the individual components offers the possibility to optimize the size and shape of the stereotactic system and to adapt it to the individual circumstances while maintaining the same precision. The all-in-one stereotactic system was produced by means of the Multi Jet Fusion process. As a result, the components are highly precise, stable in use, lightweight and sterilizable. The number of individual components and interfaces, which in their interaction are potential sources of error, was significantly reduced. In addition, on-site manufacturing leads to faster availability of the system.Within the project, a patient-specific stereotaxy system was developed, printed, and assembled, which enables the execution of deep brain stimulation via only three bone anchors located on the skull. Pre-developed MRI markers, which can be screwed directly onto the bone anchors via the sleeves, eliminate the need for a CT scan completely. The fusion of the data, which is no longer required, suggests an improvement in target accuracy.
Collapse
Affiliation(s)
- Patrick Knorr
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Saxony, Germany.
| | - Dirk Winkler
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Saxony, Germany
| | - Fabian Kropla
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Saxony, Germany
| | - Robert Möbius
- The Medical Forge, Biosaxony, 04103, Leipzig, Saxony, Germany
| | - Marcel Müller
- Fraunhofer Institute for Machine Tools and Forming Technology, 01187, Dresden, Saxony, Germany
| | - Sebastian Scholz
- Fraunhofer Institute for Machine Tools and Forming Technology, 02763, Zittau, Saxony, Germany
| | - Ronny Grunert
- Department of Neurosurgery, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Saxony, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, 02763, Zittau, Saxony, Germany
| |
Collapse
|
5
|
Benson JC, Nassiri AM, Saoji AA, Carlson ML, Lane JI. Co-Registration of pre- and post-Operative images after cochlear Implantation: A proposed technique to Improve cochlear visualization and localization of cochlear electrodes. Neuroradiol J 2023; 36:194-197. [PMID: 35985649 PMCID: PMC10034710 DOI: 10.1177/19714009221122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND PURPOSE After cochlear implantation, metallic artifact can obscure nearby structures on CT images, which is problematic in patients with facial nerve stimulation (FNS). This study evaluated the usefulness of co-registered pre- and post-operative examinations to evaluate the cochlear implant and adjacent structures. MATERIALS AND METHODS A retrospective review was completed of consecutive patients that underwent CT imaging of the temporal bone before and after placement of a cochlear implant. Two blinded neuroradiologists independently reviewed all available examinations. All examinations were assessed for the presence or absence of dehiscence of the osseous ridge between the cochlea and facial nerve canal (FNC). Pre-operative and fused pre- and post-operative examinations were compared in their ability to visualize the osseous ridge using a 5-point Likert scale (ranging from 1 = unfused images were substantially superior to 5 = fused images were substantially superior). The electrode closest to the FNC were noted. RESULTS Of 34 included patients, 13 (38.2%) were female and 21 (61.8%) were male; average age was 72.2. Seven patients (20.6%) had frank dehiscence between the cochlea and FNC. Fused images were superior to the post-operative study alone for assessing the integrity of the osseous partition between the cochlea and FNC and for reducing artifact from the electrode array (average Likert scores for both reviewers were 4.4 and 4.7). There was good agreement between reviewers in noting electrode closest to the FNC (concordance correlation coefficient=0.82). CONCLUSIONS Following cochlear implantation, co-registered pre- and post-operative CT images are superior to conventional images in assessing the anatomic relationship between the cochlea and FNC.
Collapse
|
6
|
Reisert M, Sajonz BEA, Brugger TS, Reinacher PC, Russe MF, Kellner E, Skibbe H, Coenen VA. Where Position Matters-Deep-Learning-Driven Normalization and Coregistration of Computed Tomography in the Postoperative Analysis of Deep Brain Stimulation. Neuromodulation 2023; 26:302-309. [PMID: 36424266 DOI: 10.1016/j.neurom.2022.10.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Recent developments in the postoperative evaluation of deep brain stimulation surgery on the group level warrant the detection of achieved electrode positions based on postoperative imaging. Computed tomography (CT) is a frequently used imaging modality, but because of its idiosyncrasies (high spatial accuracy at low soft tissue resolution), it has not been sufficient for the parallel determination of electrode position and details of the surrounding brain anatomy (nuclei). The common solution is rigid fusion of CT images and magnetic resonance (MR) images, which have much better soft tissue contrast and allow accurate normalization into template spaces. Here, we explored a deep-learning approach to directly relate positions (usually the lead position) in postoperative CT images to the native anatomy of the midbrain and group space. MATERIALS AND METHODS Deep learning is used to create derived tissue contrasts (white matter, gray matter, cerebrospinal fluid, brainstem nuclei) based on the CT image; that is, a convolution neural network (CNN) takes solely the raw CT image as input and outputs several tissue probability maps. The ground truth is based on coregistrations with MR contrasts. The tissue probability maps are then used to either rigidly coregister or normalize the CT image in a deformable way to group space. The CNN was trained in 220 patients and tested in a set of 80 patients. RESULTS Rigorous validation of such an approach is difficult because of the lack of ground truth. We examined the agreements between the classical and proposed approaches and considered the spread of implantation locations across a group of identically implanted subjects, which serves as an indicator of the accuracy of the lead localization procedure. The proposed procedure agrees well with current magnetic resonance imaging-based techniques, and the spread is comparable or even lower. CONCLUSIONS Postoperative CT imaging alone is sufficient for accurate localization of the midbrain nuclei and normalization to the group space. In the context of group analysis, it seems sufficient to have a single postoperative CT image of good quality for inclusion. The proposed approach will allow researchers and clinicians to include cases that were not previously suitable for analysis.
Collapse
Affiliation(s)
- Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany
| | - Timo S Brugger
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Maximilian F Russe
- Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Medical Faculty of Freiburg University, Freiburg, Germany; Department of Diagnostic and Interventional Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany
| | - Henrik Skibbe
- RIKEN, Center for Brain Science, Brain Image Analysis Unit, Saitama, Japan
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany
| |
Collapse
|
7
|
Zhao GR, Cheng YF, Feng KK, Wang M, Wang YG, Wu YZ, Yin SY. Clinical Study of Intraoperative Microelectrode Recordings during Awake and Asleep Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease: A Retrospective Cohort Study. Brain Sci 2022; 12:brainsci12111469. [PMID: 36358395 PMCID: PMC9688350 DOI: 10.3390/brainsci12111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Our objective is to analyze the difference of microelectrode recording (MER) during awake and asleep subthalamic nucleus deep brain stimulation (STN-DBS) for Parkinson’s disease (PD) and the necessity of MER during “Asleep DBS” under general anesthesia (GA). The differences in MER, target accuracy, and prognosis under different anesthesia methods were analyzed. Additionally, the MER length was compared with the postoperative electrode length by electrode reconstruction and measurement. The MER length of two groups was 5.48 ± 1.39 mm in the local anesthesia (LA) group and 4.38 ± 1.43 mm in the GA group, with a statistical significance between the two groups (p < 0.01). The MER length of the LA group was longer than its postoperative electrode length (p < 0.01), however, there was no significant difference between the MER length and postoperative electrode length in the GA group (p = 0.61). There were also no significant differences in the postoperative electrode length, target accuracy, and postoperative primary and secondary outcome scores between the two groups (p > 0.05). These results demonstrate that “Asleep DBS” under GA is comparable to “Awake DBS” under LA. GA has influences on MER during surgery, but typical STN discharges can still be recorded. MER is not an unnecessary surgical procedure.
Collapse
Affiliation(s)
- Guang-Rui Zhao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
- Department of Neurosurgery, Lu’an Hospital Affiliated to Anhui Medical University, Lu’an 237000, China
| | - Yi-Feng Cheng
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300350, China
| | - Ke-Ke Feng
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300350, China
| | - Min Wang
- Department of Neurology, Huanhu Hospital, Tianjin University, Tianjin 300350, China
| | - Yan-Gang Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Zhang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Shao-Ya Yin
- Department of Functional Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300350, China
- Correspondence:
| |
Collapse
|
8
|
Lee AT, Han KJ, Nichols N, Sudhakar VR, Burke JF, Wozny TA, Chung JE, Volz MM, Ostrem JL, Martin AJ, Larson PS, Starr PA, Wang DD. Targeting Accuracy and Clinical Outcomes of Awake Vs Asleep Interventional MRI-Guided Deep Brain Stimulation for Parkinson's Disease: The UCSF Experience. Neurosurgery 2022; 91:717-725. [PMID: 36069560 DOI: 10.1227/neu.0000000000002111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/05/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interventional MRI (iMRI)-guided implantation of deep brain stimulator (DBS) leads has been developed to treat patients with Parkinson's disease (PD) without the need for awake testing. OBJECTIVE Direct comparisons of targeting accuracy and clinical outcomes for awake stereotactic with asleep iMRI-DBS for PD are limited. METHODS We performed a retrospective review of patients with PD who underwent awake or iMRI-guided DBS surgery targeting the subthalamic nucleus or globus pallidus interna between 2013 and 2019 at our institution. Outcome measures included Unified Parkinson's Disease Rating Scale Part III scores, levodopa equivalent daily dose, radial error between intended and actual lead locations, stimulation parameters, and complications. RESULTS Of the 218 patients included in the study, the iMRI cohort had smaller radial errors (iMRI: 1.27 ± 0.72 mm, awake: 1.59 ± 0.96 mm, P < .01) and fewer lead passes (iMRI: 1.0 ± 0.16, awake: 1.2 ± 0.41, P < .01). Changes in Unified Parkinson's Disease Rating Scale were similar between modalities, but awake cases had a greater reduction in levodopa equivalent daily dose than iMRI cases (P < .01), which was attributed to the greater number of awake subthalamic nucleus cases on multivariate analysis. Effective clinical contacts used for stimulation, side effect thresholds, and complication rates were similar between modalities. CONCLUSION Although iMRI-DBS may result in more accurate lead placement for intended target compared with awake-DBS, clinical outcomes were similar between surgical approaches. Ultimately, patient preference and surgeon experience with a given DBS technique should be the main factors when determining the "best" method for DBS implantation.
Collapse
Affiliation(s)
- Anthony T Lee
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Kasey J Han
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Noah Nichols
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Vivek R Sudhakar
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John F Burke
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Thomas A Wozny
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jason E Chung
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Monica M Volz
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jill L Ostrem
- Department of Neurology, Movement Disorders and Neuromodulation Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Alastair J Martin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Paul S Larson
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Philip A Starr
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Doris D Wang
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Verhagen Metman L, Slavin KV, Rosenow JM, Vitek JL, van den Munckhof P. More Than Just the Level of Consciousness: Comparing Asleep and Awake Deep Brain Stimulation. Mov Disord 2021; 36:2763-2766. [PMID: 34585783 DOI: 10.1002/mds.28806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Leo Verhagen Metman
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joshua M Rosenow
- Departments of Neurosurgery, Neurology, and Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, North Holland, USA
| |
Collapse
|
10
|
Howell B, Isbaine F, Willie JT, Opri E, Gross RE, De Hemptinne C, Starr PA, McIntyre CC, Miocinovic S. Image-based biophysical modeling predicts cortical potentials evoked with subthalamic deep brain stimulation. Brain Stimul 2021; 14:549-563. [PMID: 33757931 DOI: 10.1016/j.brs.2021.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Subthalamic deep brain stimulation (DBS) is an effective surgical treatment for Parkinson's disease and continues to advance technologically with an enormous parameter space. As such, in-silico DBS modeling systems have become common tools for research and development, but their underlying methods have yet to be standardized and validated. OBJECTIVE Evaluate the accuracy of patient-specific estimates of neural pathway activations in the subthalamic region against intracranial, cortical evoked potential (EP) recordings. METHODS Pathway activations were modeled in eleven patients using the latest advances in connectomic modeling of subthalamic DBS, focusing on the hyperdirect pathway (HDP) and corticospinal/bulbar tract (CSBT) for their relevance in human research studies. Correlations between pathway activations and respective EP amplitudes were quantified. RESULTS Good model performance required accurate lead localization and image fusions, as well as appropriate selection of fiber diameter in the biophysical model. While optimal model parameters varied across patients, good performance could be achieved using a global set of parameters that explained 60% and 73% of electrophysiologic activations of CSBT and HDP, respectively. Moreover, restricted models fit to only EP amplitudes of eight standard (monopolar and bipolar) electrode configurations were able to extrapolate variation in EP amplitudes across other directional electrode configurations and stimulation parameters, with no significant reduction in model performance across the cohort. CONCLUSIONS Our findings demonstrate that connectomic models of DBS with sufficient anatomical and electrical details can predict recruitment dynamics of white matter. These results will help to define connectomic modeling standards for preoperative surgical targeting and postoperative patient programming applications.
Collapse
Affiliation(s)
- Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | | - Jon T Willie
- Department of Neurosurgery, Emory University, USA
| | - Enrico Opri
- Department of Neurology, Emory University, USA
| | | | | | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, USA
| | | |
Collapse
|