1
|
Xu S, Chen Y, Zhang L, Lu W, Chen X, Wang T, Wang W. Neuroprotective effects of arctigenin on cerebral ischemia-reperfusion injury in rats via the EPO/EPOR-JAK2-STAT5 signaling pathway. Front Pharmacol 2025; 16:1503971. [PMID: 40206088 PMCID: PMC11979258 DOI: 10.3389/fphar.2025.1503971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/20/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process with significant morbidity and mortality, and there is no specific agent. Previous studies have found that arctigenin can play an anti-CIRI role through anti-inflammatory and antioxidant effects. This study further explored the anti-CIRI mechanism of arctigenin via the EPO/EPOR-JAK2-STAT5 signaling pathway. Methods TTC and H&E staining were used to observe infarct volume and morphological changes in the brain, RT-PCR was used to detect EPO, EPOR, HIF, JAK2, STAT5, NF-κB mRNA expression, EPO/EPOR ratio was detected by immunofluorescence, and HIF was observed by immunohistochemical staining. The protein expression levels of JAK2 and STAT5 were detected, and the protein expression levels of EPO, EPOR, HIF, JAK2 and STAT5 were detected by western blot. Results Our results indicate that arctigenin significantly reduced infarct volume and improved histopathological changes in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion by TTC and H&E staining. RT-PCR analysis showed that arctigenin could significantly upregulate the mRNA expressions of EPO, EPOR, and HIF and downregulate the mRNA expressions of JAK2, STAT5, and NF-κB in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion. Immunofluorescence assay showed that the ratio of EPO/EPOR in CIRI rats at 24 h, 48 h, and 72 h post-reperfusion was significantly elevated by arctigenin. Arctigenin could upregulate the HIF protein expression while downregulate the protein expressions of JAK2, STAT5, and NFκB in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion by immunohistochemical staining. The protein regulation results of EPO, EPOR, HIF, JAK2, and STAT5 were also confirmed by Western blot at 72 h after reperfusion, consistent with the above results. Discussion In conclusion, arctigenin demonstrated neuroprotective properties against CIRI potentially through the EPO/EPOR-JAK2-STAT5 signaling pathway. These findings provide a scientific rationale for further exploration of arctigenin as a therapeutic agent for stroke.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Yuting Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lingling Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Wei Lu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Xu Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ting Wang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenjie Wang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| |
Collapse
|
2
|
Jinno M. Ovarian stimulation by promoting basal follicular growth. Reprod Biol Endocrinol 2025; 23:35. [PMID: 40050948 PMCID: PMC11884117 DOI: 10.1186/s12958-025-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Most methods of ovarian stimulation rely on gonadotropin modulation. However, abnormal anti-Müllerian hormone concentrations are frequent in infertility, suggesting that defects in the gonadotropin-independent period of folliculogenesis preceding cyclic recruitment (i.e., basal follicular growth) may often occur. We need to better understand basal follicular growth and determine how to improve it. METHODS Section I summarizes a literature search concerning preantral and early antral folliculogenesis, cyclic recruitment, and selection. Section II presents current knowledge about interventions involving early antral folliculogenesis and cyclic recruitment. RESULTS While folliculogenesis following cyclic recruitment is gonadotropin-dependent, basal follicular growth is not. Basal follicular growth is regulated by follicle-stimulating hormone and local communication between the oocyte and its granulosa and thecal cells involving gap junctions and many autocrine/paracrine factors. This local communication sustains growth synergistically with follicle-stimulating hormone, but also suppresses this hormone to induce granulosa cell differentiation. As a follicle develops, its responsiveness to gonadotropin progressively increases. Section II describes 4 interventions affecting early antral folliculogenesis, including granulocyte colony-stimulating factor priming, bromocriptine rebound, carbohydrate metabolism intervention, and danazol priming, which have improved embryo development and live birth rate in patients with previous failures. CONCLUSION Basal follicular growth modulation can increase live birth rates.
Collapse
Affiliation(s)
- Masao Jinno
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan.
| |
Collapse
|
3
|
Xu Y, Yu P, Liang J, Chen Y, Yang C, Xia C, Deng J, Hai L, Chen J, Wu Y. Synthesis and bioactivity evaluation of glycosylated resveratrol derivatives as antioxidative neuroprotection agents against cerebral Ischemia-Reperfusion injury. Bioorg Chem 2024; 153:107791. [PMID: 39244974 DOI: 10.1016/j.bioorg.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Resveratrol (Res) has long been discovered to have antioxidant effects to prevent such as oxidation, inflammation, neurodegeneration and age-related diseases. However, its poor water solubility, low bioavailability and instability have become a barrier to its pharmaceutical application. In order to improve the neuroprotective effects and develop more potential usage of Res, three Res derivatives containing one or two glucose groups, i.e., Res-Glu1, Res-Glu2 and Res-Glu3, were designed and synthesized through click reaction. Res-Glu1, Res-Glu2 and Res-Glu3 were tested being better water solubility and stability compared to Res. Res derivatives reduced •OH radicals-induced DNA damage. PC12 assays indicated that glucosylated Res derivatives could alleviate H2O2-induced neurotoxicity and reduce intracellular ROS generation, demonstrating their neuroprotective effects. In addition, Res derivatives enhanced the protective effects on cerebral ischemia-reperfusion injury in rats. Res-Glu3 displayed the best neuroprotective effects among the three derivatives.
Collapse
Affiliation(s)
- Yanning Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Liang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology (Institute of Food Nutrition and Health), Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Dai J, Huang H, Wu L, Ding M, Zhu X. Protective Role of Vitamin D Receptor in Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo Model. FRONT BIOSCI-LANDMRK 2024; 29:389. [PMID: 39614452 DOI: 10.31083/j.fbl2911389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Vitamin D receptor (VDR) can prevent myocardial ischemia reperfusion injury (MIRI). Hence, we aimed to illuminate the effect of VDR on cerebral ischemia/reperfusion injury (CIRI). METHODS C57BL/6 mice and SK-N-SH cells were utilized to establish CIRI and cellular oxygen deprivation/reoxygenation (OGD/R) models. Mice were injected with 1 μg/kg Calcitriol or 1 μg/kg Paricalcitol (PC) and adenovirus-mediated VDR overexpression or knockdown plasmids. 2,3,5-triphenyl-tetrazolium chloride (TTC) and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to measure the brain infarct volume and the apoptosis of cerebral cells. SK-N-SH cells were treated with 5 mM N-acetyl-L-cysteine (NAC) and transfected with VDR knockdown plasmid. Flow cytometry and Cell Counting Kit-8 (CCK-8) assays were employed to assess the apoptosis and cell viability. Enzyme-Linked Immunosorbent Assay (ELISA), quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and Western blot were exploited to quantify the levels of reactive species oxygen (ROS), other oxidative stress-related factors, VDR and apoptosis-related factors. RESULTS The level of VDR in mouse cerebral tissue was elevated by CIRI (p < 0.001). CIRI-induced cerebral infarction (p < 0.001) and the apoptosis of cerebral cells (p < 0.001) in mice were mitigated by the activation of VDR. VDR overexpression abrogated while VDR silencing enhanced CIRI-induced infarction, oxidative stress and apoptosis of cerebral cells (p < 0.05). Furthermore, VDR silencing aggravated the oxidative stress and apoptosis in OGD/R-treated SK-N-SH cells (p < 0.05). NAC, a scavenger of oxidative stress, could reverse the effects of VDR silencing on apoptosis and oxidative stress in OGD/R-treated SK-N-SH cells (p < 0.01). CONCLUSION VDR alleviates the oxidative stress to protect against CIRI.
Collapse
Affiliation(s)
- Jie Dai
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haiyan Huang
- Department of General surgery, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, 226019 Nantong, Jiangsu, China
| | - Mei Ding
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xiangyang Zhu
- Department of Neurology, The Second Affiliated Hospital of Nantong University, 226001 Nantong, Jiangsu, China
| |
Collapse
|
5
|
Zhu H, Zhu T, Dubiao D, Zhang X. Metformin Attenuates Myocardial Ischemia-Reperfusion Injury through the AMPK-HMGCR-ROS Signaling Axis. KARDIOLOGIIA 2024; 64:48-56. [PMID: 39526518 DOI: 10.18087/cardio.2024.10.n2739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To explore the role and mechanism of metformin (MET) in regulating myocardial injury caused by cardiac ischemia-reperfusion. MATERIAL AND METHODS A rat model of myocardial ischemia-reperfusion injury was established by ligation of the anterior descending branch of the left coronary artery. The myocardial area at risk and the infarction size were measured by Evans blue and 2,3,5‑triphenyltetrazole chloride (TTC) staining, respectively. Terminal Deoxynucleotidyl Transferase-Mediated dUTP Nick End Labeling (TUNEL) staining was used to detect apoptosis of cardiomyocytes. The expression of 4‑hydroxynonenal (4‑HNE) was detected by immunohistochemical staining. Real-time quantitative polymerase chain reaction (RT-PCR) and Western blot were used to detect mRNA and expression of the Adenosine 5'-monophosphate-activated protein kinase (AMPK) - 3‑hydroxy-3‑methylglutaryl-CoA reductase (HMGCR) signaling pathway, respectively. RESULTS MET treatment decreased the infarct size and the activity of the myocardial enzyme profile, thus demonstrating protection of ischemic myocardium. The number of TUNEL positive cells significantly decreased. Immunohistochemical results showed that MET decreased the expression of 4‑HNE in myocardial tissue and the content of malondialdehyde (MDA) in myocardial cells. Further experimental results showed that MET decreased HMGCR transcription and protein expression, and increased AMPK phosphorylation. In the model of hypoxia and reoxygenation injury of cardiomyocytes, MET increased the viability of cardiomyocytes, decreased the activity of lactic dehydrogenase (LDH), decreased malondialdehyde content and intracellular reactive oxygen species (ROS) concentrations, and regulate the AMPK-HMGCR signaling pathway through coenzyme C (ComC). CONCLUSION MET inhibits the expression of HMGCR by activating AMPK, reduces oxidative damage and apoptosis of cardiomyocytes, and alleviates myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- He Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Tao Zhu
- Department of Vascular Surgery, Zhejiang Chinese Medical University
| | - Dubiao Dubiao
- Department of Cardiology, Kecheng District People's Hospital
| | - Xinmei Zhang
- Department of Vascular Surgery, Quzhou People's Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
6
|
Palmer D, Henze L, Murua Escobar H, Walter U, Kowald A, Fuellen G. Multicohort study testing the generalisability of the SASKit-ML stroke and PDAC prognostic model pipeline to other chronic diseases. BMJ Open 2024; 14:e088181. [PMID: 39349378 PMCID: PMC11448215 DOI: 10.1136/bmjopen-2024-088181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVES To validate and test the generalisability of the SASKit-ML pipeline, a prepublished feature selection and machine learning pipeline for the prediction of health deterioration after a stroke or pancreatic adenocarcinoma event, by using it to identify biomarkers of health deterioration in chronic disease. DESIGN This is a validation study using a predefined protocol applied to multiple publicly available datasets, including longitudinal data from cohorts with type 2 diabetes (T2D), inflammatory bowel disease (IBD), rheumatoid arthritis (RA) and various cancers. The datasets were chosen to mimic as closely as possible the SASKit cohort, a prospective, longitudinal cohort study. DATA SOURCES Public data were used from the T2D (77 patients with potential pre-diabetes and 18 controls) and IBD (49 patients with IBD and 12 controls) branches of the Human Microbiome Project (HMP), RA Map (RA-MAP, 92 patients with RA, 22 controls) and The Cancer Genome Atlas (TCGA, 16 cancers). METHODS Data integration steps were performed in accordance with the prepublished study protocol, generating features to predict disease outcomes using 10-fold cross-validated random survival forests. OUTCOME MEASURES Health deterioration was assessed using disease-specific clinical markers and endpoints across different cohorts. In the HMP-T2D cohort, the worsening of glycated haemoglobin (HbA1c) levels (5.7% or more HbA1c in the blood), fasting plasma glucose (at least 100 mg/dL) and oral glucose tolerance test (at least 140) results were considered. For the HMP-IBD cohort, a worsening by at least 3 points of a disease-specific severity measure, the "Simple Clinical Colitis Activity Index" or "Harvey-Bradshaw Index" indicated an event. For the RA-MAP cohort, the outcome was defined as the worsening of the "Disease Activity Score 28" or "Simple Disease Activity Index" by at least five points, or the worsening of the "Health Assessment Questionnaire" score or an increase in the number of swollen/tender joints were evaluated. Finally, the outcome for all TCGA datasets was the progression-free interval. RESULTS Models for the prediction of health deterioration in T2D, IBD, RA and 16 cancers were produced. The T2D (C-index of 0.633 and Integrated Brier Score (IBS) of 0.107) and the RA (C-index of 0.654 and IBS of 0.150) models were modestly predictive. The IBD model was uninformative. TCGA models tended towards modest predictive power. CONCLUSIONS The SASKit-ML pipeline produces informative and useful features with the power to predict health deterioration in a variety of diseases and cancers; however, this performance is disease-dependent.
Collapse
Affiliation(s)
- Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Larissa Henze
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
- Department of Internal Medicine II - Hematology, Oncology and Palliative Medicine, Asklepios Hospital Group Harz Mountains, Goslar, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, Rostock, Germany
| | - Axel Kowald
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
Lu XY, Lv QY, Li QL, Zhang H, Chen CT, Tian HM. Impact of acupuncture on ischemia/reperfusion injury: Unraveling the role of miR-34c-5p and autophagy activation. Brain Res Bull 2024; 215:111031. [PMID: 39002935 DOI: 10.1016/j.brainresbull.2024.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
We have previously reported that the expression of miR-34c-5p was up-regulated during acupuncture treatment in the setting of a cerebral ischemia/reperfusion injury (CIRI), indicating that miR-34c-5p plays an important role in healing from a CIRI-induced brain injury. This study sought to evaluate the effects of acupuncture on miR-34c-5p expression and autophagy in the forward and reverse directions using a rat focal cerebral ischemia/reperfusion model. After 120 minutes of middle cerebral artery occlusion and reperfusion, rats were treated with acupuncture at the "Dazhui" (DU20), "Baihui" (DU26) and "Renzhong" (DU14) points. Neurologic function deficit score, cerebral infarct area ratio, neuronal apoptosis and miR-34c-5p expression were evaluated 72 hr after treatment. The autophagy agonist RAPA and the antagonist 3MA were used to evaluate the neuro protective effects of autophagy-mediated acupuncture. We found that acupuncture treatment improved autophagy in the brain tissue of CIRI rats. Acupuncture reversed the negative effects of 3MA on CIRI, and acupuncture combined with RAPA further enhanced autophagy. We also found that acupuncture could increase miR-34c-5p expression in hippocampal neurons after ischemia/reperfusion. Acupuncture and a miR-34c agomir were able to enhance autophagy, improve neurologic deficits, and reduce the cerebral infarct area ratio and apoptosis rate by promoting the expression of miR-34c-5p. Silencing miR-34c resulted in a significantly reduced activating effect of acupuncture on autophagy and increased apoptosis, neurologic deficit symptoms, and cerebral infarct area ratio. This confirms that acupuncture can upregulate miR-34c-5p expression, which is beneficial in the treatment of CIRI.
Collapse
Affiliation(s)
- Xiao-Ye Lu
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China; Department of Rehabilitation, Changsha Central Hospital, Changsha, Hunan Province 410004, China
| | - Qian-Yi Lv
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Qi-Long Li
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Hong Zhang
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China
| | - Chu-Tao Chen
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| | - Hao-Mei Tian
- College of Acupuncture and Tuina and Rehabilitation, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province 410007, China.
| |
Collapse
|
8
|
Yang YY, Deng RR, Xiang DX. Naodesheng Pills Ameliorate Cerebral Ischemia Reperfusion-Induced Ferroptosis via Inhibition of the ERK1/2 Signaling Pathway. Drug Des Devel Ther 2024; 18:1499-1514. [PMID: 38716368 PMCID: PMC11074533 DOI: 10.2147/dddt.s443479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. METHODS The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. RESULTS NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. CONCLUSION NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Rong-Rong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
9
|
Xia Y, Xu Z, Zhang Y, Jiang D, Zhu Y, Liang X, Sun R. Circulating cytokines and vascular dementia: A bi-directional Mendelian randomization study. Exp Gerontol 2024; 189:112394. [PMID: 38452989 DOI: 10.1016/j.exger.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Inflammatory responses are associated with the development of vascular dementia (VaD). Circulating cytokines modulate the inflammatory response and are important for the immune system. To further elucidate the role of the immune system in VaD, we used Mendelian randomization (MR) to comprehensively and bi-directionally assess the role of circulating cytokines in VaD. Using state-of-the-art genome-wide association studies, we primarily assessed whether different genetic levels of 41 circulating cytokines affect the risk of developing VaD and, in turn, whether the genetic risk of VaD affects these circulating cytokines. We used inverse variance weighting (IVW) and several other MR methods to assess the bidirectional causality between circulating cytokines and VaD, and performed sensitivity analyses. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was inversely associated with VaD risk [odds ratio (OR): 0.74, 95 % confidence interval (CI): 0.60-0.92, P = 0.007, 0.007]. VaD was associated with seven circulating cytokines: macrophage inflammatory protein 1b (MIP-1 beta) [OR: 1.05, 95 % CI: 1.01-1.08, P = 0.009], Interleukin-12p70 (IL-12) [OR: 1.04, 95 % CI: 1.00-1.08, P = 0.047], Interleukin-17 (IL-17) [OR: 1.04, 95 % CI: 1.00-1.07, P = 0.038], Interleukin-7 (IL-7) [OR: 1.07, 95 % CI: 1.02-1.12, P = 0.009], Interferon gamma (IFN-γ) [OR: 1.03, 95 % CI: 1.00-1.07, P = 0.046], Granulocyte-colony stimulating factor (GCSF) [OR: 1.06, 95 % CI: 1.02-1.09, P = 0.001], Fibroblast growth factor (FGF) [P = 0.001], and Fibroblast growth factor (FGF) [P = 0.001]. Fibroblast growth factor basic (FGF-Basic) [OR: 1.04, 95 % CI: 1.01-1.08, P = 0.02] were positively correlated. Circulating cytokines are associated with VaD, and further studies are needed to determine whether they are effective targets for intervention to prevent or treat VaD.
Collapse
Affiliation(s)
- Yuge Xia
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Zhirui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yicong Zhang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing 100055, China
| | - Dongli Jiang
- Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China
| | - Yunyi Zhu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, China.
| | - Xiaolun Liang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China.
| | - Rui Sun
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China.
| |
Collapse
|
10
|
Jin X, Jin W, Li G, Zheng J, Xu X. Erythropoietin alleviates lung ischemia-reperfusion injury by activating the FGF23/FGFR4/ERK signaling pathway. PeerJ 2024; 12:e17123. [PMID: 38560469 PMCID: PMC10981413 DOI: 10.7717/peerj.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background The purpose of the present study was to investigate the effect of erythropoietin (EPO) on lung ischemia-reperfusion injury (LIRI). Methods Sprague Dawley rats and BEAS-2B cells were employed to construct an ischemia-reperfusion (I/R)-induced model in vivo and in vitro, respectively. Afterward, I/R rats and tert-butyl hydroperoxide (TBHP)-induced cells were treated with different concentrations of EPO. Furthermore, 40 patients with LIRI and healthy controls were enrolled in the study. Results It was observed that lung tissue damage, cell apoptosis and the expression of BAX and caspase-3 were higher in the LIRI model in vivo and in vitro than in the control group, nevertheless, the Bcl-2, FGF23 and FGFR4 expression level was lower than in the control group. EPO administration significantly reduced lung tissue damage and cell apoptosis while also up-regulating the expression of FGF23 and FGFR4. Rescue experiments indicated that EPO exerted a protective role associated with the FGF23/FGFR4/p-ERK1/2 signal pathway. Notably, the expression of serum EPO, FGF23, FGFR4 and Bcl-2 was decreased in patients with LIRI, while the expression of caspase-3 and BAX was higher. Conclusion EPO could effectively improve LIRI, which might be related to the activation of the FGF23/FGFR4/p-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Xiaosheng Jin
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Weijing Jin
- Department of Neonatology, Hangzhou Children’s Hospital, Hangzhou, China
| | - Guoping Li
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jisheng Zheng
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xianrong Xu
- Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Kittur FS, Hung CY, Li PA, Sane DC, Xie J. Asialo-rhuEPO as a Potential Neuroprotectant for Ischemic Stroke Treatment. Pharmaceuticals (Basel) 2023; 16:610. [PMID: 37111367 PMCID: PMC10143832 DOI: 10.3390/ph16040610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Neuroprotective drugs to protect the brain against cerebral ischemia and reperfusion (I/R) injury are urgently needed. Mammalian cell-produced recombinant human erythropoietin (rhuEPOM) has been demonstrated to have excellent neuroprotective functions in preclinical studies, but its neuroprotective properties could not be consistently translated in clinical trials. The clinical failure of rhuEPOM was thought to be mainly due to its erythropoietic activity-associated side effects. To exploit its tissue-protective property, various EPO derivatives with tissue-protective function only have been developed. Among them, asialo-rhuEPO, lacking terminal sialic acid residues, was shown to be neuroprotective but non-erythropoietic. Asialo-rhuEPO can be prepared by enzymatic removal of sialic acid residues from rhuEPOM (asialo-rhuEPOE) or by expressing human EPO gene in glycoengineered transgenic plants (asialo-rhuEPOP). Both types of asialo-rhuEPO, like rhuEPOM, displayed excellent neuroprotective effects by regulating multiple cellular pathways in cerebral I/R animal models. In this review, we describe the structure and properties of EPO and asialo-rhuEPO, summarize the progress on neuroprotective studies of asialo-rhuEPO and rhuEPOM, discuss potential reasons for the clinical failure of rhuEPOM with acute ischemic stroke patients, and advocate future studies needed to develop asialo-rhuEPO as a multimodal neuroprotectant for ischemic stroke treatment.
Collapse
Affiliation(s)
- Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| | - David C. Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA;
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA; (C.-Y.H.); (P.A.L.)
| |
Collapse
|
12
|
Jinno M, Tamaoka Y, Teruya K, Watanabe A, Hatakeyama N, Goda T, Kimata H, Jinno Y. Granulocyte colony-stimulating factor priming improves embryos and pregnancy rate in patients with poor ovarian reserve: a randomized controlled trial. Reprod Biol Endocrinol 2023; 21:29. [PMID: 36944952 PMCID: PMC10029156 DOI: 10.1186/s12958-023-01082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF) administration increased ovarian preantral follicles and anti-Müllerian hormone (AMH) in animal models with diminished ovarian reserve. We investigated whether G-CSF priming before treatment with assisted reproductive technology (ART) improved embryo development and pregnancy rate while increasing serum AMH in patients with poor ovarian reserve. METHODS In this prospective randomized open-label controlled trial, 100 patients 20 to 42 years old with AMH below 2 ng/mL were randomized to priming or control groups (50 patients each). None had over 1 ART failure, day-3 follicle-stimulating hormone (FSH) above 30 IU/L, uterine anomalies, or a partner with azoospermia. All patients initially underwent conventional infertility treatment for 2 consecutive cycles in which the priming group but not controls received a subcutaneous G-CSF priming injection during the early luteal phase. Each group then underwent 1 cycle of in vitro fertilization/intracytoplasmic sperm injection and fresh embryo transfer (IVF/ICSI-fresh ET), followed by cryopreserved ET if needed until live birth or embryo depletion. AMH was measured before and after priming. RESULTS Fertilization rate, embryonic development, and implantation rate by fresh ET were significantly improved by priming. Clinical and ongoing pregnancy rates by IVF/ICSI-fresh ET were significantly higher with priming (30% and 26% in 47 ART patients; 3 delivered with conventional treatment) than in controls (12% and 10% in 49 ART patients; 1 dropped out). With priming, significantly more patients achieved cryopreservation of redundant blastocysts. The cumulative live birth rate was 32% in 50 patients with priming, significantly higher than 14% in 49 controls (relative risk, 2.8; 95% confidence interval, 1.04-7.7). Infants derived from priming had no congenital anomalies, while infant weights, birth weeks, and Apgar scores were similar between groups. Among 4 variables (age, day-3 FSH, AMH, and priming), logistic regression significantly associated age and priming with cumulative live birth. Priming significantly increased serum AMH. No adverse effects of priming were observed. CONCLUSION G-CSF priming improved embryonic development and pregnancy rate during ART treatment and increased AMH in patients with poor ovarian reserve. Enhanced preantral follicle growth likely was responsible. TRIAL REGISTRATION UMIN registration in Japan (UMIN000013956) on May 14, 2014. https://www.umin.ac.jp/ctr/index.htm .
Collapse
Affiliation(s)
- Masao Jinno
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan.
| | - Yukoku Tamaoka
- Ikebukuro Metropolitan Clinic, Toshima-Ku, Tokyo, 171-0021, Japan
- Department of Obstetrics and Gynecology, Inagi Municipal Hospital, Inagi City, Tokyo, 206-0801, Japan
| | - Koji Teruya
- Faculty of Health Sciences, Kyorin University, Mitaka City, Tokyo, 181-8612, Japan
| | - Aiko Watanabe
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan
| | - Naohisa Hatakeyama
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan
| | - Tomoya Goda
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan
| | - Hayato Kimata
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan
| | - Yuichi Jinno
- Women's Clinic Jinno, 3-11-7 Kokuryou-Chou, Choufu City, Tokyo, 182-0022, Japan
| |
Collapse
|
13
|
Astragaloside IV ameliorates cerebral ischemia-reperfusion injury via upregulation of PKA and Cx36. Neuroreport 2022; 33:656-662. [DOI: 10.1097/wnr.0000000000001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Martin KR, Wong HL, Witko-Sarsat V, Wicks IP. G-CSF - A double edge sword in neutrophil mediated immunity. Semin Immunol 2021; 54:101516. [PMID: 34728120 DOI: 10.1016/j.smim.2021.101516] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/23/2021] [Indexed: 11/15/2022]
Abstract
Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Katherine R Martin
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Huon L Wong
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | | | - Ian P Wicks
- WEHI, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
15
|
Wang Y, Liu F, Liu P. 23-Hydroxytormentic acid reduces cerebral ischemia/reperfusion damage in rats through anti-apoptotic, antioxidant, and anti-inflammatory mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1045-1054. [PMID: 33394135 DOI: 10.1007/s00210-020-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
23-Hydroxytormentic acid (23-HTA) is an important herbal medicine purified from immature fruits of African Rubus aceae (Rosaceae). This study was carried out to examine the protection properties and potential mechanisms of 23-HTA against cerebral ischemia/reperfusion (I/R) damage. Rats underwent middle cerebral artery occlusion/reperfusion (MCAO/R) 2/24 h. All animals were euthanized 24 h after reperfusion. Rats were injected with various concentrations of 23-HTA intraperitoneally. Evaluations of infarct volumes, neurological deficit, and brain water contents were carried out to assess the outcome of 23-HTA treatment. The results showed that 23-HTA reduced infarct volumes, brain water content, and neurological deficit in a dosage-dependent manner. 23-HTA can also significantly reduce the numbers of TUNEL-positive cells, the expression levels of Bax, caspase-3, lipid peroxidation, Sod 1, Sod 2, catalase, and pro-inflammatory cytokines TNF and IL-1β and increase the expression levels of Bcl-2 and p-Akt. 23-HTA has a neuroprotective effect due to its anti-apoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Fengrong Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China
| | - Peng Liu
- Department of Neurology, The 80th Army Hospital of the Chinese People's Liberation Army, No.256 Beigong West Street, Weicheng District, Weifang, 261041, Shandong, China.
| |
Collapse
|