1
|
Koltsova AS, Pendina AA, Malysheva OV, Trusova ED, Staroverov DA, Yarmolinskaya MI, Polenov NI, Glotov AS, Kogan IY, Efimova OA. In Vitro Effect of Estrogen and Progesterone on Cytogenetic Profile of Uterine Leiomyomas. Int J Mol Sci 2024; 26:96. [PMID: 39795954 PMCID: PMC11720186 DOI: 10.3390/ijms26010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025] Open
Abstract
In the present study, we aimed to investigate intratumoral karyotype diversity as well as the estrogen/progesterone effect on the cytogenetic profile of uterine leiomyomas (ULs). A total of 15 UL samples obtained from 15 patients were cultured in the media supplemented with estrogen and/or progesterone and without adding hormones. Conventional cytogenetic analysis of culture samples revealed clonal chromosomal abnormalities in 11 out of 15 ULs. Cytogenetic findings were presented by simple and complex chromosomal rearrangements (64% and 36% of cases, respectively) verified through FISH and aCGH. In most ULs with complex chromosomal rearrangements, the breakpoints did not feature clusterization on a single chromosome but were evenly distributed across rearranged chromosomes. The number of breakpoints showed a strong positive correlation with the number of rearranged chromosomes. Moreover, both abovementioned parameters were in a linear dependency from the number of karyotypically different clones per UL. This suggests that complex chromosomal rearrangements in ULs predominantly originate through sequential events rather than one hit. The results of UL cytogenetic analysis depended on the presence of estrogen and/or progesterone in the culture medium. The greatest variety of cytogenetically different cell clones was detected in the samples cultured without hormone supplementation. Their counterparts cultured with progesterone supplementation showed a sharp decrease in clone number, whereas such a decrease induced by estrogen or estrogen-progesterone supplementation was insignificant. These findings suggest that estrogen-progesterone balance is crucial for forming a UL cytogenetic profile, which, in turn, may underlie the unique response of the every karyotypically abnormal UL to medications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Olga A. Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (A.S.K.)
| |
Collapse
|
2
|
Tikhonov AV, Krapivin MI, Malysheva OV, Komarova EM, Golubeva AV, Efimova OA, Pendina AA. Re-Examination of PGT-A Detected Genetic Pathology in Compartments of Human Blastocysts: A Series of 23 Cases. J Clin Med 2024; 13:3289. [PMID: 38893001 PMCID: PMC11172919 DOI: 10.3390/jcm13113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Background: In recent years, preimplantation genetic testing for aneuploidies (PGT-A) has become widespread in assisted reproduction. However, contrary to expectations, PGT-A does not significantly improve the clinical outcomes of assisted reproductive technologies. One of the underlying reasons is the discordance between the PGT-A results and the true chromosomal constitution of the blastocyst. In this case series, we re-examined the PGT-A results in trophectoderm (TE) re-biopsies and in the two isolated blastocyst compartments-the TE and the inner cell mass (ICM). Methods: This study enrolled 23 human blastocysts from 17 couples who were referred for assisted reproduction. The blastocysts were unsuitable for uterine transfer due to the chromosomal imbalance revealed by PGT-A using array comparative genomic hybridization (aCGH) (n = 11) or next-generation sequencing (NGS) (n = 12). The re-examination of the PGT results involved two steps: (1) a TE re-biopsy with subsequent aCGH and (2) blastocyst separation into the TE and the ICM with a subsequent cell-by-cell analysis of each isolated compartment by fluorescence in situ hybridization (FISH) with the DNA probes to chromosomes 13, 16, 18, 21, and 22 as well as to the PGT-A detected imbalanced chromosomes. Results: In 8 out of 23 cases, the PGT-A results were concordant with both the re-biopsy and the isolated TE and ICM analyses. The latter included the diagnoses of full non-mosaic aneuploidies (five cases of trisomies and two cases of monosomies). In one case, the results of PGT-A, aCGH on the TE re-biopsy, and FISH on the isolated TE showed Xp tetrasomy, which contrasted with the FISH results on the isolated ICM, where this chromosomal pathology was not detected. This case was classified as a confined mosaicism. In 4 out of 23 cases, the results were partially discordant. The latter included one case of trisomy 12, which was detected as non-mosaic by PGT-A and the re-biopsy and as mosaic by FISH on the isolated TE and ICM. This case was classified as a true mosaicism with a false negative PGT-A result. In 11 out of 23 cases, the re-examination results were not concordant with the PGT-A results. In one of these discordant cases, non-mosaic tetraploidy was detected by FISH in the isolated TE and ICM, whereas the PGT-A and the TE re-biopsy failed to detect any abnormality, which advocated for their false negative result. In two cases, the re-examination did not confirm full aneuploidies. In eight cases, full or partial mosaic aneuploidies as well as chaotic mosacism were not confirmed in the isolated TE nor the isolated ICM. Thus, in 47.8% of cases, the PGT-A results did not reflect the true chromosomal constitution of a blastocyst. Conclusions: The PGT results may have different prognostic value in the characterization of the chromosomal constitution of a blastocyst. The detected non-mosaic aneuploidies have the highest prognostic value. In stark contrast, most PGT-identified mosaic aneuploidies fail to characterize the true chromosomal constitution of a blastocyst. Once detected, a differential diagnosis is needed.
Collapse
Affiliation(s)
- Andrei V. Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
3
|
Talantova OE, Koltsova AS, Tikhonov AV, Pendina AA, Malysheva OV, Tarasenko OA, Vashukova ES, Shabanova ES, Golubeva AV, Chiryaeva OG, Glotov AS, Bespalova ON, Efimova OA. Prenatal Detection of Trisomy 2: Considerations for Genetic Counseling and Testing. Genes (Basel) 2023; 14:genes14040913. [PMID: 37107671 PMCID: PMC10138005 DOI: 10.3390/genes14040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
We report on the case of prenatal detection of trisomy 2 in placental biopsy and further algorithm of genetic counseling and testing. A 29-year-old woman with first-trimester biochemical markers refused chorionic villus sampling and preferred targeted non-invasive prenatal testing (NIPT), which showed low risk for aneuploidies 13, 18, 21, and X. A series of ultrasound examinations revealed increased chorion thickness at 13/14 weeks of gestation and fetal growth retardation, a hyperechoic bowel, challenging visualization of the kidneys, dolichocephaly, ventriculomegaly, increase in placental thickness, and pronounced oligohydramnios at 16/17 weeks of gestation. The patient was referred to our center for an invasive prenatal diagnosis. The patient's blood and placenta were sampled for whole-genome sequencing-based NIPT and array comparative genomic hybridization (aCGH), respectively. Both investigations revealed trisomy 2. Further prenatal genetic testing in order to confirm trisomy 2 in amniocytes and/or fetal blood was highly questionable because oligohydramnios and fetal growth retardation made amniocentesis and cordocentesis technically unfeasible. The patient opted to terminate the pregnancy. Pathological examination of the fetus revealed internal hydrocephalus, atrophy of brain structure, and craniofacial dysmorphism. Conventional cytogenetic analysis and fluorescence in situ hybridization revealed chromosome 2 mosaicism with a prevalence of trisomic clone in the placenta (83.2% vs. 16.8%) and a low frequency of trisomy 2, which did not exceed 0.6% in fetal tissues, advocating for low-level true fetal mosaicism. To conclude, in pregnancies at risk of fetal chromosomal abnormalities that refuse invasive prenatal diagnosis, whole-genome sequencing-based NIPT, but not targeted NIPT, should be considered. In prenatal cases of trisomy 2, true mosaicism should be distinguished from placental-confined mosaicism using cytogenetic analysis of amniotic fluid cells or fetal blood cells. However, if material sampling is impossible due to oligohydramnios and/or fetal growth retardation, further decisions should be based on a series of high-resolution fetal ultrasound examinations. Genetic counseling for the risk of uniparental disomy in a fetus is also required.
Collapse
Affiliation(s)
- Olga E Talantova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Alla S Koltsova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Olga V Malysheva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Olga A Tarasenko
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Elena S Vashukova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Elena S Shabanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Arina V Golubeva
- Faculty of Biology, Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya emb., 7/9, St. Petersburg 199034, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Andrey S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Olesya N Bespalova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line, 3, St. Petersburg 199034, Russia
| |
Collapse
|
4
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
5
|
Cytogenomic Profile of Uterine Leiomyoma: In Vivo vs. In Vitro Comparison. Biomedicines 2021; 9:biomedicines9121777. [PMID: 34944592 PMCID: PMC8698342 DOI: 10.3390/biomedicines9121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.
Collapse
|