1
|
Szewczyk A, Baczyńska D, Choromańska A, Łapińska Z, Chwiłkowska A, Saczko J, Kulbacka J. Advancing cancer therapy: Mechanisms, efficacy, and limitations of calcium electroporation. Biochim Biophys Acta Rev Cancer 2025; 1880:189319. [PMID: 40222421 DOI: 10.1016/j.bbcan.2025.189319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Calcium electroporation, an innovative technique, uses high-voltage pulses to introduce calcium ions into cells, leading to cell death and tumor growth inhibition. This review explores the potential of calcium electroporation as a promising therapeutic approach in cancer treatment. We provide an in-depth analysis of the underlying mechanisms by which calcium ions function within cells and how their introduction through electroporation can effectively induce cell death in cancer cells. Furthermore, we present a comprehensive overview of the current literature, covering both preclinical and clinical studies, to highlight the safety and efficacy of calcium electroporation in various cancer types, including melanoma, head and neck cancer, and breast cancer. We also discuss the distinct advantages of calcium electroporation over traditional cancer therapies, such as its specific targeting of cancer cells while sparing healthy cells. However, we also address the challenges and limitations associated with this technique, underscoring the need for further research. By providing a comprehensive examination of calcium electroporation, this review aims to contribute to understanding this emerging field and encourage further investigation into its potential as a novel cancer treatment strategy.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Jin Z, Kim YS, Lim JY. Leveraging Microneedles for Raised Scar Management. Polymers (Basel) 2025; 17:108. [PMID: 39795511 PMCID: PMC11722619 DOI: 10.3390/polym17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Disruption of the molecular pathways during physiological wound healing can lead to raised scar formation, characterized by rigid, thick scar tissue with associated symptoms of pain and pruritus. A key mechanical factor in raised scar development is excessive tension at the wound site. Recently, microneedles (MNs) have emerged as promising tools for scar management as they engage with scar tissue and provide them with mechanical off-loading from both internal and external sources. This review explores the mechanisms by which physical intervention of drug-free MNs alleviates mechanical tension on fibroblasts within scar tissue, thereby promoting tissue remodeling and reducing scar severity. Additionally, the role of MNs as an efficient cargo delivery system for the controlled and sustained release of a wide range of therapeutic agents into scar tissue is highlighted. By penetrating scar tissue, MNs facilitate controlled and sustained localized drug administration to modulate inflammation and fibroblastic cell growth. Finally, the remaining challenges and the future perspective of the field have been highlighted.
Collapse
Affiliation(s)
| | | | - Joong Yeon Lim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Lin J, Wang X, Ma S, Yang D, Li K, Li D, Zeng X. Calcium channels as therapeutic targets in head and neck squamous cell carcinoma: current evidence and clinical trials. Front Oncol 2024; 14:1516357. [PMID: 39759147 PMCID: PMC11695298 DOI: 10.3389/fonc.2024.1516357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is marked by high rates of recurrence and metastasis. Calcium signaling is associated with the progression of HNSCC and the development of drug resistance. Changes in calcium ion flow can trigger severe pathophysiological processes, including malignant transformation, tumor proliferation, epithelial-mesenchymal transition, and apoptosis evasion. Calcium channels regulate and facilitate these processes. Remodeling of calcium signaling has become one of the most prevalent adaptive mechanisms in cancer cells. Preclinical and clinical evidence indicates that alterations in calcium signaling are crucial for the progression of HNSCC. This review examines the role of calcium channels in HNSCC development and evaluates current clinical trials targeting these channels to assess the feasibility of calcium signaling-based therapies for HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongcai Li
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China
| |
Collapse
|
4
|
Mann D, Bar-Shai N, Levkov K, Gabay B, Vitkin E, Nyska A, Yarmush M, Shalom A, Golberg A. Treating Scars After Burns With Pulsed Electric Fields in the Rat Model. J Burn Care Res 2024; 45:1553-1565. [PMID: 39109993 DOI: 10.1093/jbcr/irae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Reducing scar size after severe burn injuries is an important and challenging medical, technological, and social problem. We have developed a battery-powered pulsed electric field (PEF) device and surface needle electrode applicator to deliver PEFs to the healing dorsal burn wound in rats. The pulsed electric field was used to treat residual burn wounds caused by metal contact in rats starting 10 days after the injury for 4 months every 11 or 22 days for 4 months using varying time applied voltages at 250-350 V range, 400 mA current, 40 pulses, 70 μs duration each, delivered at pulse repetition frequency 10 Hz at 5 locations inside the wound. We found 40%-45% reduction in the scar size in comparison with untreated controls in both upper and lower dorsal locations on rats' backs 2 months after the last PEF application. We have not detected significant histopathological differences in the center of the scars besides the thickness of the newly generated epidermis, which was thicker in the PEF-treated group. We showed that minimally invasively applied PEFs through needle electrodes are effective method and device for treating residual burn wounds in the rat model, reducing the size of the resulting scars, without any adverse reaction.
Collapse
Affiliation(s)
- Din Mann
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, 4428164, Israel
| | - Nurit Bar-Shai
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Klimentiy Levkov
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Batel Gabay
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Edward Vitkin
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Abraham Nyska
- Faculty of Medicine, Tel Aviv University, Tel Aviv, 6139001, Israel
| | - Martin Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, 4428164, Israel
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, 6139001, Israel
| |
Collapse
|
5
|
Zeng CH, Kang JM, Kim SH, Park Y, Shim S, Kim DK, Shin JH, Park JH. EW-7197, transforming growth factor β inhibitor, combined with irreversible electroporation for improving skin wound in a rat excisional model. Sci Rep 2024; 14:12779. [PMID: 38834729 PMCID: PMC11150421 DOI: 10.1038/s41598-024-61003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
To evaluate the safety and efficacy of combining EW-7197 with irreversible electroporation (IRE) for improving wound healing, 16 male Sprague-Dawley rats were randomly divided into four groups of four rats each after dorsal excisional wound induction: sham control group; oral administration of EW-7197 for 7 days group; one-time application of IRE group; and one-time application of IRE followed by oral administration of EW-7197 for 7 days group. Measurement of wound closure rate, laser Doppler scanning, histological staining (hematoxylin and eosin and Masson's trichrome), and immunohistochemical analyses (Ki-67 and α-SMA) were performed to evaluate the efficacy. Fifteen of 16 rats survived throughout the study. Statistically significant differences in wound closure rates were observed between the combination therapy group and the other three groups (all P < 0.05). The degrees of inflammation, α-SMA, and Ki-67 were reduced in the EW-7197 and IRE monotherapy groups; however, not statistically significant. The fibrosis score exhibited significant reduction in all three treatment groups, with the most prominent being in the combination therapy group. This study concludes that oral administration of EW-7197 combined with IRE demonstrated effectiveness in improving skin wound in a rat excisional model and may serve as a potential alternative for promoting healing outcomes.
Collapse
Affiliation(s)
- Chu Hui Zeng
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeon Min Kang
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Song Hee Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Soyeon Shim
- EWHA DrugDesignHouse, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Dae-Kee Kim
- EWHA DrugDesignHouse, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Ji Hoon Shin
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
6
|
Karina K, Ekaputri K, Andrew H, Biben JA. Microneedle Electroporation for Intralesional Administration of Corticosteroid Treatment of Keloid Scar. Acta Derm Venereol 2023; 103:adv13402. [PMID: 38059802 PMCID: PMC10719861 DOI: 10.2340/actadv.v103.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/03/2023] [Indexed: 12/08/2023] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Karina Karina
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia; Hayandra Lab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia; Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jl. Rs. Fatmawati, Jakarta, Indonesia.
| | - Krista Ekaputri
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| | - Hubert Andrew
- Hayandra Lab, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia; Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya no. 6, Jakarta Pusat, Indonesia
| | - Johannes Albert Biben
- Klinik Hayandra, Yayasan Hayandra Peduli, Jl. Kramat VI No. 11, Jakarta Pusat, Indonesia
| |
Collapse
|
7
|
Vissing M, Pervan M, Pløen J, Schnefeldt M, Rafaelsen SR, Jensen LH, Rody A, Gehl J. Calcium electroporation in cutaneous metastases - A non-randomised phase II multicentre clinical trial. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106925. [PMID: 37268521 DOI: 10.1016/j.ejso.2023.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cutaneous metastases can cause distressing symptoms and be challenging to treat. Local therapies are essential in management. Calcium electroporation uses calcium and electrical pulses to selectively kill cancer cells. This multicentre study aimed to define response in cutaneous metastases across different cancer types. METHODS Patients with tumours ≤3 cm of any histology were included (stable or progressing on current therapy ≥2 months), at three centres. Tumours were treated with 220 mM calcium chloride injection and manual application of eight 0.1 ms pulses with 1 kV/cm and 1Hz with a handheld electrode, in local or general anaesthesia. Clinical response was evaluated after 1, 2, 3, 4, 5, 6, and 12 months. Primary endpoint was response at two months. The overall response rate (ORR) was partial- and complete responses of treated tumours. MR-imaging and qualitative interviews were performed in respective subsets. RESULTS Nineteen patients with disseminated cancer (breast n = 4, lung n = 5, pancreatic n = 1, colorectal n = 2, gastric n = 1, and endometrial cancer n = 1) were enrolled, and 58 metastases were treated (50 once, 8 retreated). The ORR was 36% (95% CI 22-53) after two months. Best ORR was 51% (CR 42%; PR 9%). Previous irradiation improved outcomes (p = 0.0004). Adverse events were minimal. Median pain score was reduced after two months (p = 0.017). Treatment may relieve symptoms according to qualitative interviews. MRI showed restriction in treated tissue. CONCLUSION The majority of tumours were treated only once with calcium electroporation, achieving an ORR of 36% after two months and best ORR of 51%. Efficacy, symptom-relief and safety support calcium electroporation as a palliative treatment option for cutaneous metastases.
Collapse
Affiliation(s)
- Mille Vissing
- Center for Experimental Drug and Gene Electrotransfer (C∗EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Ringstedgade 61, 4700, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Mascha Pervan
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Germany Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - John Pløen
- Department of Oncology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Mazen Schnefeldt
- Department of Radiology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Søren Rafael Rafaelsen
- Department of Radiology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Beriderbakken 4, 7100, Vejle, Denmark
| | - Achim Rody
- Department of Gynaecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Germany Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer (C∗EDGE), Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Roskilde and Næstved, Ringstedgade 61, 4700, Næstved, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
9
|
Lisec B, Markelc B, Ursic Valentinuzzi K, Sersa G, Cemazar M. The effectiveness of calcium electroporation combined with gene electrotransfer of a plasmid encoding IL-12 is tumor type-dependent. Front Immunol 2023; 14:1189960. [PMID: 37304301 PMCID: PMC10247961 DOI: 10.3389/fimmu.2023.1189960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction In calcium electroporation (CaEP), electroporation enables the cellular uptake of supraphysiological concentrations of Ca2+, causing the induction of cell death. The effectiveness of CaEP has already been evaluated in clinical trials; however, confirmatory preclinical studies are still needed to further elucidate its effectiveness and underlying mechanisms. Here, we tested and compared its efficiency on two different tumor models to electrochemotherapy (ECT) and in combination with gene electrotransfer (GET) of a plasmid encoding interleukin-12 (IL-12). We hypothesized that IL-12 potentiates the antitumor effect of local ablative therapies as CaEP and ECT. Methods The effect of CaEP was tested in vitro as well as in vivo in murine melanoma B16-F10 and murine mammary carcinoma 4T1 in comparison to ECT with bleomycin. Specifically, the treatment efficacy of CaEP with increasing calcium concentrations alone or in combination with IL-12 GET in different treatment protocols was investigated. We closely examined the tumor microenvironment by immunofluorescence staining of immune cells, as well as blood vessels and proliferating cells. Results In vitro, CaEP and ECT with bleomycin reduced cell viability in a dose-dependent manner. We observed no differences in sensitivity between the two cell lines. A dose-dependent response was also observed in vivo; however, the efficacy was better in 4T1 tumors than in B16-F10 tumors. In 4T1 tumors, CaEP with 250 mM Ca resulted in more than 30 days of growth delay, which was comparable to ECT with bleomycin. In contrast, adjuvant peritumoral application of IL-12 GET after CaEP prolonged the survival of B16-F10, but not 4T1-bearing mice. Moreover, CaEP with peritumoral IL-12 GET modified tumor immune cell populations and tumor vasculature. Conclusions Mice bearing 4T1 tumors responded better to CaEP in vivo than mice bearing B16-F10 tumors, even though a similar response was observed in vitro. Namely, one of the most important factors might be involvement of the immune system. This was confirmed by the combination of CaEP or ECT with IL-12 GET, which further enhanced antitumor effectiveness. However, the potentiation of CaEP effectiveness was also highly dependent on tumor type; it was more pronounced in poorly immunogenic B16-F10 tumors compared to moderately immunogenic 4T1 tumors.
Collapse
Affiliation(s)
- Barbara Lisec
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ursic Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| |
Collapse
|
10
|
Egeland C, Baeksgaard L, Gehl J, Gögenur I, Achiam MP. Palliative Treatment of Esophageal Cancer Using Calcium Electroporation. Cancers (Basel) 2022; 14:cancers14215283. [PMID: 36358702 PMCID: PMC9655404 DOI: 10.3390/cancers14215283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Calcium electroporation is a new cancer therapy wherein a high, rapid influx of calcium, facilitated by electrical pulses, is used to kill cancer cells. This pilot study aimed to evaluate the safety and feasibility of this new treatment for patients with non-curable esophageal cancer. The treatment was administrated during an endoscopic examination, under general anesthesia, and in an outpatient setting. Eight patients were treated. One severe adverse event occurred (requiring a single blood transfusion) and another three mild side effects were seen. Two patients reported dysphagia relief after treatment and one patient had a partial response evaluated by CT. Six months after treatment, the same patient was still in good condition, without the need for further treatment. Calcium electroporation was conducted in eight patients with only a few side effects. More studies are warranted to evaluate clinical efficacy. Abstract Calcium electroporation (CaEP) is a novel cancer therapy wherein high intracellular calcium levels, facilitated by reversible electroporation, trigger tumor necrosis. This study aimed to establish safety with CaEP within esophageal cancer. Patients with non-curable esophageal cancer were included at Copenhagen University Hospital Rigshospitalet in 2021 and 2022. In an outpatient setting, calcium gluconate was injected intratumorally followed by reversible electroporation applied with an endoscopic electrode. The primary endpoint was the prevalence of adverse events, followed by palliation of dysphagia. All patients were evaluated with CT and upper endoscopies up to two months after treatment. The trial was registered at ClinicalTrials.gov (NCT04958044). Eight patients were treated. One serious adverse event (anemia, requiring a single blood transfusion) and three adverse events (mild retrosternal pain (two) and oral thrush (one)) were registered. Initially, six patients suffered from dysphagia: two reported dysphagia relief and four reported no change. From the imaging evaluation, one patient had a partial response, three patients had no response, and four patients had progression. Six months after treatment, the patient who responded well was still in good condition and without the need for further oncological treatment. CaEP was conducted in eight patients with only a few side effects. This study opens the way for larger studies evaluating tumor regression and symptom palliation.
Collapse
Affiliation(s)
- Charlotte Egeland
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Lene Baeksgaard
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Julie Gehl
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Oncology and Palliative Care, Center for Experimental Drug and Gene Electrotransfer (C*EDGE), Zealand University Hospital, 4000 Roskilde, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, 4600 Køge, Denmark
| | - Michael Patrick Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Gao X, Zhang Y, Han X, Li Z, Chen B, Li Q, Hu L, Lv Y, Ren F. Numerical analysis and animal study of noninvasive handheld electroporation delivery device for skin superficial lesion treatment. Int J Hyperthermia 2022; 39:1017-1025. [PMID: 35912525 DOI: 10.1080/02656736.2022.2104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
INTRODUCTION This study aims to investigate the feasibility of a noninvasive handheld electroporation pulses delivery device (EPDD) for electroporation-based treatment (EBT) of skin superficial lesions through numerical analysis and animal study. METHODS Finite element analysis was performed to investigate the performance of the EPDD. The electric field, temperature, EI and TI were calculated under pulse voltages of 600, 800, and 1000 V. A mouse subcutaneous tumor model was established to evaluate the performance of the EPDD through histopathology and survival analyses. RESULTS The electrical field strength increased from 151 (600 V) to 252 V/cm (1000 V) in the skin and from 1302 (600 V) to 2171 V/cm (1000 V) in the tumor. The volume of EI grew and reached a plateau at the 165th pulse, whereas the maximum volume of EI increased with higher voltage. The growth tendency of TI differed between groups, and it was higher in the high-voltage group (HVG) than in the low-voltage group. Histopathological analysis showed that the depth and range of the ablation area could be controlled by adjusting pulse voltage. Survival analysis showed that the survival of the HVG was better than that of the low-voltage and the control group (p < 0.01). CONCLUSIONS The results demonstrate that the EPDD is feasible, safe, and effective for skin EBT. The volume of EP tissue injury can be controlled by adjusting the pulse voltage, pulse number, and other parameters. The proposed noninvasive handheld EPDD can be a potential therapeutic tool for EBT of superficial skin lesions in the future.
Collapse
Affiliation(s)
- Xuyao Gao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yuchi Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Electrical Science and Technology Research Institute, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Han
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bowen Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingshan Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liangshuo Hu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fenggang Ren
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|