1
|
Kitamura A, Kurajoh M, Miki Y, Kakutani Y, Yamazaki Y, Ochi A, Morioka T, Mori K, Shoji T, Emoto M. Association of xanthine oxidoreductase inhibitor use with insulin secretory capacity in patients with type 2 diabetes. J Diabetes Investig 2024; 15:1500-1509. [PMID: 39078414 PMCID: PMC11442858 DOI: 10.1111/jdi.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
AIM/INTRODUCTION Xanthine oxidoreductase (XOR) inhibitor treatment, which reduces reactive oxygen species (ROS) production and increases adenosine triphosphate (ATP) synthesis, has been reported to improve glycemic control. The possible protective effects of XOR inhibitor treatment on insulin secretory capacity were investigated in patients with type 2 diabetes. MATERIALS AND METHODS This retrospective cross-sectional study included 428 patients with type 2 diabetes. Insulin secretory capacity was assessed based on fasting serum C-peptide concentration (CPR) and C-peptide index (CPI) in all subjects, while insulin resistance in non-insulin users (n = 312) was determined using the homeostasis model assessment of insulin resistance (HOMA-IR) index. RESULTS Median values for CPR and CPI in all subjects were 2.4 ng/mL and 1.5, respectively, while that for HOMA-IR in non-insulin users was 3.2. The XOR inhibitor users (n = 72) had significantly (P < 0.001) higher CPR and CPI levels than non-users (n = 356). Multivariable regression analyses showed XOR inhibitor use was positively associated with CPR (β = 0.153, P = 0.001) and CPI (β = 0.144, P = 0.001). Similar results were observed in propensity score analyses. In subgroup analyses of patients with a preserved estimated glomerular filtration rate (≥60 mL/min/1.73 m2) and non-insulin users, these associations remained significant. Furthermore, the associations were significant in patients with lower (≤6.0 mg/dL) but not with higher (>6.0 mg/dL) uric acid levels (P for interaction <0.05). On the other hand, XOR inhibitor use showed no significant association with HOMA-IR. CONCLUSIONS The results of XOR inhibitor treatment, especially a sufficient reduction in serum uric acid level, may provide protective effects on insulin secretory capacity in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Atsushi Kitamura
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka City University Graduate School of MedicineOsakaJapan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yuya Miki
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yoshinori Kakutani
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yuko Yamazaki
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Akinobu Ochi
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Katsuhito Mori
- Department of NephrologyOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Tetsuo Shoji
- Department of Vascular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
- Vascular Science Center for Translational ResearchOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology and Molecular MedicineOsaka Metropolitan University Graduate School of MedicineOsakaJapan
- Department of NephrologyOsaka Metropolitan University Graduate School of MedicineOsakaJapan
- Vascular Science Center for Translational ResearchOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
2
|
Yang KJ, Park H, Chang YK, Park CW, Kim SY, Hong YA. Xanthine oxidoreductase inhibition ameliorates high glucose-induced glomerular endothelial injury by activating AMPK through the purine salvage pathway. Sci Rep 2024; 14:11167. [PMID: 38750091 PMCID: PMC11096301 DOI: 10.1038/s41598-024-61436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated. HG-treated GECs were increased xanthine oxidase/xanthine dehydrogenase levels and decreased intracellular AMP/ATP ratio, and these effects were reversed by febuxostat treatment. Febuxostat enhanced the phosphorylation of AMPK, the activation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1α and PPAR-α and suppressed the phosphorylation of forkhead box O (FoxO)3a in HG-treated GECs. Febuxostat also decreased nicotinamide adenine dinucleotide phosphate oxidase (Nox)1, Nox2, and Nox4 expressions; enhanced superoxide dismutase activity; and decreased malondialdehyde levels in HG-treated GECs. The knockdown of AMPK inhibited PGC-1α-FoxO3a signaling and negated the antioxidant effects of febuxostat in HG-treated GECs. Despite febuxostat administration, the knockdown of hypoxanthine phosphoribosyl transferase 1 (HPRT1) also inhibited AMPK-PGC-1α-FoxO3a in HG-treated GECs. XOR inhibition alleviates oxidative stress by activating AMPK-PGC-1α-FoxO3a signaling through the HPRT1-dependent purine salvage pathway in GECs exposed to HG conditions.
Collapse
Affiliation(s)
- Keum-Jin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Hwajin Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon-Kyung Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yu Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liang N, Wu M, Gao Y, Yang S, Lin X, Sun H, Liang N, Yin H, Qu S, Chen H. Purine Metabolic Pathway Alterations and Serum Urate Changes after Oral Inosine Loading in Male Chinese Volunteers. Mol Nutr Food Res 2024; 68:e2300115. [PMID: 38039425 DOI: 10.1002/mnfr.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/15/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Oral inosine loading is a new method to evaluate the effects of purine on urate metabolism. However, individuals respond differently to acute purine intake, and the effects on the metabolism of other purines remain to be explored. METHODS 35 male participants are recruited. Participants received 500 mg of inosine orally after an overnight fast, and blood and urine samples are collected before and at various time points over 180 min after inosine administration. RESULTS The serum urate concentration is significantly different between the hyperuricemia (n = 14) and non-hyperuricemia (n = 16) groups before inosine intake, but there is no in urate change after inosine intake. When grouped according to the baseline estimated glomerular filtration rate (eGFR), the increase in urate level in the high-eGFR group is significantly higher than that in the low-eGFR group (p = 0.047). The high-eGFR group showed higher levels of serum xanthine and xanthine oxidase (XOD), the key enzyme in urate synthesis, after inosine loading (p < 0.01). CONCLUSIONS The increase in urate level is positively related to eGFR after oral acute inosine administration, which may have been due to a higher level of XOD.
Collapse
Affiliation(s)
- Nan Liang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Mian Wu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Department of Endocrinology and Metabolism, The Affiliated Suzhou Hospital of Nanjing Medical, University, Suzhou Municipal Hospital, Suzhou, 215008, China
| | - Yining Gao
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shaoling Yang
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaojing Lin
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Hang Sun
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
4
|
Nakayama A, Kurajoh M, Toyoda Y, Takada T, Ichida K, Matsuo H. Dysuricemia. Biomedicines 2023; 11:3169. [PMID: 38137389 PMCID: PMC10740884 DOI: 10.3390/biomedicines11123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gout results from elevated serum urate (SU) levels, or hyperuricemia, and is a globally widespread and increasingly burdensome disease. Recent studies have illuminated the pathophysiology of gout/hyperuricemia and its epidemiology, diagnosis, treatment, and complications. The genetic involvement of urate transporters and enzymes is also proven. URAT1, a molecular therapeutic target for gout/hyperuricemia, was initially derived from research into hereditary renal hypouricemia (RHUC). RHUC is often accompanied by complications such as exercise-induced acute kidney injury, which indicates the key physiological role of uric acid. Several studies have also revealed its physiological role as both an anti-oxidant and a pro-oxidant, acting as both a scavenger and a generator of reactive oxygen species (ROSs). These discoveries have prompted research interest in SU and xanthine oxidoreductase (XOR), an enzyme that produces both urate and ROSs, as status or progression biomarkers of chronic kidney disease and cardiovascular disease. The notion of "the lower, the better" is therefore incorrect; a better understanding of uric acid handling and metabolism/transport comes from an awareness that excessively high and low levels both cause problems. We summarize here the current body of evidence, demonstrate that uric acid is much more than a metabolic waste product, and finally propose the novel disease concept of "dysuricemia" on the path toward "normouricemia", or optimal SU level, to take advantage of the dual roles of uric acid. Our proposal should help to interpret the spectrum from hypouricemia to hyperuricemia/gout as a single disease category.
Collapse
Affiliation(s)
- Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Masafumi Kurajoh
- Department of Metabolism, Endocrinology and Molecular Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yu Toyoda
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Science, Hachioji 192-0392, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| |
Collapse
|
5
|
Zhang Y, Ding X, Guo L, Zhong Y, Xie J, Xu Y, Li H, Zheng D. Comprehensive analysis of the relationship between xanthine oxidoreductase activity and chronic kidney disease. iScience 2023; 26:107332. [PMID: 37927553 PMCID: PMC10622700 DOI: 10.1016/j.isci.2023.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a common disease that seriously endangers human health. However, the potential relationship between xanthine oxidoreductase (XOR) activity and CKD remains unclear. In this study, we used clinical data, CKD datasets from the Gene Expression Omnibus database, and untargeted metabolomics to explain the relationship between XOR activity and CKD. First, XOR activity showed high correlation with the biomarkers of CKD, such as serum creatinine, blood urea nitrogen, uric acid, and estimated glomerular filtration rate. Then, we used least absolute shrinkage and selection operator logical regression algorithm and random forest algorithm to screen CKD molecular markers from differentially expressed genes, and the results of qRT-PCR of XDH, KOX-1, and ROMO1 were in accordance with the results of bioinformatics analyses. In addition, untargeted metabolomics analysis revealed that the purine metabolism pathway was significantly enriched in CKD patients in the simulated models of kidney fibrosis.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Xiaobao Ding
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
- Department of Pharmacology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Lihao Guo
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yanan Zhong
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Juan Xie
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Yong Xu
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Hailun Li
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| | - Donghui Zheng
- Department of Nephrology, The Affiliated Huai’an Hospital of Xuzhou Medical University and Huai’an Second People’s Hospital, Huai’an, China
| |
Collapse
|
6
|
Kotozaki Y, Satoh M, Nasu T, Tanno K, Tanaka F, Sasaki M. Human Plasma Xanthine Oxidoreductase Activity in Cardiovascular Disease: Evidence from a Population-Based Study. Biomedicines 2023; 11:biomedicines11030754. [PMID: 36979733 PMCID: PMC10045414 DOI: 10.3390/biomedicines11030754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Xanthine oxidoreductase (XOR) and its products contribute to the development of chronic inflammation and oxidative stress. Excessive XOR activity is believed to promote inflammatory responses and atherosclerotic plaque formation, which are major cardiovascular risk factors. The mechanisms of XOR activity in the development and progression of cardiovascular disease (CVD), coupled with the complexity of the relationship between XOR activity and the biological effects of uric acid; reactive oxygen species; and nitric oxide, which are the major products of XOR activity, have long been debated, but have not yet been clearly elucidated. Recently, a system for measuring highly sensitive XOR activity in human plasma was established, and there has been progress in the research on the mechanisms of XOR activity. In addition, there are accumulating findings about the relationship between XOR activity and CVD. In this narrative review, we summarize existing knowledge regarding plasma XOR activity and its relationship with CVD and discuss future perspectives.
Collapse
Affiliation(s)
- Yuka Kotozaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Mamoru Satoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Takahito Nasu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Fumitaka Tanaka
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Ultrahigh field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
7
|
Peng Z, Xu Q, Hu W, Cheng Y. Review on Molecular Mechanism of Hypertensive Nephropathy. Curr Pharm Des 2023; 29:2568-2578. [PMID: 37927071 DOI: 10.2174/0113816128266582231031111516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Hypertension, a prevalent chronic ailment, has the potential to impair kidney function, and thereby resulting in hypertensive nephropathy. The escalating incidence of hypertensive nephropathy attributed to the aging population in urban areas, has emerged as a prominent cause of end-stage renal disease. Nevertheless, the intricate pathogenesis of hypertensive nephropathy poses considerable obstacles in terms of precise clinical diagnosis and treatment. This paper aims to consolidate the research findings on the pathogenesis of hypertensive nephropathy by focusing on the perspective of molecular biology.
Collapse
Affiliation(s)
- Zhen Peng
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Qiaohong Xu
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Wen Hu
- Department of Pharmacy, Yichun People's Hospital, Yichun, Jiangxi 336000, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi 336000, China
| |
Collapse
|
8
|
Polito L, Bortolotti M, Battelli MG, Bolognesi A. Chronic kidney disease: Which role for xanthine oxidoreductase activity and products? Pharmacol Res 2022; 184:106407. [PMID: 35995347 DOI: 10.1016/j.phrs.2022.106407] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
The present review explores the role of xanthine oxidoreductase (XOR) in the development and progression of chronic kidney disease (CKD). Human XOR is a multi-level regulated enzyme, which has many physiological functions, but that is also implicated in several pathological processes. The main XOR activities are the purine catabolism, which generates uric acid, and the regulation of cell redox state and cell signaling, through the production of reactive oxygen species. XOR dysregulation may lead to hyperuricemia and oxidative stress, which could have a pathogenic role in the initial phases of CKD, by promoting cell injury, hypertension, chronic inflammation and metabolic derangements. Hypertension is common in CKD patients and many mechanisms inducing it (upregulation of renin-angiotensin-aldosterone system, endothelial dysfunction and atherosclerosis) may be influenced by XOR products. High XOR activity and hyperuricemia are also risk factors for obesity, insulin resistance, type 2 diabetes and metabolic syndrome that are frequent CKD causes. Moreover, CKD is common in patients with gout, which is characterized by hyperuricemia, and in patients with cardiovascular diseases, which are associated with hypertension, endothelial dysfunction and atherosclerosis. Although hyperuricemia is undoubtedly related to CKD, controversial findings have been hitherto reported in patients treated with urate-lowering therapies.
Collapse
Affiliation(s)
- Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
9
|
Sun HL, Wu YW, Bian HG, Yang H, Wang H, Meng XM, Jin J. Function of Uric Acid Transporters and Their Inhibitors in Hyperuricaemia. Front Pharmacol 2021; 12:667753. [PMID: 34335246 PMCID: PMC8317579 DOI: 10.3389/fphar.2021.667753] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Disorders of uric acid metabolism may be associated with pathological processes in many diseases, including diabetes mellitus, cardiovascular disease, and kidney disease. These diseases can further promote uric acid accumulation in the body, leading to a vicious cycle. Preliminary studies have proven many mechanisms such as oxidative stress, lipid metabolism disorders, and rennin angiotensin axis involving in the progression of hyperuricaemia-related diseases. However, there is still lack of effective clinical treatment for hyperuricaemia. According to previous research results, NPT1, NPT4, OAT1, OAT2, OAT3, OAT4, URAT1, GLUT9, ABCG2, PDZK1, these urate transports are closely related to serum uric acid level. Targeting at urate transporters and urate-lowering drugs can enhance our understanding of hyperuricaemia and hyperuricaemia-related diseases. This review may put forward essential references or cross references to be contributed to further elucidate traditional and novel urate-lowering drugs benefits as well as provides theoretical support for the scientific research on hyperuricemia and related diseases.
Collapse
Affiliation(s)
- Hao-Lu Sun
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Yi-Wan Wu
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - He-Ge Bian
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Hui Yang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Heng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|