1
|
Madhvapathy SR, Cho S, Gessaroli E, Forte E, Xiong Y, Gallon L, Rogers JA. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat Rev Nephrol 2025; 21:443-463. [PMID: 40301646 DOI: 10.1038/s41581-025-00961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Established clinical practices for monitoring kidney health and disease - including biopsy and serum biomarker analysis - suffer from practical limitations in monitoring frequency and lack adequate sensitivity for early disease detection. Engineering advances in biosensors have led to the development of wearable and implantable systems for monitoring of kidney health. Non-invasive microfluidic systems have demonstrated utility in the detection of kidney-relevant biomarkers, such as creatinine, urea and electrolytes in peripheral body fluids such as sweat, interstitial fluid, tears and saliva. Implantable systems may aid the identification of early transplant rejection through analysis of organ temperature and perfusion, and enable real-time assessment of inflammation through the use of thermal sensors. These technologies enable continuous, real-time monitoring of kidney health, offering complementary information to standard clinical procedures to alert physicians of changes in kidney health for early intervention. In this Review, we explore devices for monitoring renal biomarkers in peripheral biofluids and discuss developments in implantable sensors for the direct measurement of the local, biophysical properties of kidney tissue. We also describe potential clinical applications, including monitoring of chronic kidney disease, acute kidney injury and allograft health.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Elisa Gessaroli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Eleonora Forte
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Lorenzo Gallon
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Lanpher ME, Patterson B, Ebrahim M, Tavakoli AS. Audit and Feedback Supporting New Guideline Implementation in Chronic Kidney Disease. J Eval Clin Pract 2025; 31:e70132. [PMID: 40492893 DOI: 10.1111/jep.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/17/2025] [Accepted: 04/29/2025] [Indexed: 06/12/2025]
Abstract
BACKGROUND Adults with Type 2 diabetes mellitus and chronic kidney disease experience higher risk for progression to end stage kidney disease, which negatively impacts health, increases medical costs, and decreases quality of life. OBJECTIVE Determine if an audit and feedback intervention in a local nephrology clinic can increase provider adherence to a clinical practice guideline that supports the prescription of sodium glucose cotransporter-2 inhibitors to delay progression of chronic kidney disease. DESIGN A pretest-posttest design was used to determine if an audit and feedback tool delivered to providers at 3-week intervals would increase provider adherence to the guideline recommendation over the course of 3 months. A clinical decision guide was provided to participants at the onset of the intervention with structured interviews accompanying the audit and feedback cycles. PARTICIPANTS English speaking physicians and advanced practice providers were recruited from a local nephrology outpatient clinic in the southeastern United States. MEASUREMENTS To evaluate the significance of the intervention, a chi-square test was used to evaluate the change in prescribing of SGLT-2 inhibitors compared to the 3 months before the intervention. Logistic regression assisted with examining the relationship between the intervention and proportion of new SGLT-2 inhibitor prescriptions. RESULTS In this setting, statistical analysis indicated that the intervention significantly increased prescription of SGLT-2 inhibitors in adults with Type 2 diabetes and chronic kidney disease. CONCLUSION The intervention significantly increased provider adherence to the clinical guideline. Additional implementation on a larger scale is warranted to validate findings and further investigate barriers to prescribing that were reported by participating providers.
Collapse
Affiliation(s)
- Megan E Lanpher
- College of Nursing, University of South Carolina, Columbia
- Spartanburg Nephrology Associates, Spartanburg, South Carolina
| | | | | | | |
Collapse
|
3
|
Satarug S. Challenges in Toxicological Risk Assessment of Environmental Cadmium Exposure. TOXICS 2025; 13:404. [PMID: 40423483 DOI: 10.3390/toxics13050404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Dietary exposure to a high dose of cadmium (Cd) ≥ 100 µg/day for at least 50 years or a lifetime intake of Cd ≥ 1 g can cause severe damage to the kidneys and bones. Alarmingly, however, exposure to a dose of Cd between 10 and 15 µg/day and excretion of Cd at a rate below 0.5 µg/g creatinine have been associated with an increased risk of diseases with a high prevalence worldwide, such as chronic kidney disease (CKD), fragile bones, diabetes, and cancer. These findings have cast considerable doubt on a "tolerable" Cd exposure level of 58 µg/day for a 70 kg person, while questioning the threshold level for the Cd excretion rate of 5.24 µg/g creatinine. The present review addresses many unmet challenges in a threshold-based risk assessment for Cd. Special emphasis is given to the benchmark dose (BMD) methodology to estimate the Cd exposure limit that aligns with a no-observed-adverse-effect level (NOAEL). Cd exposure limits estimated from conventional dosing experiments and human data are highlighted. The results of the BMDL modeling of the relationship between Cd excretion and various indicators of its effects on kidneys are summarized. It is recommended that exposure guidelines for Cd should employ the most recent scientific research data, dose-response curves constructed from an unbiased exposure indicator, and clinically relevant adverse effects such as proteinuria, albuminuria, and a decrease in the estimated glomerular filtration rate (eGFR). These are signs of developing CKD and its progression to the end stage, when dialysis or a kidney transplant is required for survival.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
4
|
Yirga GK, Aytenew TM, Kassaw A, Hiruy EG, Shiferaw K, Baye AA, Kerebeh G, Mekonnen GB, Ewunetu M, Amare AT, Birlie TA, Wassie FD, Diress T, Abeje G, Eshetie Y, Abere Y, Bantie B. Chronic kidney disease among patients with hypertension in sub-Saharan Africa: a systematic review and meta-analysis. BMC Public Health 2025; 25:1603. [PMID: 40312329 PMCID: PMC12044763 DOI: 10.1186/s12889-025-22828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
INTRODUCTION Chronic kidney disease is defined by the presence of kidney damage or decreased kidney function for at least three months, irrespective of the cause. Hypertensive kidney disease is one of the long-term complications of poorly controlled hypertension. It is the second leading cause of developing chronic kidney disease, next to diabetic mellitus. METHODS The literature was searched using an international electronic database (PubMed, Google Scholar, Hinari, and Open Google) to get significant studies on chronic kidney disease among hypertensive patients. This study is conducted to determine the pooled prevalence and associated factors of chronic kidney disease among hypertensive patients up to May 20, 2024. Heterogeneity between studies was checked using I2 test statistics, and small study effects were checked using graphical and Egger's statistical tests at a 5% significance level. Subgroup analysis and sensitivity analysis were checked. A random-effects model was used to guess the pooled effect size across studies. RESULT In this meta-analysis, 16 studies in sub-Saharan Africa were included with a total of 6648 participants who fulfilled the inclusion criteria. The estimated prevalence of CKD among hypertension patients was found to be 29.01% (95% CI: 23.03-34.99, I2 = 97.10%) in sub-Saharan Africa. Age greater than 60 years old (OR = 2.36; 95% CI: 1.02-3.71, I2 = 99.11%), uncontrolled blood pressure (OR = 6.57; 95% CI: 2.44-10.71, I2 = 97.38%), hypertensive patients with diabetes comorbidity (OR = 3.27; 95% CI: 1.65-4.89, I2 = 95.79%), Bing overweight (OR = 2.75; 95% CI: 1.04-4.46, I2 = 98.22%), and proteinuria (OR = 4.64, 95% CI: 4.09-5.18, I2 = 0.00%). CONCLUSION Hypertension is one of the major causes of chronic kidney disease. Most patients living with hypertension develop CKD over time in sub-Saharan Africa. The highest prevalence of CKD among hypertension was observed in West Africa and Middle Africa.
Collapse
Affiliation(s)
- Gebrie Kassaw Yirga
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia.
| | - Tigabu Munye Aytenew
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amare Kassaw
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endalk Getasew Hiruy
- Department of Adult Health Nursing, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Kirubel Shiferaw
- Department of integrated psychiatry, college of health science Debre, Tabor University, Debre Tabor, Ethiopia
| | - Astewle Andargie Baye
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Gashaw Kerebeh
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Gebrehiwot Berie Mekonnen
- Department of Pediatrics and Child Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mengistu Ewunetu
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Tsedalu Amare
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tekalgn Amera Birlie
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Fentahun Dires Wassie
- Department of surgery, College of Health Sciences, Debre Tabor University vascular surgery resident Tikur Ambesa specialized Hospital, Adis Abeba, Ethiopia
| | - Tadila Diress
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Getu Abeje
- Department of parasitology, College of Health Sciences, Semera University, Semera, Ethiopia
| | - Yeshiambaw Eshetie
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yirgalem Abere
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Berihun Bantie
- 1Department of Adult Health Nursing, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
5
|
Li C, Fang Y, Chen YM. Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:615-625. [PMID: 39814099 PMCID: PMC11959421 DOI: 10.1016/j.ajpath.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Cellular stress, such as oxidative and endoplasmic reticulum (ER) stresses, contributes to the development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, Trx-interacting protein (TXNIP) is significantly up-regulated and activated by oxidative and ER stresses. The function of TXNIP is closely linked to its subcellular localizations. Under normal physiological conditions, TXNIP primarily localizes to the nucleus. When exposed to reactive oxygen species or ER stress, TXNIP relocates to mitochondria and binds to mitochondrial Trx2, which releases Trx-tethered apoptosis signal-regulating kinase 1 and activates apoptosis signal-regulating kinase 1-mediated apoptosis. Oxidative and ER stresses are also closely associated with autophagy. TXNIP can promote or inhibit autophagy depending on context. Although recent studies have highlighted the indispensable role of TXNIP in the etiology and progression of kidney disease, TXNIP-targeted therapy is still missing. This review focuses on the following: i) oxidative and ER stresses; ii) regulation and function of TXNIP during cellular stress; iii) TXNIP in stress-regulated autophagy; iv) TXNIP in kidney diseases (nephrotic syndrome, diabetic nephropathy and chronic kidney disease, acute kidney injury, and kidney aging); and v) novel treatment agents targeting TXNIP in kidney disease. Current advances in chemical compounds and RNA-based therapy suppressing TXNIP are also reviewed.
Collapse
Affiliation(s)
- Chuang Li
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yili Fang
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
6
|
Zhou H, Ru X, Chen S, Ye Q. Estimated glucose processing rates and the association of chronic kidney disease and proteinuria in non-diabetic adults. Int Urol Nephrol 2025:10.1007/s11255-025-04448-8. [PMID: 40088355 DOI: 10.1007/s11255-025-04448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
The study, which was based on NHANES data (1999-2018), included 21,234 nondiabetic individuals aged 20 years and older to investigate the associations between the estimated glucose disposal rate (eGDR) and the risk of chronic kidney disease (CKD) and proteinuria. CKD was defined as an estimated glomerular filtration rate (eGFR) less than 60 mL/min/1.73 m2, and proteinuria was defined as a urinary albumin-to-creatinine ratio (UACR) exceeding 30 mg/g. The results demonstrated a significant inverse association between eGDR levels and the risks of CKD and proteinuria. After adjusting for potential confounders, the association between eGDR and CKD showed that, compared with those for Q1, the adjusted odds ratios (ORs) for Q2, Q3, and Q4 were 0.82 (95% CI: 0.61-1.11), 0.62 (95% CI: 0.39-0.98), and 0.55 (95% CI: 0.28-1.05), respectively. For the relationship between eGDR and proteinuria, the adjusted ORs for Q2, Q3, and Q4 were 0.54 (95% CI: 0.42-0.69), 0.41 (95% CI: 0.27-0.62), and 0.65 (95% CI: 0.43-0.98), respectively. Moreover, each standard deviation increase in eGDR was associated with a 9% reduction in CKD risk (OR: 0.91, 95% CI: 0.85-0.98) and a 13% reduction in proteinuria risk (OR: 0.87, 95% CI: 0.82-0.93). Further adjustments via restricted cubic spline (RCS) regression analysis revealed a significant nonlinear relationship between eGDR and CKD and a U-shaped relationship between eGDR and proteinuria. A lower risk of proteinuria was observed when eGDR levels were between 8.70 and 9.91. These findings, combined with those of previous studies, suggest that eGDR may serve as a potential alternative metric for insulin resistance (IR). In nondiabetic individuals, the eGDR was significantly associated with the risk of CKD and proteinuria, with a notable nonlinear pattern in these relationships.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Laboratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Xuanwen Ru
- Department of Laboratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Simiao Chen
- Department of Laboratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Qing Ye
- Department of Laboratory Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|
7
|
Kardani AK, Fitri LE, Samsu N, Subandiyah K. Protective Effects of Physalis angulata on Podocythopathies Through B-Cell-Activating Factor Inhibition in Doxorubicin-Induced Nephrotic Syndrome Rat Model. Biomedicines 2025; 13:719. [PMID: 40149694 PMCID: PMC11940115 DOI: 10.3390/biomedicines13030719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Nephrotic syndrome, a glomerular disease caused by podocyte dysfunction, is characterized by proteinuria, hypoalbuminemia, edema, and hyperlipidemia. Current treatment relies on corticosteroids, which carry the risk of long-term side effects. Physalis angulata has potential as an adjunct therapy for immune-mediated kidney injury. This study aims to evaluate the effects of Physalis angulata extracts on anti-nephrin IgG, IL-4, and podocytopathy through BAFF inhibition in a doxorubicin-induced nephrotic syndrome rat model. Methods: This experimental study involved 36 Sprague-Dawley rats divided into control and treatment groups. The treatment groups received Physalis angulata extract at doses of 500 mg/kgBW, 1500 mg/kgBW, and 2500 mg/kgBW, or in combination with prednisone, alongside a group receiving prednisone monotherapy. Podocytopathy was assessed using proteinuria, nephrin, podocalyxin, and GLEPP-1. Proteinuria was measured using spectrophotometry. Serum BAFF levels, renal IL-4, urinary nephrin, and urinary podocalyxin were analyzed using ELISA. Renal nephrin, renal podocalyxin, GLEPP-1, and BAFF expression were evaluated by immunofluorescence microscopy. The data were analyzed using SPSS 25. Results: The results showed significant reductions in proteinuria, serum BAFF levels, renal BAFF expression, anti-nephrin IgG, IL-4, urinary nephrin, and urinary podocalyxin, along with significant increases in GLEPP-1, renal nephrin, and renal podocalyxin expression, in all treatment groups compared to the nephrotic syndrome control group. The combination of Physalis angulata at 2500 mg/kgBW with prednisone demonstrated the best effects. Conclusions: Physalis angulata shows promise as an adjuvant therapy for nephrotic syndrome by improving podocytopathy through BAFF inhibition. Further research is needed to evaluate its long-term safety, optimize dosing, and explore clinical applications in humans.
Collapse
Affiliation(s)
- Astrid K. Kardani
- Doctoral Program in Medical Sciences, Faculty of Medicine Universitas Brawijaya, Malang 65145, East Java, Indonesia
- Nephrology Division, Department of Pediatric, Faculty of Medicine Universitas Brawijaya Malang 65145/Dr. Saiful Anwar General Hospital, Malang 65111, East Java, Indonesia;
| | - Loeki E. Fitri
- Department of Clinical Parasitology, Faculty of Medicine Universitas Brawijaya Malang 65145/Dr. Saiful Anwar General Hospital, Malang 65111, East Java, Indonesia
| | - Nur Samsu
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine Universitas Brawijaya Malang 65145/Dr. Saiful Anwar General Hospital, Malang 65111, East Java, Indonesia;
| | - Krisni Subandiyah
- Nephrology Division, Department of Pediatric, Faculty of Medicine Universitas Brawijaya Malang 65145/Dr. Saiful Anwar General Hospital, Malang 65111, East Java, Indonesia;
| |
Collapse
|
8
|
Wang L, Tang Y, Buckley AF, Spurney RF. Podocyte specific knockout of the natriuretic peptide clearance receptor is podocyte protective in focal segmental glomerulosclerosis. PLoS One 2025; 20:e0319424. [PMID: 40063586 PMCID: PMC11892885 DOI: 10.1371/journal.pone.0319424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025] Open
Abstract
Natriuretic peptides (NPs) bind to glomerular podocytes and attenuate glomerular injury. The beneficial effects of NPs are negatively regulated by the NP clearance receptor (NPRC), which is highly expressed in podocytes. To determine if inhibiting NPRC is podocyte protective, we examined the effects of deleting NPRC in both cultured podocytes and in vivo. We found that: 1.Both atrial NP and C-type NP inhibit podocyte apoptosis in cultured podocytes, but these podocyte protective effects are significantly attenuated in cells expressing NPRC, and 2. Atrial NP was significantly more effective than CNP at inhibiting the apoptotic response. Consistent with the protective actions of NPs, podocyte specific knockout of NPRC reduced albuminuria, glomerular sclerosis and tubulointerstitial inflammation in a mouse model of focal segmental glomerulosclerosis. These beneficial actions were associated with: 1. Decreased expression of the myofibroblast marker alpha-smooth muscle actin, 2. Reduced expression of the extracellular matrix proteins collagen 4-alpha-1 and fibronectin, and 3. Preserved expression of the podocyte proteins nephrin and podocin. Inhibiting NP clearance may be a useful therapeutic approach to treat glomerular diseases.
Collapse
MESH Headings
- Podocytes/metabolism
- Podocytes/pathology
- Podocytes/drug effects
- Animals
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/genetics
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Receptors, Atrial Natriuretic Factor/deficiency
- Mice
- Apoptosis/drug effects
- Mice, Knockout
- Natriuretic Peptide, C-Type/pharmacology
- Natriuretic Peptide, C-Type/metabolism
- Disease Models, Animal
- Membrane Proteins/metabolism
- Albuminuria/genetics
- Male
- Intracellular Signaling Peptides and Proteins
Collapse
Affiliation(s)
- Liming Wang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Yuping Tang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| | - Anne F. Buckley
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert F. Spurney
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States of America
| |
Collapse
|
9
|
Huber A, Aslam I, Crowe L, Pruijm M, de Perrot T, de Seigneux S, Vallée JP, Berchtold L. T1 mapping magnetic resonance imaging predicts decline of kidney function. Clin Kidney J 2025; 18:sfaf032. [PMID: 40123968 PMCID: PMC11926595 DOI: 10.1093/ckj/sfaf032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Indexed: 03/25/2025] Open
Abstract
Background Renal cortical interstitial fibrosis, typically assessed by biopsy, is crucial for kidney function prognosis. Magnetic resonance imaging (MRI) is a promising method to assess fibrosis non-invasively. Diffusion-weighted (DW) MRI correlates with renal fibrosis and predicts kidney function decline in chronic kidney disease (CKD) and kidney allograft patients. This study evaluates whether T1 and T2 mapping predict kidney function decline and if their simultaneous use enhances the predictive power of a DW-MRI-based model. Methods We prospectively included 197 patients (42 CKD, 155 allograft kidneys). Each underwent a biopsy followed by multiparametric MRI without contrast within 1 week. Over a median follow-up of 2.2 years, laboratory parameters were recorded. The primary endpoint was a rapid decline in kidney function [glomerular filtration rate (GFR) reduction >30%] or replacement therapy initiation. The ability of T1 and T2 mapping sequences to predict poor renal outcome was examined using multivariable Cox regression models, incorporating MRI-derived parameters, estimated GFR (eGFR) and proteinuria. Results Renal outcome occurred in 54 patients after a median of 1.1 years (interquartile range 0.9-2.1). Univariable survival analysis showed cortical T1 was associated with poor renal outcome {hazard ratio [HR] 3.02 [95% confidence interval (CI) 1.44-6.33]}, while T2 sequences had no significant predictive value. Adding cortical T1 to the established model (ΔADC, eGFR, proteinuria) did not improve the HR [from 4.62 (95% CI 1.56-13.67) to 4.36 (95% CI 1.46-13.02)] and marginally increased Harrell's C-index (0.77 to 0.79). Adjusting the regression model for ΔT2 yielded no enhancement in predictive power. Conclusions Cortical T1 is strongly associated with poor renal outcome but did not enhance prognostic power of the DW-MRI-based model.
Collapse
Affiliation(s)
- Aurélie Huber
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| | - Ibtisam Aslam
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Lindsey Crowe
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Menno Pruijm
- Department of Medicine, Division of Nephrology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thomas de Perrot
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| | - Jean-Paul Vallée
- Department of Diagnostics, Division of Radiology, University Hospitals of Geneva and Faculty of Medicine of the Geneva University, Geneva, Switzerland
| | - Lena Berchtold
- Department of Medicine, Division of Nephrology and Hypertension, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
10
|
Satarug S. Antioxidative Function of Zinc and Its Protection Against the Onset and Progression of Kidney Disease Due to Cadmium. Biomolecules 2025; 15:183. [PMID: 40001486 PMCID: PMC11853145 DOI: 10.3390/biom15020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is now the world's top seventh cause of death from a non-communicable disease, and its incidence is projected to increase further as its major risk factors, including obesity, diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD), continue to rise. Current evidence has linked the increased prevalence of CKD, diabetes, hypertension, and NAFLD to chronic exposure to the metal pollutant cadmium (Cd). Exposure to Cd is widespread because diet is the main exposure route for most people. Notably, however, the health risk of dietary Cd exposure is underappreciated, and the existing tolerable exposure guidelines for Cd do not afford health protection. New health-protective exposure guidelines are needed. From one's diet, Cd is absorbed by the intestinal epithelium from where it passes through the liver and accumulates within the kidney tubular epithelial cells. Here, it is bound to metallothionine (MT), and as it is gradually released, it induces tubular damage, tubulointerstitial inflammation and fibrosis, and nephron destruction. The present review provides an update on our knowledge of the exposure levels of Cd that are found to be associated with CKD, NAFLD, and mortality from cardiovascular disease. It discusses the co-existence of hypertension and CKD in people environmentally exposed to Cd. It highlights nuclear and mitochondrial targeting and zinc deficiency as the universal cytotoxic mechanisms of Cd. Special emphasis is placed on the novel antioxidative function of zinc involving de novo heme biosynthesis and the induced expression of heme oxygenase-1 (HO-1). Other exogenous biomolecules with promising anti-Cd toxicity are highlighted.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
11
|
Ponticelli C. Membranous Nephropathy. J Clin Med 2025; 14:761. [PMID: 39941432 PMCID: PMC11818350 DOI: 10.3390/jcm14030761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025] Open
Abstract
Membranous nephropathy is a glomerular disease that may be caused by exogenous risk factors in genetically predisposed individuals (primary MN) or may be associated with other autoimmune diseases, drug exposure, or cytotoxic agents (secondary MN). Primary membranous nephropathy (PMN) is an autoimmune disease in which antigens-mainly the phospholipase A2 receptor-are located in the podocytes and are targeted by circulating antibodies, leading to in situ formation of immune complexes that activate the complement system. Clinically, the disease is characterized by nephrotic syndrome (NS) and associated complications. The outcome of PMN can vary, but untreated patients with NS may progress to end-stage kidney disease (ESKD) in 35-40% of cases within 10 years. Treatment primarily aims to prevent NS complications and progression to ESKD. The most commonly used immunosuppressive drugs are rituximab, corticosteroids, cyclophosphamide, and calcineurin inhibitors. Most patients may experience an improvement of proteinuria, which can sometimes be followed by NS relapse. Fewer than 50% of patients with PMN achieve complete and stable remission. In addition to immunosuppressive therapy, antiproteinuric, anti-lipemic, and anticoagulant medicaments are often required.
Collapse
|
12
|
Joumaa JP, Raffoul A, Sarkis C, Chatrieh E, Zaidan S, Attieh P, Harb F, Azar S, Ghadieh HE. Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives. J Clin Med 2025; 14:727. [PMID: 39941397 PMCID: PMC11818458 DOI: 10.3390/jcm14030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Diabetic Kidney Disease (DKD) is the leading cause of end-stage renal disease (ESRD) worldwide. Among individuals with type 1 diabetes mellitus (T1DM), 30-40% are at risk of developing DKD. This review focuses on the mechanistic processes, available and emerging biomarkers for diagnosing, monitoring, and preventing DKD, as well as treatment options targeted at DKD patients. A literature search was conducted on PubMed and Scopus using specific keywords. Inclusion and exclusion criteria were applied to select the articles used for this review. The literature highlights various mechanisms involved in the progression of DKD to more severe stages. Additionally, several biomarkers have been identified, which aid in diagnosing and monitoring the disease. Furthermore, numerous treatment approaches are being explored to address the underlying causes of DKD. Advanced research is exploring new medications to aid in DKD remission; sodium-glucose cotransport (SGLT2) inhibitors and finerenone, in particular, are gaining attention for their novel renoprotective effects. DKD is a major complication of diabetes, marked by complex and multifactorial mechanisms. Thus, understanding these processes is essential for developing targeted therapies to potentially reverse DKD progression. Biomarkers show promise for early diagnosis and monitoring of disease progression, while current treatment strategies underscore the importance of a multifaceted approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura, Tripoli P.O. Box 100, Lebanon; (J.P.J.); (A.R.); (C.S.); (E.C.); (S.Z.); (P.A.); (F.H.); (S.A.)
| |
Collapse
|
13
|
Chang TJ, Lee YC, Wu LC, Chang CH. Albuminuria-based stratification of end-stage kidney disease progression and mortality with sodium-glucose cotransporter 2 inhibitors (SGLT2i): A retrospective cohort study in type 2 diabetes and chronic kidney disease. Pharmacotherapy 2024; 44:828-840. [PMID: 39382257 DOI: 10.1002/phar.4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Clinical trials have shown the kidney-protective benefits of sodium-glucose cotransporter 2 inhibitors (SGLT2i). However, their real-world impact, particularly across varying levels of albuminuria, remains less well understood. This study aimed to evaluate the association of SGLT2i, compared with other oral glucose-lowering drugs, with end-stage kidney disease (ESKD) progression in patients with type 2 diabetes and chronic kidney disease (CKD) stratified by urine albumin-to-creatinine ratio (UACR) levels. METHODS Using data from a national database spanning from 2016 to 2021, the study included patients with type 2 diabetes and CKD with estimated glomerular filtration rates (eGFRs) below 60 mL/min/1.73 m2 and who started on SGLT2i or other oral glucose-lowering drugs. Patients were stratified into groups by UACR ≥300 mg/g and <300 mg/g. Propensity score matching was used to minimize confounding, and progression to ESKD was evaluated using competing risks and Cox proportional-hazards models. All-cause mortality was also analyzed. RESULTS Following propensity score matching, 18,514 patients in the severely increased albuminuria group (UACR ≥300 mg/g) were tracked, with 2.6% progressing to ESKD over 3 years. In contrast, only 0.3% of the 26,946 patients with UACR <300 mg/g progressed to ESKD. SGLT2i use was associated with a 30% reduction in risk of ESKD progression, compared with the use of other oral glucose-lowering drugs, in the severely increased albuminuria group (hazard ratio[HR]: 0.70, 95% confidence interval [CI]: 0.61-0.80). In the lower albuminuria group, no significant association was evident, though there was a nonsignificant trend toward protection over time. A consistent reduction in mortality risk was observed across all albuminuria levels. CONCLUSIONS SGLT2i are associated with a reduction in the progression to ESKD among patients with severely increased albuminuria, with less pronounced effects observed in those with lower albuminuria levels, suggesting variability in renal outcomes based on albuminuria severity. The consistent survival benefit across all albuminuria levels supports the potential utility of SGLT2i in diabetes and CKD treatment strategies, emphasizing the need for more targeted research.
Collapse
Affiliation(s)
- Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Chieh Lee
- Department of Family Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Li-Chiu Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hsuin Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Satarug S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. TOXICS 2024; 12:775. [PMID: 39590955 PMCID: PMC11598048 DOI: 10.3390/toxics12110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Exposure to even low levels of the environmental pollutant cadmium (Cd) increases the risk of kidney damage and malfunction. The body burden of Cd at which these outcomes occur is not, however, reliably defined. Here, multiple-regression and mediation analyses were applied to data from 737 non-diabetic Thai nationals, of which 9.1% had an estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2 (a low eGFR). The excretion of Cd (ECd), and renal-effect biomarkers, namely β2-microglobulin (Eβ2M), albumin (Ealb), and N-acetylglucosaminidase (ENAG), were normalized to creatinine clearance (Ccr) as ECd/Ccr Eβ2M/Ccr, Ealb/Ccr, and ENAG/Ccr. After adjustment for potential confounders, the risks of having a low eGFR and albuminuria rose twofold per doubling ECd/Ccr rates and they both varied directly with the severity of β2-microglobulinuria. Doubling ECd/Ccr rates also increased the risk of having a severe tubular injury, evident from ENAG/Ccr increments [POR = 4.80, p = 0.015]. ENAG/Ccr was strongly associated with ECd/Ccr in both men (β = 0.447) and women (β = 0.394), while showing a moderate inverse association with eGFR only in women (β = -0.178). A moderate association of ENAG/Ccr and ECd/Ccr was found in the low- (β = 0.287), and the high-Cd body burden groups (β = 0.145), but ENAG/Ccr was inversely associated with eGFR only in the high-Cd body burden group (β = -0.223). These discrepancies together with mediation analysis suggest that Cd-induced nephron destruction, which reduces GFR and the tubular release of NAG by Cd, involves different mechanisms and kinetics.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
15
|
Ponticelli C, Arnaboldi L, Moroni G, Fornoni A. How We Treat Dyslipidemia in Prolonged Nephrotic Syndrome. Clin J Am Soc Nephrol 2024; 19:1327-1329. [PMID: 38865192 PMCID: PMC11469782 DOI: 10.2215/cjn.0000000000000514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Affiliation(s)
| | - Lorenzo Arnaboldi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milano, Italy
| | - Gabriella Moroni
- Nephrology and Dialysis Division, Department of Biomedical Sciences Humanitas University, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Alessia Fornoni
- Director and Chair, Peggy and Harold Katz Family Drug Discovery Center, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
16
|
Mohtashamian A, Mozaffari-Rad N, Soleimani A, Akbari H, Arabi V, Sharifi N. Dietary Magnesium Intake and Proteinuria: Is There a Relationship? Biol Trace Elem Res 2024; 202:3959-3966. [PMID: 38110607 DOI: 10.1007/s12011-023-04005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
The possible relationship between dietary magnesium status and proteinuria has been suggested by a number of previous studies. However, human studies on this association are limited. Therefore, the present study aimed to investigate the independent relationship between dietary magnesium intake and urinary protein excretion. The present study was a post hoc analysis of the previous randomized clinical trial that evaluated the effect of dietary phosphorus restriction on proteinuria. The baseline data of 90 participants with proteinuria and chronic kidney disease was used to measure the association between dietary magnesium intake and proteinuria. Participants were asked to record their 24-h food intake for three days a week in a questionnaire. Urinary protein to creatinine ratio (UPCR) in a random urine sample was measured to be a marker for proteinuria. Out of 90 patients included in the study, 47 were men and 43 were women. The mean ± standard deviation of age and body mass index were 59.05 ± 14.16 years and 29.02 ± 5.54 kg/m2, respectively. The patients' average daily dietary intake of energy and magnesium were 2183 kcal and 169.44 mg, respectively. A significant inverse correlation was found between the dietary intake of magnesium and UPCR (r = - 0.219, p = 0.042). This association remained significant even after adjusting for confounding variables (β = - 0.222, p = 0.028). The findings of the present study showed a significant inverse relationship between the magnesium intake and proteinuria. Although, the design of the current research was cross-sectional, it has provided a basis for conducting future longitudinal studies and trials to better elucidate such a relationship.
Collapse
Affiliation(s)
- Abbas Mohtashamian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Postal Code: 87159-7347415973474, Iran
| | - Negar Mozaffari-Rad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Postal Code: 87159-7347415973474, Iran
| | - Alireza Soleimani
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Vahid Arabi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Sharifi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Postal Code: 87159-7347415973474, Iran.
| |
Collapse
|
17
|
de Cos M, Mosoyan G, Chauhan K, Troost JP, Wong JS, Lefferts S, Morgan P, Meliambro K, Egerman M, Ray J, Parker T, Levine D, Seshan S, Bardash Y, Horowitz B, Kent CA, Shaw MM, Perlman A, Moledina DG, Coca SG, Campbell KN. Urinary Plasminogen as a Marker of Disease Progression in Human Glomerular Disease. Am J Kidney Dis 2024; 84:205-214.e1. [PMID: 38452919 PMCID: PMC11260534 DOI: 10.1053/j.ajkd.2024.01.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
RATIONALE & OBJECTIVE Glomerular disorders have a highly variable clinical course, and biomarkers that reflect the molecular mechanisms underlying their progression are needed. Based on our previous work identifying plasminogen as a direct cause of podocyte injury, we designed this study to test the association between urine plasmin(ogen) (ie, plasmin and its precursor plasminogen) and end-stage kidney disease (ESKD). STUDY DESIGN Multicenter cohort study. SETTING & PARTICIPANTS 1,010 patients enrolled in the CureGN Cohort with biopsy-proven glomerular disease (focal segmental glomerulosclerosis, membranous nephropathy, and immunoglobulin A nephropathy). PREDICTORS The main predictor was urine plasmin(ogen) at baseline. Levels were measured by an electrochemiluminescent immunoassay developed de novo. Traditional clinical and analytical characteristics were used for adjustment. The ratio of urine plasmin(ogen)/expected plasmin(ogen) was evaluated as a predictor in a separate model. OUTCOME Progression to ESKD. ANALYTICAL APPROACH Cox regression was used to examine the association between urinary plasmin(ogen) and time to ESKD. Urinary markers were log2 transformed to approximate normal distribution and normalized to urinary creatinine (Log2uPlasminogen/cr, Log2 urinary protein/cr [UPCR]). Expected plasmin(ogen) was calculated by multiple linear regression. RESULTS Adjusted Log2uPlasminogen/cr was significantly associated with ESKD (HR per doubling Log2 uPlasminogen/cr 1.31 [95% CI, 1.22-1.40], P<0.001). Comparison of the predictive performance of the models including Log2 uPlasminogen/cr, Log2 UPCR, or both markers showed the plasmin(ogen) model superiority. The ratio of measured/expected urine plasmin(ogen) was independently associated with ESKD: HR, 0.41 (95% CI, 0.22-0.77) if ratio<0.8 and HR 2.42 (95% CI, 1.54-3.78) if ratio>1.1 (compared with ratio between 0.8 and 1.1). LIMITATIONS Single plasmin(ogen) determination does not allow for the study of changes over time. The use of a cohort of mostly white patients and the restriction to patients with 3 glomerular disorders limits the external validity of our analysis. CONCLUSIONS Urinary plasmin(ogen) and the ratio of measured/expected plasmin(ogen) are independently associated with ESKD in a cohort of patients with glomerular disease. Taken together with our previous experimental findings, urinary plasmin(ogen) could be a useful biomarker in prognostic decision making and a target for the development of novel therapies in patients with proteinuria and glomerular disease. PLAIN-LANGUAGE SUMMARY Glomerular diseases are an important cause of morbidity and mortality in patients of all ages. Knowing the individual risk of progression to dialysis or transplantation would help to plan the follow-up and treatment of these patients. Our work studies the usefulness of urinary plasminogen as a marker of progression in this context, since previous studies indicate that plasminogen may be involved in the mechanisms responsible for the progression of these disorders. Our work in a sample of 1,010 patients with glomerular disease demonstrates that urinary plasminogen (as well as the ratio of measured to expected plasminogen) is associated with the risk of progression to end-stage kidney disease. Urine plasminogen exhibited good performance and, if further validated, could enable risk stratification for timely interventions in patients with proteinuria and glomerular disease.
Collapse
Affiliation(s)
- Marina de Cos
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gohar Mosoyan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jenny S Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sean Lefferts
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Morgan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marc Egerman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Justina Ray
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom Parker
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Daniel Levine
- Rogosin Institute, Weill Cornell Medicine, New York, New York
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Yoni Bardash
- St. Joseph's University Medical, Paterson, New Jersey
| | - Benjamin Horowitz
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Candice A Kent
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa M Shaw
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Alan Perlman
- Rogosin Institute, Weill Cornell Medicine, New York, New York; Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
18
|
Mekahli D, Müller RU, Marlais M, Wlodkowski T, Haeberle S, de Argumedo ML, Bergmann C, Breysem L, Fladrowski C, Henske EP, Janssens P, Jouret F, Kingswood JC, Lattouf JB, Lilien M, Maleux G, Rozenberg M, Siemer S, Devuyst O, Schaefer F, Kwiatkowski DJ, Rouvière O, Bissler J. Clinical practice recommendations for kidney involvement in tuberous sclerosis complex: a consensus statement by the ERKNet Working Group for Autosomal Dominant Structural Kidney Disorders and the ERA Genes & Kidney Working Group. Nat Rev Nephrol 2024; 20:402-420. [PMID: 38443710 DOI: 10.1038/s41581-024-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Department of Paediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matko Marlais
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tanja Wlodkowski
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefanie Haeberle
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Marta López de Argumedo
- Basque Office for Health Technology Assessment, (OSTEBA), Basque Government, Vitoria-Gasteiz, Spain
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Luc Breysem
- Department of Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ASP, Rome, Italy
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
| | - Elizabeth P Henske
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Janssens
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
- Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - John Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, UK
| | - Jean-Baptiste Lattouf
- Department of Surgery-Urology, CHUM-Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marc Lilien
- Department of Paediatric Nephrology, Wilhelmina Children´s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Micaela Rozenberg
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
- Associação de Esclerose Tuberosa em Portugal, Lisbon, Portugal
| | - Stefan Siemer
- Department of Urology and Paediatric Urology, Saarland University, Homburg, Germany
| | - Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
- Institute for Rare Diseases, Saint-Luc Academic Hospital, UC Louvain, Brussels, Belgium
| | - Franz Schaefer
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivier Rouvière
- Department of Radiology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, Lyon, France, Faculté de médecine Lyon Est, Lyon, France
| | - John Bissler
- Department of Paediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
- Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN, USA.
- Paediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Tang YW, Jiang MY, Cao JW, Wan F. Triptolide decreases podocytes permeability by regulating TET2-mediated hydroxymethylation of ZO-1. Exp Biol Med (Maywood) 2024; 249:10051. [PMID: 38881848 PMCID: PMC11176508 DOI: 10.3389/ebm.2024.10051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Podocyte injury or dysfunction can lead to proteinuria and glomerulosclerosis. Zonula occludens 1 (ZO-1) is a tight junction protein which connects slit diaphragm (SD) proteins to the actin cytoskeleton. Previous studies have shown that the expression of ZO-1 is decreased in chronic kidney disease (CKD). Thus, elucidation of the regulation mechanism of ZO-1 has considerable clinical importance. Triptolide (TP) has been reported to exert a strong antiproteinuric effect by inhibiting podocyte epithelial mesenchymal transition (EMT) and inflammatory response. However, the underlying mechanisms are still unclear. We found that TP upregulates ZO-1 expression and increases the fluorescence intensity of ZO-1 in a puromycin aminonucleoside (PAN)-induced podocyte injury model. Permeablity assay showed TP decreases podocyte permeability in PAN-treated podocyte. TP also upregulates the DNA demethylase TET2. Our results showed that treatment with the DNA methyltransferase inhibitors 5-azacytidine (5-AzaC) and RG108 significantly increased ZO-1 expression in PAN-treated podocytes. Methylated DNA immunoprecipitation (MeDIP) and hydroxymethylated DNA immunoprecipitation (hMeDIP) results showed that TP regulates the methylation status of the ZO-1 promoter. Knockdown of TET2 decreased ZO-1 expression and increased methylation of its promoter, resulting in the increase of podocyte permeability. Altogether, these results indicate that TP upregulates the expression of ZO-1 and decreases podocyte permeability through TET2-mediated 5 mC demethylation. These findings suggest that TP may alleviate podocyte permeability through TET2-mediated hydroxymethylation of ZO-1.
Collapse
Affiliation(s)
- Yue-Wen Tang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| | - Meng-Ya Jiang
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Wei Cao
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng Wan
- Department of Nephrology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China
| |
Collapse
|
20
|
Ahn Y, Park JH. Novel Potential Therapeutic Targets in Autosomal Dominant Polycystic Kidney Disease from the Perspective of Cell Polarity and Fibrosis. Biomol Ther (Seoul) 2024; 32:291-300. [PMID: 38589290 PMCID: PMC11063481 DOI: 10.4062/biomolther.2023.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 04/10/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), a congenital genetic disorder, is a notable contributor to the prevalence of chronic kidney disease worldwide. Despite the absence of a complete cure, ongoing research aims for early diagnosis and treatment. Although agents such as tolvaptan and mTOR inhibitors have been utilized, their effectiveness in managing the disease during its initial phase has certain limitations. This review aimed to explore new targets for the early diagnosis and treatment of ADPKD, considering ongoing developments. We particularly focus on cell polarity, which is a key factor that influences the process and pace of cyst formation. In addition, we aimed to identify agents or treatments that can prevent or impede the progression of renal fibrosis, ultimately slowing its trajectory toward end-stage renal disease. Recent advances in slowing ADPKD progression have been examined, and potential therapeutic approaches targeting multiple pathways have been introduced. This comprehensive review discusses innovative strategies to address the challenges of ADPKD and provides valuable insights into potential avenues for its prevention and treatment.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, 04310, 04310, Republic of Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul, 04310, Republic of Korea
| |
Collapse
|
21
|
Rozenfeld P, Feriozzi S, Braun F. The role of tubular cells in the pathogenesis of Fabry nephropathy. Front Cardiovasc Med 2024; 11:1386042. [PMID: 38646152 PMCID: PMC11027898 DOI: 10.3389/fcvm.2024.1386042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024] Open
Abstract
The pathophysiology of Fabry nephropathy (FN) is induced by galactosidase A deficiency with a chronic exposure of glycolipids to every lineage of renal cells. Tissue damage is attributed to the activation of molecular pathways, resulting in tissue fibrosis and chronic kidney disease. Podocytes have been the primary focus in clinical pathophysiological research because of the striking accumulation of large glycolipid deposits observable in histology. Yet, the tubular interstitium makes up a large portion of the whole organ, and therefore, its role must be further considered in pathogenic processes. In this review, we would like to propose Fabry tubulopathy and its ensuing functional effects as the first pathological signs and contributing factors to the development of FN. We will summarize and discuss the current literature regarding the role of tubular cells in Fabry kidney pathophysiology. Starting from clinical and histological evidence, we will highlight the data from animal models and cell cultures outlining the pathophysiological pathways associated with tubular interstitial injury causing renal fibrosis in Fabry nephropathy.
Collapse
Affiliation(s)
- Paula Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina
| | - Sandro Feriozzi
- Nephrology and Dialysis Unit, Belcolle Hospital, Viterbo, Italy
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
23
|
Jandeleit-Dahm KAM, Kankanamalage HR, Dai A, Meister J, Lopez-Trevino S, Cooper ME, Touyz RM, Kennedy CRJ, Jha JC. Endothelial NOX5 Obliterates the Reno-Protective Effect of Nox4 Deletion by Promoting Renal Fibrosis via Activation of EMT and ROS-Sensitive Pathways in Diabetes. Antioxidants (Basel) 2024; 13:396. [PMID: 38671844 PMCID: PMC11047703 DOI: 10.3390/antiox13040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Karin A. M. Jandeleit-Dahm
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Haritha R. Kankanamalage
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Aozhi Dai
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Jaroslawna Meister
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Sara Lopez-Trevino
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H3H 2R9, Canada;
| | - Christopher R. J. Kennedy
- Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada;
| | - Jay C. Jha
- Department of Diabetes, School of Translational Medicine, Monash University, Alfred Medical Research & Education Precinct, Melbourne, VIC 3004, Australia; (K.A.M.J.-D.); (S.L.-T.); (M.E.C.)
| |
Collapse
|
24
|
Okada A, Yamaguchi S, Imaizumi T, Oba K, Kurakawa KI, Yamauchi T, Kadowaki T, Nangaku M. Modification Effects of Albuminuria on the Association Between Kidney Function and Development of Anemia in Diabetes. J Clin Endocrinol Metab 2024; 109:1012-1032. [PMID: 37955878 PMCID: PMC10940265 DOI: 10.1210/clinem/dgad660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
CONTEXT Previous studies failed to adjust for estimated glomerular filtration rate (eGFR) in evaluating the association between albuminuria and anemia development, and we aimed to investigate whether albuminuria independently affects anemia development. METHODS We conducted a retrospective cohort study and retrospectively identified adults with diabetes from a Japanese nationwide clinical database (JMDC, Tokyo, Japan). To assess the modification effects of albuminuria on the association between eGFR and anemia development, we estimated prevalence of anemia, defined as hemoglobin < 13 g/dL in men and < 12 g/dL in women, using a modified Poisson regression and marginal standardization form of predictive margins, stratified by albuminuria severity after adjusting for eGFR. Hence, we revealed at which eGFR level this modification effect appeared and the extent to which this modification effect increased the prevalence of anemia. RESULTS We identified 327 999 data points from 48 056 individuals [normoalbuminuria: 186 472 (56.9%), microalbuminuria: 107 170 (32.7%), and macroalbuminuria: 34 357 (10.5%)]. As eGFR declined, anemia prevalence increased. Albuminuria severity modified this association induced by decreased eGFR among individuals with eGFR <30 mL/min/1.73 m2 after adjusting for multivariable factors, including age, sex, comorbidities, and medication use. Compared with the normoalbuminuric group, the macroalbuminuric group had a 5% to 20% higher anemia prevalence among individuals with eGFR of <30 mL/min/1.73 m2. CONCLUSION We revealed that the severity of albuminuria modified the association between eGFR and anemia development among individuals with eGFR <30 mL/min/1.73 m2, highlighting the modification effect of albuminuria on the association between kidney function and anemia development in diabetes.
Collapse
Affiliation(s)
- Akira Okada
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Satoko Yamaguchi
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Imaizumi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kayo Ikeda Kurakawa
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolism, Graduate School of Medicine, The University of TokyoTokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Department of Diabetes and Metabolism, Graduate School of Medicine, The University of TokyoTokyo, 113-8655, Japan
- Toranomon Hospital, Tokyo 105-8470, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
25
|
Yin DY, Hou GL, Yang XQ, Bi LL, Mei XF, Bai MK, Zhou L, Zhu S, Huang YJ. Urinary matrix metalloproteinase-7 is a sensitive biomarker to evaluate renal tubular injury in patients with minimal change disease and focal segmental glomerulosclerosis. Clin Kidney J 2024; 17:sfad027. [PMID: 38186883 PMCID: PMC10765092 DOI: 10.1093/ckj/sfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/09/2024] Open
Abstract
Objective To explore the advantages of urinary matrix metalloproteinase-7 (MMP-7) in evaluating renal tubular injury in minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) patients compared with urinary cystatin C (CysC) and retinol-binding protein (RBP). Methods Serum and urine samples were collected from 20 healthy volunteers, and 40 MCD and 20 FSGS patients. Serum and urinary MMP-7 levels were measured by enzyme-linked immunosorbent assay. Urinary total protein, CysC and RBP levels were measured by automatic specific protein analyzer and compared with urinary creatinine level for calibration. The renal tissue serial sections were stained by MMP-7 immunohistochemistry and periodic acid-Schiff. Results Under light microscopy, MMP-7 granular weak positive expression was showed sporadically in the cytoplasm of a few renal tubular epithelial cells without obvious morphological changes in MCD patients, and MMP-7-positive expression was observed in the cytoplasm of some renal tubular epithelial cells in FSGS patients. There was no significant difference in serum MMP-7 level among the three groups. Compared with the control group, the urinary MMP-7 level in MCD patients was higher, but urinary CysC and RBP levels were not increased significantly. Compared with the control group and MCD patients, urinary MMP-7, CysC and RBP levels in FSGS patients were upregulated significantly. Conclusions Urinary MMP-7 could not only evaluate the mild renal tubular epithelial cells injury in MCD patients with massive proteinuria, but also evaluate the continuous renal tubular epithelial cells injury in FSGS patients.
Collapse
Affiliation(s)
- Dan-yang Yin
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gai-ling Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiao-qing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Liang-liang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Xiao-feng Mei
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Meng-ke Bai
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shan Zhu
- Department of Pediatrics, Henan Province Hospital of TCM, Zhengzhou, Henan, China
| | - Yan-jie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Campbell KN, Griffin S, Trachtman H, Geletka R, Wong MG. Practical Considerations for the Use of Sparsentan in the Treatment of Patients with IgAN in Clinical Practice. Int J Nephrol Renovasc Dis 2023; 16:281-291. [PMID: 38149041 PMCID: PMC10750480 DOI: 10.2147/ijnrd.s430377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. It is characterized by the mesangial deposition of IgA-containing immune complexes, triggering damage to the glomerular filtration barrier that is amplified by the tandem action of endothelin-1 and angiotensin II at their receptors. Proteinuria and progressive glomerular damage cause loss of kidney function in up to 50% of patients within 10-20 years. The risk of progression is strongly associated with persistent proteinuria (>0.75-1 g/day). Current standard of care involves interventions to decrease proteinuria and control blood pressure. Immunosuppressive agents, used in selected patients at high risk for progression, can be associated with significant side effects. Sparsentan, a novel non-immunosuppressive single-molecule Dual Endothelin Angiotensin Receptor Antagonist (DEARA), received FDA accelerated approval based on interim results from the PROTECT trial, which demonstrated that sparsentan-treated patients achieved a significantly greater reduction in proteinuria from baseline versus the active control irbesartan and that sparsentan was generally safe and well tolerated. Sparsentan is the first non-immunosuppressive treatment to be FDA-approved for the reduction of proteinuria in adults with IgAN at high risk of disease progression. We provide practical guidance for the clinical use of sparsentan in adults with IgAN.
Collapse
Affiliation(s)
- Kirk N Campbell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siân Griffin
- Department of Nephrology, University Hospital of Wales, Cardiff, UK
| | - Howard Trachtman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Rob Geletka
- Travere Therapeutics, Inc., San Diego, CA, USA
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, NSW, Australia
- Concord Clinical School, University of Sydney, Concord, NSW, Australia
| |
Collapse
|
27
|
Claudio P, Gabriella M. Nephrotic syndrome: pathophysiology and consequences. J Nephrol 2023; 36:2179-2190. [PMID: 37466816 DOI: 10.1007/s40620-023-01697-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
In patients with kidney disease, nephrotic syndrome can lead to several complications including progressive kidney dysfunction. Proteinuria may lead to the formation of cellular or fibrous crescents with reciprocal development of rapidly progressive glomerulonephritis or focal glomerulosclerosis. Proteinuria may also cause overload and dysfunction of tubular epithelial cells, eventually resulting in tubular atrophy and interstitial fibrosis. Hypoalbuminemia is usually associated with increased risk of mortality and kidney dysfunction. Dyslipidemia may increase the risk of atherosclerotic complications, cause podocyte dysfunction and contribute to vascular thrombosis. Urinary loss of anticoagulants and overproduction of coagulation factors may facilitate a hypercoagulable state. Edema, hypogammaglobulinemia, loss of complement factors, and immunosuppressive therapy can favor infection. Treatment of these complications may reduce their impact on the severity of NS. Nephrotic syndrome is a kidney disorder that can worsen the quality of life and increase the risk of kidney disease progression.
Collapse
Affiliation(s)
| | - Moroni Gabriella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Wan Y, Wang S, Chen K, Liu L, Wang X, Zhang B, Hu L, Liu S, Zhao T, Qi H. High-sulfated derivative of polysaccharide from Ulva pertusa improves Adriamycin-induced nephrotic syndrome by suppressing oxidative stress. Food Funct 2023; 14:9167-9180. [PMID: 37721012 DOI: 10.1039/d3fo01290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Nephrotic syndrome (NS) is characterized by proteinuria, hyperlipidemia, and hypoalbuminemia. Ulva pertusa, a green seaweed, is a nutritional supplement. In this study, the high-sulfated derivative of Ulva pertusa polysaccharide (HU) was prepared by combining U pertusa polysaccharide with chlorosulfonic acid. The NS rat model was established by tail vein single injection of Adriamycin (6.0 mg kg-1). Normal rats were used as the control group. NS rat models were treated with HU or U (173 mg kg-1 day-1). After treatment for 6 weeks, we assessed urine protein, renal function, and blood lipids, and observed morphology and histologic injury of the kidney and glomerular microstructure. Furthermore, we detected antioxidant enzyme activity and expression level of the Keap1/Nrf2 signaling pathway to explore the potential mechanism of HU. Results showed that HU not only alleviated hyperlipidemia and hypoalbuminemia, but also reduced urine protein by inhibiting podocyte detachment, thickening of the glomerular basement membrane, and expression of kidney fibrosis markers (collagens I and IV). In addition, HU enhanced antioxidant enzyme activity (GSH-Px, CAT, SOD) in both serum and the kidney, which may be due to upregulating the expression of Nrf2 and downregulating the expression of Keap1. In conclusion, HU appears to be effective in attenuating NS in rats through suppressing oxidative stress by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuzhou Wan
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Shaopeng Wang
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Kexu Chen
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Lin Liu
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Xiaoqian Wang
- Department of Pharmacy, Dezhou People's Hospital, No. 1166 Dongfanghong West Road, Dezhou 253000, PR China.
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Lin Hu
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Shunmei Liu
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, No. 7166 Baotong Road, Weifang 261053, PR China.
| |
Collapse
|
29
|
Satarug S, Vesey DA, Khamphaya T, Pouyfung P, Gobe GC, Yimthiang S. Estimation of the Cadmium Nephrotoxicity Threshold from Loss of Glomerular Filtration Rate and Albuminuria. TOXICS 2023; 11:755. [PMID: 37755765 PMCID: PMC10534899 DOI: 10.3390/toxics11090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Cadmium (Cd) is a pervasive, toxic environmental pollutant that preferentially accumulates in the tubular epithelium of the kidney. Current evidence suggests that the cumulative burden of Cd here leads to the progressive loss of the glomerular filtration rate (GFR). In this study, we have quantified changes in estimated GFR (eGFR) and albumin excretion (Ealb) according to the levels of blood Cd ([Cd]b) and excretion of Cd (ECd) after adjustment for confounders. ECd and Ealb were normalized to creatinine clearance (Ccr) as ECd/Ccr and Ealb/Ccr. Among 482 residents of Cd-polluted and non-polluted regions of Thailand, 8.1% had low eGFR and 16.9% had albuminuria (Ealb/Ccr) × 100 ≥ 20 mg/L filtrate. In the low Cd burden group, (ECd/Ccr) × 100 < 1.44 µg/L filtrate, eGFR did not correlate with ECd/Ccr (β = 0.007) while an inverse association with ECd/Ccr was found in the medium (β = -0.230) and high burden groups (β = -0.349). Prevalence odds ratios (POR) for low eGFR were increased in the medium (POR 8.26) and high Cd burden groups (POR 3.64). Also, eGFR explained a significant proportion of Ealb/Ccr variation among those with middle (η2 0.093) and high [Cd]b tertiles (η2 0.132) but did not with low tertiles (η2 0.001). With an adjustment of eGFR, age and BMI, the POR values for albuminuria were increased in the middle (POR 2.36) and high [Cd]b tertiles (POR 2.74) and those with diabetes (POR 6.02) and hypertension (2.05). These data indicate that (ECd/Ccr) × 100 of 1.44 µg/L filtrate (0.01-0.02 µg/g creatinine) may serve as a Cd threshold level based on which protective exposure guidelines should be formulated.
Collapse
Affiliation(s)
- Soisungwan Satarug
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
| | - David A. Vesey
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Phisit Pouyfung
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| | - Glenda C. Gobe
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia; (D.A.V.); (G.C.G.)
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.K.); (P.P.); (S.Y.)
| |
Collapse
|
30
|
Caster DJ, Abner CW, Walker PD, Wang K, Heo J, Rava AR, Bunke M. Clinicopathological Characteristics of Adult IgA Nephropathy in the United States. Kidney Int Rep 2023; 8:1792-1800. [PMID: 37705898 PMCID: PMC10496075 DOI: 10.1016/j.ekir.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction IgA nephropathy (IgAN) is a progressive autoimmune kidney disease and a leading cause of glomerular disease that can result in kidney failure (KF). The median age at diagnosis is 35 to 37 years and approximately 50% of patients will progress to KF within 20 years. We aimed to enhance the understanding of renal histology and chronic kidney disease (CKD) stage at the time of IgAN diagnosis using a large real-world biopsy cohort. Methods This retrospective cohort study evaluated biopsy data and clinical characteristics from adult patients within the US who were diagnosed with IgAN between January 1, 2016 to May 31, 2020. Descriptive statistics were summarized and relationship(s) between each Oxford Classification (MEST-C) component score with 24-hour proteinuria or CKD stage were examined using regression analysis. Results A total of 4375 patients (mean age 47.7 years, 62.7% male) met eligibility criteria. Mild to moderate mesangial hypercellularity (47.3%), segmental sclerosis (65.0%), tubular atrophy ≥25% (57.4%), and crescents (18.5%) were identified; and 74.6% of patients were at CKD stage ≥3. Proteinuria ≥1 g/d was associated with higher MEST-C scores, and the odds of mesangial hypercellularity, segmental sclerosis, tubular atrophy, and crescents increased with CKD stage. Conclusion Most patients with IgAN in our US cohort were diagnosed at CKD stage ≥3 and had high MEST-C scores and proteinuria that are suggestive of significant disease burden at the time of kidney biopsy. Strategies are required to raise awareness and promote earlier detection of asymptomatic urinary abnormalities before extensive irreversible kidney damage has occurred.
Collapse
Affiliation(s)
| | | | | | - Kaijun Wang
- Travere Therapeutics, Inc., San Diego, California, USA
| | | | | | - Martin Bunke
- Travere Therapeutics, Inc., San Diego, California, USA
| |
Collapse
|
31
|
Rigo DH, Jiménez PM, Orias M. Albuminuria and cardiovascular risk. HIPERTENSION Y RIESGO VASCULAR 2023; 40:137-144. [PMID: 37748947 DOI: 10.1016/j.hipert.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 09/27/2023]
Abstract
Cardiovascular risk (CVR) estimation is a fundamental tool for guiding therapy. Albuminuria indicates target organ damage in an accessible, economic and non-invasive manner. Improves high-risk patient identification, especially in chronic kidney disease (CKD) and diabetes mellitus (DM). In addition, anti-albuminuric treatments may improve CVR. This would position albuminuria as a guide and therapeutic objective. Although the capacity of albuminuria as an epidemiological CVR marker in specific populations (hypertension, CKD, DM) is accepted, its profile as a risk marker in the general population and as a therapeutic target is controversial. There is ambiguous evidence regarding its predictive capacity, added to the fact that treatments such as SLGT2 blockers reduce CVR events regardless of albuminuria presence or magnitude. This review analyzes the available evidence on albuminuria as a CVR marker, a treatment goal and therapeutic guide.
Collapse
Affiliation(s)
- D H Rigo
- Nephrology Service, Sanatorio Allende, Córdoba, Argentina
| | - P M Jiménez
- Nephrology Service, Hospital Marcial Vicente Quiroga, San Juan, Argentina
| | - M Orias
- Yale University, Department Internal Medicine, Sanatorio Allende, Córdoba, Argentina.
| |
Collapse
|
32
|
Yimthiang S, Vesey DA, Pouyfung P, Khamphaya T, Gobe GC, Satarug S. Chronic Kidney Disease Induced by Cadmium and Diabetes: A Quantitative Case-Control Study. Int J Mol Sci 2023; 24:ijms24109050. [PMID: 37240395 DOI: 10.3390/ijms24109050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
Kidney disease associated with chronic cadmium (Cd) exposure is primarily due to proximal tubule cell damage. This results in a sustained decline in glomerular filtration rate (GFR) and tubular proteinuria. Similarly, diabetic kidney disease (DKD) is marked by albuminuria and a declining GFR and both may eventually lead to kidney failure. The progression to kidney disease in diabetics exposed to Cd has rarely been reported. Herein, we assessed Cd exposure and the severity of tubular proteinuria and albuminuria in 88 diabetics and 88 controls, matched by age, gender and locality. The overall mean blood and Cd excretion normalized to creatinine clearance (Ccr) as ECd/Ccr were 0.59 µg/L and 0.0084 µg/L filtrate (0.96 µg/g creatinine), respectively. Tubular dysfunction, assessed by β2-microglobulin excretion rate normalized to Ccr(Eβ2M/Ccr) was associated with both diabetes and Cd exposure. Doubling of Cd body burden, hypertension and a reduced estimated GFR (eGFR) increased the risks for a severe tubular dysfunction by 1.3-fold, 2.6-fold, and 84-fold, respectively. Albuminuria did not show a significant association with ECd/Ccr, but hypertension and eGFR did. Hypertension and a reduced eGFR were associated with a 3-fold and 4-fold increases in risk of albuminuria. These findings suggest that even low levels of Cd exposure exacerbate progression of kidney disease in diabetics.
Collapse
Affiliation(s)
- Supabhorn Yimthiang
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - David A Vesey
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane 4102, Australia
| | - Phisit Pouyfung
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tanaporn Khamphaya
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Glenda C Gobe
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia
| | - Soisungwan Satarug
- The Centre for Kidney Disease Research, Translational Research Institute, Brisbane 4102, Australia
| |
Collapse
|
33
|
Sandokji I, Xu Y, Denburg M, Furth S, Abraham AG, Greenberg JH. Current and Novel Biomarkers of Progression Risk in Children with Chronic Kidney Disease. Nephron Clin Pract 2023; 148:1-10. [PMID: 37232009 PMCID: PMC10840447 DOI: 10.1159/000530918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Due to the complexity of chronic kidney disease (CKD) pathophysiology, biomarkers representing different mechanistic pathways have been targeted for the study and development of novel biomarkers. The discovery of clinically useful CKD biomarkers would allow for the identification of those children at the highest risk of kidney function decline for timely interventions and enrollment in clinical trials. SUMMARY Glomerular filtration rate and proteinuria are traditional biomarkers to classify and prognosticate CKD progression in clinical practice but have several limitations. Over the recent decades, novel biomarkers have been identified from blood or urine with metabolomic screening studies, proteomic screening studies, and an improved knowledge of CKD pathophysiology. This review highlights promising biomarkers associated with the progression of CKD that could potentially serve as future prognostic markers in children with CKD. KEY MESSAGES Further studies are needed in children with CKD to validate putative biomarkers, particularly candidate proteins and metabolites, for improving clinical management.
Collapse
Affiliation(s)
- Ibrahim Sandokji
- Department of Pediatrics, Taibah University College of Medicine, Medina, Saudi Arabia,
| | - Yunwen Xu
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alison G Abraham
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jason H Greenberg
- Department of Pediatrics, Section of Nephrology, Clinical and Translational Research Accelerator, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Zhao L, Han S, Chai C. Huangkui capsule alleviates doxorubicin-induced proteinuria via protecting against podocyte damage and inhibiting JAK/STAT signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116150. [PMID: 36608778 DOI: 10.1016/j.jep.2023.116150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui capsule (HKC), a Chinese patent medicine, has been widely used in China as adjuvant therapy for chronic kidney disease (CKD). It displays superior anti-proteinuria efficacy than losartan in patients with CKD at stages 1-2, however, the mechanism of HKC alleviating proteinuria has not been well elucidated. AIM OF THE STUDY This study aims to confirm the therapeutic effect and investigate associated underlying mechanism of HKC against proteinuria by in vivo and in vitro experiments. MATERIALS AND METHODS We established a doxorubicin (DOX) induced proteinuria mouse model to evaluate kidney function by biochemical markers measurement and to observe histopathological alterations by hematoxylin and eosin (H&E), Masson's trichrome and Periodic Acid-Schiff (PAS)-stained sections of renal, respectively. Moreover, the expressions of Nephrin and Podocin were measured by immunohistochemistry (IHC) and western blotting analysis to investigate podocyte damage. Furthermore, we established Mouse Podocyte Clone-5 (MPC-5) injury model to identify the active components of HKC against podocyte damage by detecting the expressions of Nephrin, Podocin, and ZO-1 proteins. At last, the key protein levels of Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway were assessed by western blotting analysis to explore the underlying mechanism of HKC against proteinuria. RESULTS Our results showed that HKC administration for three consecutive weeks dose-dependently ameliorated both renal function and histopathological damages, elevated the expressions of Nephrin and Podocin, the pivotal molecules maintaining filtration function of the podocyte, indicating the promising protective effect against podocyte injury under DOX exposure. Consistently, in vitro experiments showed HKC administration effectively reversed the abnormal expressions of Nephrin and Podocin in MPC-5 cells treated with DOX, suggesting its protective effect against podocyte injury to maintain filtration barrier integrity. In addition, Hibifolin was identified as the most active ingredients in HKC, which suppressed upstream JAK2/STAT3 and PI3K/Akt pathway phosphorylation to maintain the structural and functional integrity of podocyte filtration barrier. Of note, AG490, a selective JAK2 inhibitor, was used to further affirm the role of Hibifolin involving in regulation JAK2/STAT3. CONCLUSIONS Our study suggested that HKC may protect podocytes via JAK2/STAT3 and PI3K/Akt pathway to display its effects of ameliorating proteinuria.
Collapse
Affiliation(s)
- Lei Zhao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Siyuan Han
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chengzhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
35
|
Lopez R, Copeland T, McCulloch C, Ku E. Additive effects of intensive BP control and ACE inhibition on suppression of proteinuria in patients with CKD. J Hum Hypertens 2023; 37:419-421. [PMID: 36966224 PMCID: PMC10156588 DOI: 10.1038/s41371-023-00823-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Affiliation(s)
- Rafael Lopez
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Timothy Copeland
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Charles McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Ku
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
N-/T-Type vs. L-Type Calcium Channel Blocker in Treating Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:ph16030338. [PMID: 36986438 PMCID: PMC10053533 DOI: 10.3390/ph16030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Renin-angiotensin system (RAS) inhibitors and calcium channel blockers (CCB) are often used together in chronic kidney disease (CKD). The PubMed, EMBASE, and Cochrane Library databases were searched to identify randomized controlled trials (RCTs) in order to explore better subtypes of CCB for the treatment of CKD. This meta-analysis of 12 RCTs with 967 CKD patients who were treated with RAS inhibitors demonstrated that, when compared with L-type CCB, N-/T-type CCB was superior in reducing urine albumin/protein excretion (SMD, −0.41; 95% CI, −0.64 to −0.18; p < 0.001) and aldosterone, without influencing serum creatinine (WMD, −3.64; 95% CI, −11.63 to 4.35; p = 0.37), glomerular filtration rate (SMD, 0.06; 95% CI, −0.13 to 0.25; p = 0.53), and adverse effects (RR, 0.95; 95% CI, 0.35 to 2.58; p = 0.93). In addition, N-/T-type CCB did not decrease the systolic blood pressure (BP) (WMD, 0.17; 95% CI, −1.05 to 1.39; p = 0.79) or diastolic BP (WMD, 0.64; 95% CI, −0.55 to 1.83; p = 0.29) when compared with L-type CCB. In CKD patients treated with RAS inhibitors, N-/T-type CCB is more effective than L-type CCB in reducing urine albumin/protein excretion without increased serum creatinine, decreased glomerular filtration rate, and increased adverse effects. The additional benefit is independent of BP and may be associated with decreased aldosterone (PROSPERO, CRD42020197560).
Collapse
|
37
|
Ijima S, Saito Y, Nagaoka K, Yamamoto S, Sato T, Miura N, Iwamoto T, Miyajima M, Chikenji TS. Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis. Front Immunol 2022; 13:960601. [PMID: 36466895 PMCID: PMC9714549 DOI: 10.3389/fimmu.2022.960601] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by the involvement of multiple organs. Lupus nephritis (LN) is a major risk factor for overall morbidity and mortality in SLE patients. Hence, designing effective drugs is pivotal for treating individuals with LN. Fisetin plays a senolytic role by specifically eliminating senescent cells, inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and anti-tumorigenic effects. However, limited research has been conducted on the utility and therapeutic mechanisms of fisetin in chronic inflammation. Similarly, whether the effects of fisetin depend on cell type remains unclear. In this study, we found that LN-prone MRL/lpr mice demonstrated accumulation of Ki-67-positive myofibroblasts and p15INK4B-positive senescent tubular epithelial cells (TECs) that highly expressed transforming growth factor β (TGF-β). TGF-β stimulation induced senescence of NRK-52E renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-β promotes senescence and proliferation in a cell type-dependent manner, which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in vivo reduced the number of senescent TECs and myofibroblasts, which attenuated kidney fibrosis, reduced senescence-associated secretory phenotype (SASP) expression, and increased TEC proliferation. These data suggest that the effects of fisetin vary depending on the cell type and may have therapeutic effects in complex and diverse LN pathologies.
Collapse
Affiliation(s)
- Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kentaro Nagaoka
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Taiki Iwamoto
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takako S. Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
38
|
Jang HS, Noh MR, Plumb T, Lee K, He JC, Ferrer FA, Padanilam BJ. Hepatic and proximal tubule angiotensinogen play distinct roles in kidney dysfunction, glomerular and tubular injury, and fibrosis progression. Am J Physiol Renal Physiol 2022; 323:F435-F446. [PMID: 35924445 PMCID: PMC9485008 DOI: 10.1152/ajprenal.00029.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Components of the renin-angiotensin system, including angiotensinogen (AGT), are critical contributors to chronic kidney disease (CKD) development and progression. However, the specific role of tissue-derived AGTs in CKD has not been fully understood. To define the contribution of liver versus kidney AGT in the CKD development, we performed 5/6 nephrectomy (Nx), an established CKD model, in wild-type (WT), proximal tubule (PT)- or liver-specific AGT knockout (KO) mice. Nx significantly elevated intrarenal AGT expression and elevated blood pressure (BP) in WT mice. The increase of intrarenal AGT protein was completely blocked in liver-specific AGT KO mice with BP reduction, suggesting a crucial role for liver AGT in BP regulation during CKD. Nx-induced glomerular and kidney injury and dysfunction, as well as fibrosis, were all attenuated to a greater extent in liver-specific AGT KO mice compared with PT-specific AGT KO and WT mice. However, the suppression of interstitial fibrosis in PT- and liver-specific AGT KO mouse kidneys was comparable. Our findings demonstrate that liver AGT acts as a critical contributor in driving glomerular and tubular injury, renal dysfunction, and fibrosis progression, whereas the role of PT AGT was limited to interstitial fibrosis progression in chronic renal insufficiency. Our results provide new insights for the development of tissue-targeted renin-angiotensin system intervention in the treatment of CKD.NEW & NOTEWORTHY Chronic kidney disease (CKD) is a major unmet medical need with no effective treatment. Current findings demonstrate that hepatic and proximal tubule angiotensinogen have distinct roles in tubular and glomerular injury, fibrogenesis, and renal dysfunction during CKD development. As renin-angiotensin system components, including angiotensinogen, are important targets for treating CKD in the clinic, the results from our study may be applied to developing better tissue-targeted treatment strategies for CKD and other fibroproliferative diseases.
Collapse
Affiliation(s)
- Hee-Seong Jang
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mi Ra Noh
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Troy Plumb
- Division of Nephrology, Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fernando A Ferrer
- Department of Urology, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Babu J Padanilam
- Department of Urology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
39
|
Deja A, Skrzypczyk P, Leszczyńska B, Pańczyk-Tomaszewska M. Reduced Blood Pressure Dipping Is A Risk Factor for the Progression of Chronic Kidney Disease in Children. Biomedicines 2022; 10:2171. [PMID: 36140272 PMCID: PMC9496073 DOI: 10.3390/biomedicines10092171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Elevated blood pressure and proteinuria are well-established risk factors for chronic kidney disease (CKD) progression in children. This study aimed to analyze risk factors for CKD progress, emphasizing detailed ambulatory blood pressure (ABPM) data. Methods: In 55 children with CKD II−V, observed for ≥1 year or until initiation of kidney replacement therapy, we analyzed ABPM, clinical, and biochemical parameters. Results: At the beginning, the glomerular filtration rate (eGFR) was 66 (interquartile range—IQR: 42.8−75.3) mL/min/1.73 m2, and the observation period was 27 (16−36) months. The mean eGFR decline was 2.9 ± 5.7 mL/min/1.73 m2/year. eGFR decline correlated (p < 0.05) with age (r = 0.30), initial proteinuria (r = 0.31), nighttime systolic and mean blood pressure (r = 0.27, r = 0.29), and systolic and diastolic blood pressure dipping (r = −0.37, r = −0.29). There was no relation between mean arterial pressure during 24 h (MAP 24 h Z-score) and eGFR decline and no difference in eGFR decline between those with MAP 24 h < and ≥50 th percentile. In multivariate analysis, systolic blood pressure dipping (beta = −0.43), presence of proteinuria (beta = −0.35), and age (beta = 0.25) were predictors of eGFR decline. Conclusions: Systolic blood pressure dipping may be a valuable indicator of CKD progression in children.
Collapse
Affiliation(s)
- Anna Deja
- Department of Pediatrics and Nephrology, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Piotr Skrzypczyk
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Beata Leszczyńska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
40
|
Park SJ, Kim Y, Li C, Suh J, Sivapackiam J, Goncalves TM, Jarad G, Zhao G, Urano F, Sharma V, Chen YM. Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome. Proc Natl Acad Sci U S A 2022; 119:e2116505119. [PMID: 35994650 PMCID: PMC9436335 DOI: 10.1073/pnas.2116505119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.
Collapse
Affiliation(s)
- Sun-Ji Park
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yeawon Kim
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Chuang Li
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Junwoo Suh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Tassia M. Goncalves
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - George Jarad
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Fumihiko Urano
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110
- Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO 63105
| | - Ying Maggie Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
41
|
Urate-lowering therapy for CKD patients with asymptomatic hyperuricemia without proteinuria elucidated by attribute-based research in the FEATHER Study. Sci Rep 2022; 12:3784. [PMID: 35260678 PMCID: PMC8904814 DOI: 10.1038/s41598-022-07737-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
Attribute-based medicine is essential for patient-centered medicine. To date, the groups of patients with chronic kidney disease (CKD) requiring urate-lowering therapy are clinically unknown. Herein, we evaluated the efficacy of febuxostat using a cross-classification, attribute-based research approach. We performed post hoc analysis of multicenter, randomized, double-blind, placebo-controlled trial data for 395 patients with stage 3 CKD and asymptomatic hyperuricemia. Participants were divided into febuxostat or placebo groups and subcohorts stratified and cross-classified by proteinuria and serum creatinine concentrations. In patients stratified based on proteinuria, the mean eGFR slopes were significantly higher in the febuxostat group than in the placebo group (P = 0.007) in the subcohort without proteinuria. The interaction between febuxostat treatment and presence of proteinuria in terms of eGFR slope was significant (P for interaction = 0.019). When cross-classified by the presence of proteinuria and serum creatinine level, the mean eGFR slopes significantly differed between the febuxostat and placebo groups (P = 0.040) in cross-classified subcohorts without proteinuria and with serum creatinine level ≥ median, but not in the cross-classified subcohorts with proteinuria and serum creatinine level < median. Febuxostat mitigated the decline in kidney function among stage 3 CKD patients with asymptomatic hyperuricemia without proteinuria.
Collapse
|
42
|
Barrera-Chimal J, Jaisser F, Anders HJ. The mineralocorticoid receptor in chronic kidney disease. Br J Pharmacol 2021; 179:3152-3164. [PMID: 34786690 DOI: 10.1111/bph.15734] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health concern, affecting approximately 10% of the population worldwide. CKD of glomerular or tubular origin leads to the activation of stress mechanisms, including the renin angiotensin aldosterone system and mineralocorticoid receptor (MR) activation. Over the last two decades, blockade of the MR has arisen as a potential therapeutic approach against various forms of kidney disease. In this review, we summarize the experimental studies that have shown a protective effect of MR antagonists (MRAs) in non-diabetic and diabetic CKD animal models. Moreover, we review the main clinical trials that have shown the clinical application of MRAs to reduce albuminuria and, importantly, to slow CKD progression. Recent evidence from the FIDELIO trial showed that the MRA finerenone can reduce hard kidney outcomes when added to the standard of care in CKD associated with type 2 diabetes. Finally, we discuss the effects of MRAs relative to those of SGLT2 inhibitors, as well as the potential benefit of combination therapy to maximize organ protection.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Ziemssenstr. 1, D-80336, München
| |
Collapse
|