1
|
Hayes K, Wright D. Microarray analysis of the effects of Acthar Gel versus methylprednisolone in a model of focal segmental glomerulosclerosis in female rats. Physiol Rep 2025; 13:e70321. [PMID: 40223398 PMCID: PMC11994893 DOI: 10.14814/phy2.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 04/15/2025] Open
Abstract
Acthar® Gel (repository corticotropin injection) is an alternative treatment for patients with focal segmental glomerulosclerosis (FSGS) who cannot tolerate or do not adequately respond to glucocorticoids or calcineurin inhibitors. We compared the effects of Acthar versus methylprednisolone (MP) on gene expression in the kidney cortex in a rat model of FSGS induced by puromycin. Female Sprague-Dawley rats (6-8 weeks old) were treated for 8 weeks with Acthar 60 IU/kg (n = 5), MP 2 mg/kg (n = 5), or control (n = 4). On Day 56, animals were sacrificed, and RNA samples of kidney cortex tissue were analyzed using microarrays. Compared with control, Acthar significantly decreased the expression of more genes related to inflammation, immune function, and fibrosis than MP. A subset of these genes exhibited significantly larger fold changes in expression after treatment with Acthar versus MP, including C1qb and C1qc (complement cascade), Ccr2 and Tcrb (immune function), and Mfap4 and Vim (fibrosis). These results suggest that Acthar acts as an immunomodulator with a distinct mechanism of action from that of MP. Their differential alteration of gene expression in the kidney cortex suggests that Acthar may be more effective than MP in reducing inflammation and fibrosis in FSGS, which could slow disease progression.
Collapse
Affiliation(s)
- Kyle Hayes
- Mallinckrodt PharmaceuticalsBridgewaterNew JerseyUSA
| | - Dale Wright
- Mallinckrodt PharmaceuticalsBridgewaterNew JerseyUSA
| |
Collapse
|
2
|
Roointan A, Ghaeidamini M, Yavari P, Naimi A, Gheisari Y, Gholaminejad A. Transcriptome meta-analysis and validation to discovery of hub genes and pathways in focal and segmental glomerulosclerosis. BMC Nephrol 2024; 25:293. [PMID: 39232654 PMCID: PMC11375834 DOI: 10.1186/s12882-024-03734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Focal segmental glomerulosclerosis (FSGS), a histologic pattern of injury in the glomerulus, is one of the leading glomerular causes of end-stage renal disease (ESRD) worldwide. Despite extensive research, the underlying biological alterations causing FSGS remain poorly understood. Studying variations in gene expression profiles offers a promising approach to gaining a comprehensive understanding of FSGS molecular pathogenicity and identifying key elements as potential therapeutic targets. This work is a meta-analysis of gene expression profiles from glomerular samples of FSGS patients. The main aims of this study are to establish a consensus list of differentially expressed genes in FSGS, validate these findings, understand the disease's pathogenicity, and identify novel therapeutic targets. METHODS After a thorough search in the GEO database and subsequent quality control assessments, seven gene expression datasets were selected for the meta-analysis: GSE47183 (GPL14663), GSE47183 (GPL11670), GSE99340, GSE108109, GSE121233, GSE129973, and GSE104948. The random effect size method was applied to identify differentially expressed genes (meta-DEGs), which were then used to construct a regulatory network (STRING, MiRTarBase, and TRRUST) and perform various pathway enrichment analyses. The expression levels of several meta-DEGs, specifically ADAMTS1, PF4, EGR1, and EGF, known as angiogenesis regulators, were analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS The identified 2,898 meta-DEGs, including 665 downregulated and 669 upregulated genes, were subjected to various analyses. A co-regulatory network comprising 2,859 DEGs, 2,688 microRNAs (miRNAs), and 374 transcription factors (TFs) was constructed, and the top molecules in the network were identified based on degree centrality. Part of the pathway enrichment analysis revealed significant disruption in the angiogenesis regulatory pathways in the FSGS kidney. The RT-qPCR results confirmed an imbalance in angiogenesis pathways by demonstrating the differential expression levels of ADAMTS1 and EGR1, two key angiogenesis regulators, in the FSGS condition. CONCLUSION In addition to presenting a consensus list of differentially expressed genes in FSGS, this meta-analysis identified significant distortions in angiogenesis-related pathways and factors in the FSGS kidney. Targeting these factors may offer a viable strategy to impede the progression of FSGS.
Collapse
Affiliation(s)
- Amir Roointan
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Maryam Ghaeidamini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Parvin Yavari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Azar Naimi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yousof Gheisari
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Hezar Jerib Avenue, Isfahan, 81746-73461, Iran.
| |
Collapse
|
3
|
Kösters P, Cazorla-Vázquez S, Krüger R, Daniel C, Vonbrunn E, Amann K, Engel FB. Adhesion G Protein-Coupled Receptor Gpr126 ( Adgrg6) Expression Profiling in Diseased Mouse, Rat, and Human Kidneys. Cells 2024; 13:874. [PMID: 38786096 PMCID: PMC11119830 DOI: 10.3390/cells13100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR Gpr126 (Adgrg6) is widely expressed in developing kidneys. In adulthood, Gpr126 expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium. Whether Gpr126 plays a role in kidney disease remains unclear. Here, we characterized Gpr126 expression in diseased kidneys in mice, rats, and humans. RT-PCR data show that Gpr126 expression is altered in kidney disease. A quantitative RNAscope® analysis utilizing cell type-specific markers revealed that Gpr126 expression upon tubular damage is mainly increased in cell types expressing Gpr126 under healthy conditions as well as in cells of the distal and proximal tubules. Upon glomerular damage, an increase was mainly detected in PECs. Notably, Gpr126 expression was upregulated in an ischemia/reperfusion model within hours, while upregulation in a glomerular damage model was only detected after weeks. An analysis of kidney microarray data from patients with lupus nephritis, IgA nephropathy, focal segmental glomerulosclerosis (FSGS), hypertension, and diabetes as well as single-cell RNA-seq data from kidneys of patients with acute kidney injury and chronic kidney disease indicates that GPR126 expression is also altered in human kidney disease. In patients with FSGS, an RNAscope® analysis showed that GPR126 mRNA is upregulated in PECs belonging to FSGS lesions and proximal tubules. Collectively, we provide detailed insights into Gpr126 expression in kidney disease, indicating that GPR126 is a potential therapeutic target.
Collapse
Affiliation(s)
- Peter Kösters
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Salvador Cazorla-Vázquez
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - René Krüger
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Christoph Daniel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Eva Vonbrunn
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Kerstin Amann
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| | - Felix B. Engel
- Department of Nephropathology, Experimental Renal and Cardiovascular Research, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (P.K.); (S.C.-V.); (C.D.); (E.V.); (K.A.)
| |
Collapse
|
4
|
Clair G, Soloyan H, Cravedi P, Angeletti A, Salem F, Al-Rabadi L, De Filippo RE, Da Sacco S, Lemley KV, Sedrakyan S, Perin L. The spatially resolved transcriptome signatures of glomeruli in chronic kidney disease. JCI Insight 2024; 9:e165515. [PMID: 38516889 PMCID: PMC11063942 DOI: 10.1172/jci.insight.165515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hasmik Soloyan
- The GOFARR Laboratory, The Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Angeletti
- Nephrology Dialysis and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Roger E. De Filippo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Stefano Da Sacco
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Kevin V. Lemley
- Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Sargis Sedrakyan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Laura Perin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| |
Collapse
|
5
|
Lopes-Gonçalves G, Costa-Pessoa JM, Pimenta R, Tostes AF, da Silva EM, Ledesma FL, Malheiros DMAC, Zatz R, Thieme K, Câmara NOS, Oliveira-Souza M. Evaluation of glomerular sirtuin-1 and claudin-1 in the pathophysiology of nondiabetic focal segmental glomerulosclerosis. Sci Rep 2023; 13:22685. [PMID: 38114708 PMCID: PMC10730508 DOI: 10.1038/s41598-023-49861-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the leading cause of nephrotic syndrome, which is characterized by podocyte injury. Given that the pathophysiology of nondiabetic glomerulosclerosis is poorly understood and targeted therapies to prevent glomerular disease are lacking, we decided to investigate the tight junction protein claudin-1 and the histone deacetylase sirtuin-1 (SIRT1), which are known to be involved in podocyte injury. For this purpose, we first examined SIRT1, claudin-1 and podocin expression in kidney biopsies from patients diagnosed with nondiabetic FSGS and found that upregulation of glomerular claudin-1 accompanies a significant reduction in glomerular SIRT1 and podocin levels. From this, we investigated whether a small molecule activator of SIRT1, SRT1720, could delay the onset of FSGS in an animal model of adriamycin (ADR)-induced nephropathy; 14 days of treatment with SRT1720 attenuated glomerulosclerosis progression and albuminuria, prevented transcription factor Wilms tumor 1 (WT1) downregulation and increased glomerular claudin-1 in the ADR + SRT1720 group. Thus, we evaluated the effect of ADR and/or SRT1720 in cultured mouse podocytes. The results showed that ADR [1 µM] triggered an increase in claudin-1 expression after 30 min, and this effect was attenuated by pretreatment of podocytes with SRT1720 [5 µM]. ADR [1 µM] also led to changes in the localization of SIRT1 and claudin-1 in these cells, which could be associated with podocyte injury. Although the use of specific agonists such as SRT1720 presents some benefits in glomerular function, their underlying mechanisms still need to be further explored for therapeutic use. Taken together, our data indicate that SIRT1 and claudin-1 are relevant for the pathophysiology of nondiabetic FSGS.
Collapse
Affiliation(s)
- Guilherme Lopes-Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| | - Juliana Martins Costa-Pessoa
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil
| | - Ruan Pimenta
- Laboratory of Medical Investigation (LIM 55), Urology Department, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Flavia Tostes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eloisa Martins da Silva
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Karina Thieme
- Laboratory of Cellular and Molecular Bases of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Nephrology, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
- Laboratory of Transplantation Immunobiology, Department of Immunology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, 1524 Prof. Lineu Prestes Avenue, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
6
|
Taneda S, Honda K, Koike J, Ito N, Ishida H, Takagi T, Nagashima Y. Clinicopathological differences in focal segmental glomerulosclerosis depending on the accompanying pathophysiological conditions in renal allografts. Virchows Arch 2023; 483:809-819. [PMID: 37980299 DOI: 10.1007/s00428-023-03703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Primary focal segmental glomerulosclerosis (FSGS) is thought to be caused by circulating factors leading to podocytopathy, whereas segmental sclerotic lesions (FSGS lesions) have several causes. We studied the clinicopathological differences of FSGS-lesions in 258 cases of FSGS in renal allografts, depending on the following accompanying pathophysiology: recurrence of primary FSGS, calcineurin inhibitor (CNI)-induced arteriolopathy, antibody-mediated rejection (ABMR), and other conditions. All cases were categorized with the Columbia classification. Recurrent FSGS developed the earliest after transplantation and showed the highest percentage of the collapsing (COL) variant in which collapse of the glomerular capillaries with epithelial hypertrophy was apparent. FSGS accompanying CNI-induced arteriolopathy predominantly developed the not otherwise specified (NOS) variant, showing severe ultrastructural endothelial injury. On the contrary, approximately 7% of the cases showed the COL variant, presenting glomerular endothelial damage such as double contours of glomerular basement membrane and endothelial cell swelling as well as epithelial cell proliferation. FSGS with ABMR had the highest creatinine levels and cellular variant percentage, with marked inflammation and ultrastructural endothelial injury. Approximately two-thirds of the cases without ABMR, CNI-induced arteriopathy, or recurrent FSGS had other coexisting conditions such as glomerulonephritis, T cell-mediated rejection, and reflux nephropathy with progressive tubulointerstitial fibrosis. Most of these cases were of the NOS variant. The clinicopathologic features of post-transplant FSGS differed depending on the associated conditions, and endothelial injury was apparent especially in cases of CNI-induced arteriolopathy and ABMR. Precise observation of FSGS lesions may facilitate the diagnosis and clinical management of FSGS during renal transplantation.
Collapse
Affiliation(s)
- Sekiko Taneda
- Department of Surgical Pathology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Junki Koike
- Department of Pathology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Naoko Ito
- Department of Surgical Pathology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Hideki Ishida
- Department of Organ Transplant Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| |
Collapse
|
7
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|