1
|
Zhang HX, Hamit D, Li Q, Hu X, Li SF, Xu F, Wang MY, Bao GQ, Li HY. Integrative bioinformatic approach reveals novel melatonin-related biomarkers for Alzheimer's disease. Sci Rep 2025; 15:4193. [PMID: 39905093 PMCID: PMC11794634 DOI: 10.1038/s41598-024-80755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/21/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Melatonin (MLT) can improve mitophagy, thereby ameliorating cognitive deficits in Alzheimer's disease (AD) patients. Hence, our research focused on the potential value of MLT-related genes (MRGs) in AD through bioinformatic analysis. METHODS First, the key cells in the single-cell dataset GSE138852 were screened out based on the proportion of annotated cells and Fisher's test between the AD and control groups. The differentially expressed genes (DEGs) in the key cell and GSE5281 datasets were identified, and the MRGs in GSE5281 were selected via weighted gene coexpression network analysis. After intersecting two sets of DEGs and MRGs, we performed Mendelian randomization analysis to identify the MRGs causally related to AD. Biomarkers were further ascertained through receiver operating characteristic curve (ROC) and expression analysis in GSE5281 and GSE48350. Furthermore, gene set enrichment analysis, immune infiltration analysis and correlation analysis with metabolic pathways were conducted, as well as construction of a regulator network and molecular docking. RESULTS According to the Fisher test, oligodendrocytes were regarded as key cells due to their excellent abundance in the GSE138852 dataset, in which there were 281 DEGs between the AD and control groups. After overlapping with 3,490 DEGs and 550 MRGs in GSE5281, four genes were found to be causally related to AD, namely, G protein-coupled receptor, family C, group 5, member B (GPRC5B), Methyltransferase-like protein 7 A (METTL7A), NF-κB inhibitor alpha (NFKBIA) and RAS association domain family 4(RASSF4). Moreover, GPRC5B, NFKBIA and RASSF4 were deemed biomarkers, except for METTL7A, because of their indistinctive expression between the AD and control groups. Biomarkers might be involved in oxidative phosphorylation, adipogenesis and heme metabolism. Moreover, T helper type 17 cells, natural killer cells and CD56dim natural killer cells were significantly correlated with biomarkers. Transcription factors (GATA2, POU2F2, NFKB1, etc.) can regulate the expression of biomarkers. Finally, we discovered that all biomarkers could bind to MLT with a strong binding energy. CONCLUSION Our study identified three novel biomarkers related to MLT for AD, namely, GPRC5B, NFKBIA and RASSF4, providing a novel approach for the investigation and treatment of AD patients.
Collapse
Affiliation(s)
- Hua-Xiong Zhang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Dilmurat Hamit
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Qing Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Xiao Hu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - San-Feng Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Fu Xu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Ming-Yuan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Guo-Qing Bao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Hong-Yan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830000, China.
- Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Xinjiang Uygur Autonomous Region People's Hospital, No 91, Tianchi Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
2
|
Pavlovic I, Axling F, Nazir FH, Müller M, Wiberg A, Burman J. Micro-RNA Signature in CSF Before and After Autologous Hematopoietic Stem Cell Transplantation for Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200345. [PMID: 39689271 DOI: 10.1212/nxi.0000000000200345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/22/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs (miRNAs) are regulators of gene expression and have been reported to be dysregulated in people with multiple sclerosis (pwMS). Autologous hematopoietic stem cell transplantation (aHSCT) is an immune-ablative treatment intervention for pwMS. Currently, it is unknown if aHSCT affects expression levels of miRNAs in CSF. We explored the ability of circulating miRNA to discriminate between pwMS and healthy controls (HCs) and investigated whether these miRNAs were affected by treatment with aHSCT. METHODS Using quantitative reverse transcription PCR, 87 miRNAs were analyzed in CSF samples of a discovery cohort (baseline: 4 & HC: 4). The top 22 miRNAs discriminating between pwMS and HCs were then analyzed in 187 CSF samples of a validation cohort (pwMS: 50, HC: 32). Samples, failing quality control or being follow-ups to baseline samples with quality control issues, were excluded from further analyses. The remaining 133 samples (HC: 29, MS: baseline: 33, 1 year: 30, 2 years: 26, 3-5 years: 15) were analyzed for expression of the top 22 miRNAs. RESULTS Twelve miRNAs were dysregulated in pwMS compared with HC (q < 0.05). Associations with clinical and analytical parameters were observed in relation to all 12 miRNAs; however, a cluster of 4 miRNAs (miR-16-5p, miR-21-5p, miR-150-5p, and miR-146a-5p) with strong correlations (r > 0.60, p < 0.001) with multiple parameters was identified. Of the 12 miRNAs, 8 were differentially expressed in pwMS with gadolinium-enhancing lesions at baseline and 4 by prior disease-modifying treatment class (p < 0.05). These 4 miRNAs correlated strongly with each other, decreased after aHSCT, and remained low throughout the follow-up period (p < 0.05). Target and pathway analysis of these revealed association with biological processes affecting cytokine production, inflammatory response, and regulation of myelin maintenance. DISCUSSION miRNAs are dysregulated in CSF from pwMS and particularly in patients with less effective treatments and/or higher inflammatory disease activity. A 4-miRNA signature with elevated expression of miR-16-5p, miR-21-5p, miR-150-5p, and miR-146a-5p was recurring in multiple analyses. After intervention with aHSCT, the expression levels approached the levels of the HCs, suggesting a potent treatment effect.
Collapse
Affiliation(s)
- Ivan Pavlovic
- Translational Neurology, Department of Medical Sciences, Uppsala University
| | - Fredrik Axling
- Endocrine Surgery, Department of Surgical Sciences, Uppsala University; and
| | - Faisal Hayat Nazir
- Translational Neurology, Department of Medical Sciences, Uppsala University
| | - Malin Müller
- Translational Neurology, Department of Medical Sciences, Uppsala University
| | - Anna Wiberg
- Translational Neurology, Department of Medical Sciences, Uppsala University
- Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Joachim Burman
- Translational Neurology, Department of Medical Sciences, Uppsala University
| |
Collapse
|
3
|
Van der Auwera S, Ameling S, Wittfeld K, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating miRNAs modulating systemic low-grade inflammation and affecting neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111130. [PMID: 39209100 DOI: 10.1016/j.pnpbp.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AND DESIGN Inflammatory processes are an important part of the etiology of many chronic diseases across various medical domains, including neurodegeneration. Understanding their regulation on the molecular level represents a major challenge. Regulatory microRNAs (miRNAs), have been recognized for their role in post-transcriptionally modulating immune-related pathways serving as biomarkers for numerous diseases. SUBJECTS AND METHODS This study aims to investigate the association between 176 plasma-circulating miRNAs and the blood-based immune markers C-reactive protein and fibrinogen within the general population-based SHIP-TREND-0 cohort (N = 801) and assess their impact on neurodegeneration in linear regression and moderation analyses. RESULTS We provide strong evidence for miRNA-mediated regulation, particularly in relation to fibrinogen, identifying 48 significant miRNAs with a pronounced over-representation in chronic inflammatory and neurological diseases. Additional moderation analyses explored the influence of the APOE ε4 genotype and brain white matter neurodegeneration on the association between miRNAs and inflammation. Again, significant associations were observed for fibrinogen with special emphasize on hsa-miR-148a-3p, known to impact on neuroinflammation. CONCLUSIONS Our study suggests the involvement of several plasma-circulating miRNAs in regulating immunological markers while also being linked to neurodegeneration. The strong interplay between miRNAs and inflammation holds promising potential for clinical application in many immune-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Hong S, Kim J, Ahn M, Jung K, Moon C, Ahn C, Sanchez-Quinteiro P, Shin T. Key Genes in Olfactory Disorder in Experimental Autoimmune Encephalomyelitis Identified by Transcriptomic Analysis of the Olfactory Bulbs. Mol Neurobiol 2024; 61:5771-5786. [PMID: 38233686 DOI: 10.1007/s12035-024-03923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that shows demyelination in the central nervous system and functional deficits, including olfactory impairment. However, the genes related to olfactory impairment in EAE are unknown. We evaluated hub genes of the olfactory bulb in EAE mice. Differentially expressed genes (cut-offs, fold change > 2 and adjusted p < 0.05) and their related pathways in olfactory bulbs were subjected to gene ontology (GO) pathway analysis, gene set enrichment analysis (GSEA). Protein-protein interactions with selected genes were evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins. Gene regulatory networks (GRNs) which were constructed at the post-transcriptional level, including the genes-transcription factors (TFs) and gene-microRNAs (miRNAs) interaction networks. Twelve hub genes were found, three of which (Ctss, Itgb2, and Tlr2) were validated by RT-qPCR to be related to GO pathways such as immune response and regulation of immune response. GSEA showed that neuron-related genes-including Atp6v1g2, Egr1, and Gap43-and their pathways were significantly downregulated. GRNs analysis of six genes (Ctss, Itgb2, Tlr2, Atp6v1g2, Egr1, and Gap43) revealed 37 TFs and 84 miRNAs were identified as potential regulators of six genes, indicating significant interaction among six genes, TFs, and miRNAs. Collectively, these results suggest that transcriptomic analysis of the olfactory bulb of EAE mice can provide insight into olfactory dysfunction and reveal therapeutic targets for olfactory impairment.
Collapse
Affiliation(s)
- Sungmoo Hong
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, 49267, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, 56212, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changhwan Ahn
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, 102 Jejudaehakno, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Li S, Zhang J, Liu X, Wang N, Sun L, Liu J, Liu X, Masoudi A, Wang H, Li C, Guo C, Liu X. Proteomic characterization of hUC-MSC extracellular vesicles and evaluation of its therapeutic potential to treat Alzheimer's disease. Sci Rep 2024; 14:5959. [PMID: 38472335 PMCID: PMC10933327 DOI: 10.1038/s41598-024-56549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.
Collapse
Affiliation(s)
- Shuang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiayi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinxing Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Luyao Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jianling Liu
- Jianyuan Precision Medicines (Zhangjiakou) Co., Ltd., Zhangjiakou, 075000, China
- Cancer Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Xingliang Liu
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Abolfazl Masoudi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunxia Li
- Obstetrics and Gynaecology, The Fifth Hospital of Zhangjiakou, Zhangjiakou, 075000, China
| | - Chunyan Guo
- Hebei Key Laboratory of Neuropharmacology; Department of Pharmacy, Hebei North University, Zhangjiakou, 075000, China.
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumour Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
6
|
Cipriano GL, Schepici G, Mazzon E, Anchesi I. Multiple Sclerosis: Roles of miRNA, lcnRNA, and circRNA and Their Implications in Cellular Pathways. Int J Mol Sci 2024; 25:2255. [PMID: 38396932 PMCID: PMC10889752 DOI: 10.3390/ijms25042255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple sclerosis (MS) is a degenerative condition characterized by axonal damage and demyelination induced by autoreactive immune cells that occur in the Central Nervous System (CNS). The interaction between epigenetic changes and genetic factors can be widely involved in the onset, development, and progression of the disease. Although numerous efforts were made to discover new therapies able to prevent and improve the course of MS, definitive curative treatments have not been found yet. However, in recent years, it has been reported that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), acting as gene expression regulators, could be used as potential therapeutic targets or biomarkers to diagnose and fight MS. In this review, we discussed the role of miRNAs, lncRNAs, and circRNAs, as well as their expression level changes and signaling pathways that are related to preclinical and human MS studies. Hence, the investigation of ncRNAs could be important to provide additional information regarding MS pathogenesis as well as promote the discovery of new therapeutic strategies or biomarkers.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Strada Statale 113, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (G.S.); (I.A.)
| | | |
Collapse
|