1
|
Bonnez Q, Dekimpe C, Bekaert T, Tellier E, Kaplanski G, Joly BS, Veyradier A, Coppo P, Lammertyn J, Tersteeg C, De Meyer SF, Vanhoorelbeke K. Diagnosis of thrombotic thrombocytopenic purpura: easy-to-use fiber optic surface plasmon resonance immunoassays for automated ADAMTS-13 antigen and conformation evaluation. J Thromb Haemost 2024; 22:1936-1946. [PMID: 38554935 DOI: 10.1016/j.jtha.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Laboratory diagnosis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) remains challenging when ADAMTS-13 activity ranges between 10% and 20%. To prevent misdiagnosis, open ADAMTS-13 conformation gained clinical attention as a novel biomarker, especially to diagnose acute iTTP in patients with diagnostic undecisive ADAMTS-13 activity. Plasma ADAMTS-13 conformation analysis corrects for ADAMTS-13 antigen, with both parameters being characterized in enzyme-linked immunosorbent assay (ELISA)-based reference assays requiring expert technicians. OBJECTIVES To design ADAMTS-13 antigen and conformation assays on automated, easy-to-use fiber optic surface plasmon resonance (FO-SPR) technology to promote assay accessibility and diagnose challenging iTTP patients. METHODS ADAMTS-13 antigen and conformation assays were designed on FO-SPR technology. Plasma of 20 healthy donors and 20 acute iTTP patients were quantified, and data from FO-SPR and ELISA reference assays were compared. RESULTS Following assay design, both antigen and conformation FO-SPR assays were optimized and characterized, presenting strong analytical sensitivity (detection limit of 0.001 μg/mL) and repeatability (interassay variation of 14.4%). Comparative analysis suggested positive correlation (Spearman r of 0.92) and good agreement between FO-SPR and ELISA assays. As expected, FO-SPR assays showed a closed or open ADAMTS-13 conformation in healthy donors and acute iTTP patients, respectively. CONCLUSION Both ADAMTS-13 antigen and conformation assays were transferred onto automated, easy-to-use FO-SPR technology, displaying potent analytical sensitivity and reproducibility. ADAMTS-13 antigen and conformation were determined for healthy donors and acute iTTP patients showing strong correlation with ELISA reference. Introducing FO-SPR technology in clinical context could support routine diagnosis of acute iTTP patients, notably when ADAMTS-13 activity fluctuates between 10% and 20%.
Collapse
Affiliation(s)
- Quintijn Bonnez
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium. https://twitter.com/BonnezQuintijn
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Tim Bekaert
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Edwige Tellier
- Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Aix-Marseille University, Marseille, France
| | - Gilles Kaplanski
- Institut National de la Santé et de la Recherche Médicale, INRAE, C2VN, Aix-Marseille University, Marseille, France; Service de Médecine Interne et Immunologie Clinique, CHU Conception, Aix-Marseille University, APHM, Marseille, France
| | - Bérangère S Joly
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie Biologique Hôpital Lariboisière, AP-HP and EA3518, IRSL, Université Paris Cité, Paris, France; Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France
| | - Paul Coppo
- Department of Hematology, Reference Center for Thrombotic Microangiopathies, Saint-Antoine University Hospital, AP-HP, Paris, France
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Leuven, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.
| |
Collapse
|
2
|
Akkipeddi SMK, Rahmani R, Ellens NR, Kohli GS, Houk C, Schartz DA, Chittaranjan S, Worley L, Gunturi A, Bhalla T, Mattingly TK, Welle K, Morrell CN, Bender MT. Histone content, and thus DNA content, is associated with differential in vitro lysis of acute ischemic stroke clots. J Thromb Haemost 2024; 22:1410-1420. [PMID: 38296159 DOI: 10.1016/j.jtha.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Fibrin, von Willebrand factor, and extracellular DNA from neutrophil extracellular traps all contribute to acute ischemic stroke thrombus integrity. OBJECTIVES In this study, we explored how the proteomic composition of retrieved thromboemboli relates to susceptibility to lysis with distinct thrombolytics. METHODS Twenty-six retrieved stroke thromboemboli were portioned into 4 segments, with each subjected to 1 hour of in vitro lysis at 37 °C in 1 of 4 solutions: tissue plasminogen activator (tPA), tPA + von Willebrand factor-cleaving ADAMTS-13, tPA + DNA-cleaving deoxyribonuclease (DNase) I, and all 3 enzymes. Lysis, characterized by the percent change in prelysis and postlysis weight, was compared across the solutions and related to the corresponding abundance of proteins identified on mass spectrometry for each of the thromboemboli used in lysis. RESULTS Solutions containing DNase resulted in approximately 3-fold greater thrombolysis than that with the standard-of-care tPA solution (post hoc Tukey, P < .01 for all). DNA content was directly related to lysis in solutions containing DNase (Spearman's ρ > 0.39 and P < .05 for all significant histones) and inversely related to lysis in solutions without DNase (Spearman's ρ < -0.40 and P < .05 for all significant histones). Functional analysis suggests distinct pathways associated with susceptibility to thrombolysis with tPA (platelet-mediated) or DNase (innate immune system-mediated). CONCLUSION This study demonstrates synergy of DNase and tPA in thrombolysis of stroke emboli and points to DNase as a potential adjunct to our currently limited selection of thrombolytics in treating acute ischemic stroke.
Collapse
Affiliation(s)
- Sajal Medha K Akkipeddi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/SajalAkkipeddi
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel R Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat S Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Clifton Houk
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Derrek A Schartz
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/D_SchartzMD
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Logan Worley
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Aditya Gunturi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas K Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Ananthaneni A, Shimkus G, Weis F, Adu-Dapaah E, Lakra R, Ramadas P, Hayat S. Adult-onset Still's disease with concurrent thrombotic microangiopathy: Observations from pooled analysis for an uncommon finding. Eur J Haematol 2024; 112:484-492. [PMID: 37997494 DOI: 10.1111/ejh.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Adult-onset Still's disease (AOSD) is a rare systemic inflammatory disorder that is characterized by quotidian fevers, arthritis, and an evanescent rash. Occurrence of concurrent thrombotic microangiopathy (TMA) in AOSD is rare. The treatment aspects of TMA in AOSD are actively being debated. METHODS Medline search using MeSH terms and snowballing yielded a total of 29 articles with co-occurrence of AOSD and thrombotic thrombocytopenic purpura (TTP) including our own. Pooled data were synthesized for descriptive analysis. RESULTS Median age was 35 years with a majority of females (68.96%). A majority of these studies/patients were either Asian (34.48%) or Caucasian (31.03%). Concurrent TMA at the time of AOSD diagnosis was seen in 65.51% patients. Only 3/29 patients had ADAMTS13 level less than 10%, consistent with TTP and 3/29 were diagnosed with hemolytic uremic syndrome (HUS). The remainder were diagnosed clinically. Complication rate was high, and 15/29 (51.72%) patients died or had permanent neurological/renal/vision/gangrenous complications. Median and mean ferritin peak was observed to be higher (7458 and 12 349, respectively) in patients who either died/had partial remission, compared to those who had complete response (3257 and 10 899, respectively), p = .829. CONCLUSIONS A majority of patients with AOSD-associated TMA either died or had permanent complications. TMA was diagnosed alongside AOSD in 65% patients, while the rest developed TMA during the course of their disease. Blurred vision may precede TMA and could help risk-stratify high-risk AOSD patients clinically. Glycosylated ferritin remains low several weeks to months after disease remission and may be used to monitor severity of disease process. Further studies are necessary to confirm the existing vascular endothelial growth factor hypothesis in AOSD-associated TMA.
Collapse
Affiliation(s)
- Anil Ananthaneni
- Division of Hematology & Oncology, Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Gaelen Shimkus
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Francesca Weis
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Eunice Adu-Dapaah
- Division of Rheumatology, Department of Internal Medicine, University of California, Los Angeles, California, USA
| | - Rachaita Lakra
- Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Poornima Ramadas
- Division of Hematology & Oncology, Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Samina Hayat
- Division of Rheumatology, Department of Internal Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
4
|
Dimopoulos K, Tripodi A, Goetze JP. Laboratory investigation and diagnosis of thrombotic thrombocytopenic purpura. Crit Rev Clin Lab Sci 2023; 60:625-639. [PMID: 37452521 DOI: 10.1080/10408363.2023.2232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/04/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare and potentially fatal disease for which rapid diagnosis is crucial for patient outcomes. Deficient activity (< 10%) of the liver enzyme, ADAMTS13, is the pathophysiological hallmark of TTP, and measurement of the enzyme activity can establish the diagnosis of TTP with high accuracy. Thus, along with the clinical history, appropriate laboratory assessment of a suspected case of TTP is essential for diagnosis and treatment. Here, we present a review of the available laboratory tests that can assist clinicians in establishing the diagnosis of TTP, with special focus on ADAMTS13 assays, including the measurement of the antigen and activity, and detection of autoantibodies to ADAMTS13.
Collapse
Affiliation(s)
- Konstantinos Dimopoulos
- Department of Clinical Biochemistry, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Armando Tripodi
- IRCCS Maggiore Hospital Foundation, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milano, Italy
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
5
|
Emirova KM, Orlova OM, Chichuga EM, Muzurov AL, Avdonin PP, Avdonin PV. A Moderate Decrease in ADAMTS13 Activity Correlates with the Severity of STEC-HUS. Biomolecules 2023; 13:1671. [PMID: 38002352 PMCID: PMC10669222 DOI: 10.3390/biom13111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Atypical hemolytic uremic syndrome (HUS) develops as a result of damage to the endothelium of microvasculature vessels by Shiga toxin produced by enterohemorrhagic Escherichia coli (STEC-HUS). STEC-HUS remains the leading cause of acute kidney injury (AKI) in children aged 6 months to 5 years. The pathomorphological essence of the disease is the development of thrombotic microangiopathy (TMA). One of the key causes of TMA is an imbalance in the ADAMTS13-von Willebrand factor (vWF)-platelet system. The goal of the work was to clarify the role of a moderate decrease in ADAMTS13 activity in the pathogenesis of STEC-HUS. The activity of ADAMTS13 was determined in 138 children (4 months-14.7 years) in the acute period of STEC-HUS and the features of the course of the disease in these patients were analyzed. The study revealed a decrease in the activity and concentration of ADAMTS13 in 79.8% and 90.6% of patients, respectively. Measurements of von Willebrand factor antigen content and the activity of von Willebrand factor in the blood plasma of part of these patients were carried out. In 48.6% and 34.4% of cases, there was an increase in the antigen concentration and the activity of the Willebrand factor, respectively. Thrombocytopenia was diagnosed in 97.8% of children. We have demonstrated that moderately reduced ADAMTS13 activity correlates with the risk of severe manifestations of STEC-HUS in children; the rate of developing multiple organ failure, cerebral disorders, pulmonary edema, and acute kidney injury with the need for dialysis increases. It is assumed that reduction in ADAMTS13 activity may serve as a predictor of disease severity.
Collapse
Affiliation(s)
- Khadizha M. Emirova
- Department of Pediatrics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (K.M.E.); (O.M.O.)
- St. Vladimir Children’s City Clinical Hospital, Moscow 107014, Russia;
| | - Olga M. Orlova
- Department of Pediatrics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow 127473, Russia; (K.M.E.); (O.M.O.)
- St. Vladimir Children’s City Clinical Hospital, Moscow 107014, Russia;
| | - Ekaterina M. Chichuga
- Department of Hospital Pediatrics, N.N. Burdenko Voronezh State Medical University, Voronezh 394036, Russia;
| | - Alexander L. Muzurov
- St. Vladimir Children’s City Clinical Hospital, Moscow 107014, Russia;
- Russian Medical Academy of Continuous Professional Education, Moscow 123995, Russia
| | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology, Moscow 119334, Russia;
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology, Moscow 119334, Russia;
| |
Collapse
|
6
|
Irsara C, Anliker M, Egger AE, Harasser L, Lhotta K, Feistritzer C, Griesmacher A, Loacker L. Evaluation of two fully automated ADAMTS13 activity assays in comparison to manual FRET assay. Int J Lab Hematol 2023; 45:758-765. [PMID: 37194625 DOI: 10.1111/ijlh.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION The objective of the present study was to evaluate and compare the validity and utility of two fully automated ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity assays for clinical diagnostic decision-making and to compare their performance. METHODS Two automated ADAMTS13 activity assays (Werfen HemosIL® AcuStar ADAMTS13 Activity, Technoclone Technofluor ADAMTS13 Activity) were compared with a manual FRET assay (BioMedica ACTIFLUOR ADAMTS13 Activity). The following samples were used: 13 acute phase TTP (thrombotic thrombocytopenic purpura) samples from 11 different patients, one sample from a patient with congenital ADAMTS13 deficiency, 16 samples from control patients, three follow-up samples from TTP patients in long-term remission and one sample from a patient with stem cell transplantation related thrombotic microangiopathy (TMA). The WHO 1st International Standard for ADAMTS13 and several dilutions of normal plasma with ADAMTS13-depleted normal plasma were also tested. Statistical analysis included descriptive statistics, sensitivity and specificity, Passing & Bablok regression and Bland-Altman plot. RESULTS The quantitative comparison between the HemosIL® (x) and Technofluor (y) methods showed a strong correlation (Pearson r = 0.98, n = 49). When considering an ADAMTS13 activity of <10% as a hallmark for the diagnosis of TTP, two fully automated assays were both able to identify all TTP- and non-TTP-samples correctly, resulting in sensitivities and specificities of 100%. CONCLUSION Both fully automated ADAMTS13 activity assays showed a good diagnostic performance and quantitative correlation among themselves, discriminating reliably between TTP- and non-TTP-patients.
Collapse
Affiliation(s)
- Christian Irsara
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Markus Anliker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Alexander E Egger
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lukas Harasser
- Department of Internal Medicine IV, Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Karl Lhotta
- Department of Internal Medicine III, Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Clemens Feistritzer
- Department of Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Papadogeorgou P, Boutsikou T, Boutsikou M, Pergantou E, Mantzou A, Papassotiriou I, Iliodromiti Z, Sokou R, Bouza E, Politou M, Iacovidou N, Valsami S. A Global Assessment of Coagulation Profile and a Novel Insight into Adamts-13 Implication in Neonatal Sepsis. BIOLOGY 2023; 12:1281. [PMID: 37886991 PMCID: PMC10604288 DOI: 10.3390/biology12101281] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Neonatal sepsis is a life-threatening condition associated with significant morbidity and mortality. Sepsis-induced coagulopathy is a well-recognized entity, signifying the strong cross-talk between inflammation and coagulation. The aim of the present study was to compare the coagulation profile between the acute phase of sepsis and recovery in term and preterm neonates. Additional comparisons to healthy neonates were undertaken. Levels of clotting, anti-clotting factors and ADAMTS-13 (A disintegrin and metalloprotease with thrombospondin type-1 motives), the cleaving protein of von Willebrand factor (VWF), were measured in 16 term and preterm neonates in the acute phase of infection and following recovery, as well as in 18 healthy neonates. Clotting times were prolonged, while levels of particular clotting factors were lower in the acute phase of infection compared to controls and recovery. On the other hand, levels of fibrinogen, factor VIII (FVIII) and VWF were significantly higher in the acute phase in comparison to controls and recovery, while they remained persistently higher in the infection group compared to controls. In regard to the anticlotting mechanism, a clear suppression was observed in septic neonates. ADAMTS-13 levels were significantly lower in the acute phase of infection in comparison to controls and recovery (p = 0.015 and 0.004, respectively), while a trend toward superimposed normalization was demonstrated post infection, as higher ADAMTS-13 levels were measured in recovered neonates compared to controls (p = 0.002). The coagulation profile is considerably deranged in neonatal sepsis. ADAMTS-13 deficiency in septic neonates is a novel finding with promising future implications, as ADAMTS-13 substitution may serve as a useful therapeutic option in neonatal sepsis, prompting further investigation in future studies.
Collapse
Affiliation(s)
- Paraskevi Papadogeorgou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Maria Boutsikou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Eleni Pergantou
- Haemostasis Unit/Haemophilia Centre, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Aimilia Mantzou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Ioannis Papassotiriou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Rozeta Sokou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Elena Bouza
- 2nd Neonatal Intensive Care Unit, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Marianna Politou
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| |
Collapse
|
8
|
Bonnez Q, Sakai K, Vanhoorelbeke K. ADAMTS13 and Non-ADAMTS13 Biomarkers in Immune-Mediated Thrombotic Thrombocytopenic Purpura. J Clin Med 2023; 12:6169. [PMID: 37834813 PMCID: PMC10573396 DOI: 10.3390/jcm12196169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare medical emergency for which a correct and early diagnosis is essential. As a severe deficiency in A Disintegrin And Metalloproteinase with ThromboSpondin type 1 repeats, member 13 (ADAMTS13) is the underlying pathophysiology, diagnostic strategies require timely monitoring of ADAMTS13 parameters to differentiate TTP from alternative thrombotic microangiopathies (TMAs) and to guide initial patient management. Assays for conventional ADAMTS13 testing focus on the enzyme activity and presence of (inhibitory) anti-ADAMTS13 antibodies to discriminate immune-mediated TTP (iTTP) from congenital TTP and guide patient management. However, diagnosis of iTTP remains challenging when patients present borderline ADAMTS13 activity. Therefore, additional biomarkers would be helpful to support correct clinical judgment. Over the last few years, the evaluation of ADAMTS13 conformation has proven to be a valuable tool to confirm the diagnosis of acute iTTP when ADAMST13 activity is between 10 and 20%. Screening of ADAMTS13 conformation during long-term patient follow-up suggests it is a surrogate marker for undetectable antibodies. Moreover, some non-ADAMTS13 parameters gained notable interest in predicting disease outcome, proposing meticulous follow-up of iTTP patients. This review summarizes non-ADAMTS13 biomarkers for which inclusion in routine clinical testing could largely benefit differential diagnosis and follow-up of iTTP patients.
Collapse
Affiliation(s)
- Quintijn Bonnez
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
| | - Kazuya Sakai
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara 634-8522, Japan
| | - Karen Vanhoorelbeke
- Department of Chemistry, KU Leuven Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
| |
Collapse
|
9
|
Underwood MI, Alwan F, Thomas MR, Scully MA, Crawley JTB. Autoantibodies enhance ADAMTS-13 clearance in patients with immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21:1544-1552. [PMID: 36813118 DOI: 10.1016/j.jtha.2023.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Severe deficiency in ADAMTS-13 (<10%) and the loss of von Willebrand factor-cleaving function can precipitate microvascular thrombosis associated with thrombotic thrombocytopenic purpura (TTP). Patients with immune-mediated TTP (iTTP) have anti-ADAMTS-13 immunoglobulin G antibodies that inhibit ADAMTS-13 function and/or increase ADAMTS-13 clearance. Patients with iTTP are treated primarily by plasma exchange (PEX), often in combination with adjunct therapies that target either the von Willebrand factor-dependent microvascular thrombotic processes (caplacizumab) or the autoimmune components (steroids or rituximab) of the disease. OBJECTIVES To investigate the contributions of autoantibody-mediated ADAMTS-13 clearance and inhibition in patients with iTTP at presentation and through the course of the PEX therapy. PATIENTS/METHODS Anti-ADAMTS-13 immunoglobulin G antibodies, ADAMTS-13 antigen, and activity were measured before and after each PEX in 17 patients with iTTP and 20 acute TTP episodes. RESULTS At presentation, 14 out of 15 patients with iTTP had ADAMTS-13 antigen levels of <10%, suggesting a major contribution of ADAMTS-13 clearance to the deficiency state. After the first PEX, both ADAMTS-13 antigen and activity levels increased similarly, and the anti-ADAMTS-13 autoantibody titer decreased in all patients, revealing ADAMTS-13 inhibition to be a modest modifier of the ADAMTS-13 function in iTTP. Analysis of ADAMTS-13 antigen levels between consecutive PEX treatments revealed that the rate of ADAMTS-13 clearance in 9 out of 14 patients analyzed was 4- to 10-fold faster than the estimated normal rate of clearance. CONCLUSION These data reveal, both at presentation and during PEX treatment, that antibody-mediated clearance of ADAMTS-13 is the major pathogenic mechanism that causes ADAMTS-13 deficiency in iTTP. Understanding the kinetics of ADAMTS-13 clearance in iTTP may now enable further optimization of treatment of patients with iTTP.
Collapse
Affiliation(s)
- Mary I Underwood
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ferras Alwan
- Haemophilia Centre, Imperial College Healthcare Trust, London, United Kingdom; University College Hospital, London, United Kingdom
| | | | | | - James T B Crawley
- Centre for Haematology, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
Edvardsen MS, Hansen ES, Ueland T, Aukrust P, Brækkan SK, Morelli VM, Hansen JB. Impact of the von Willebrand factor-ADAMTS-13 axis on the risk of future venous thromboembolism. J Thromb Haemost 2023; 21:1227-1237. [PMID: 36736832 DOI: 10.1016/j.jtha.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) and its cleaving protease, ADAMTS-13, form a pivotal axis that regulates hemostasis. However, the role of the VWF-ADAMTS-13 axis in the risk of future venous thromboembolism (VTE) is unknown. OBJECTIVES To investigate whether plasma ADAMTS-13 levels and an imbalance with VWF levels, assessed as the VWF/ADAMTS-13 ratio, are associated with the risk of future VTE. PATIENTS/METHODS A population-based nested case-control study, comprising 383 incident VTE cases and 780 age- and sex-matched controls, was derived from the Tromsø study cohort (1994-2007). Antigen levels of ADAMTS-13 and VWF were measured in plasma samples obtained at cohort baseline. Odds ratios (ORs) with 95% CIs were estimated according to quartile cutoffs of ADAMTS-13 and VWF/ADAMTS-13 ratio determined in controls. RESULTS In age- and sex-adjusted analysis, ADAMTS-13 levels were inversely associated with the VTE risk, with an OR of 1.40 (95% CI, 0.99-1.99) for the lowest vs highest quartiles. The VWF/ADAMTS-13 ratio was linearly associated with the VTE risk (P for trend = .001), with an OR of 1.70 (95% CI, 1.19-2.43) for the highest vs lowest quartiles, and the association was particularly pronounced for unprovoked VTE (OR, 2.81; 95% CI, 1.65-4.81). The ORs were only slightly attenuated after additional adjustments for body mass index and C-reactive protein. CONCLUSIONS Lowered ADAMTS-13 levels and an imbalance between ADAMTS-13 and VWF levels, reflected by an increased VWF/ADAMTS-13 ratio, were associated with an increased risk of future VTE. Our findings suggest that the VWF-ADAMTS-13 axis is involved in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Magnus S Edvardsen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen-Sofie Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Thor Ueland
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sigrid K Brækkan
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Vânia M Morelli
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - John-Bjarne Hansen
- Thrombosis Research Center (TREC), Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
11
|
Kangro K, Roose E, Dekimpe C, Vandenbulcke A, Graça NAG, Voorberg J, Ustav M, Männik A, Vanhoorelbeke K. Improvement of recombinant ADAMTS13 production through a more optimal signal peptide or an N-terminal fusion protein. J Thromb Haemost 2022; 20:2379-2385. [PMID: 35841209 DOI: 10.1111/jth.15819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/26/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recombinant human ADAMTS13 (rADAMTS13) is a key protein in fundamental research for investigating its mode of action and the pathophysiology of thrombotic thrombocytopenic purpura (TTP). However, the expression of rADAMTS13 is quite low in mammalian cells, which makes the production of the protein time-consuming and labor-intensive. OBJECTIVES We aimed at increasing the yield of rADAMTS13 by (1) using a more optimal signal peptide (SP) and (2) constructing an N-terminal fusion protein of ADAMTS13 with human serum albumin domain 1 (AD1-ADAMTS13). METHODS Six SPs were investigated to select the most optimal SP. Expression plasmids containing the most optimal SP and ADAMTS13 cDNA or the fusion construct AD1-ADAMTS13 were generated and transiently transfected into CHOEBNALT85 cell-line. Expression levels of rADAMTS13 in expression medium were analyzed and compared with the expression level of rADAMTS13 with native SP (nat-SP). RESULTS Expression of rADAMTS13 with coagulation factor VII (FVII) SP was 3-fold higher (16.00 μg/ml) compared with the expression with nat-SP (5.03 μg/ml). The highest yields were obtained with AD1-ADAMTS13 protein with a 15-fold higher concentration (78.22 μg/ml) compared with the expression with nat-SP. The rADAMTS13 expressed with FVII-SP retained its activity (104.0%) to cleave von Willebrand factor, whereas AD1-ADAMTS13 demonstrated even higher activity (144.3%). CONCLUSION We succeeded in generating expression vectors that yield (1) rADAMTS13 at higher levels because of more optimal FVII-SP and (2) high levels of AD1-ADAMTS13 N-terminal fusion protein. The highest expression levels were obtained with AD1-ADAMTS13 N-terminal fusion protein, which is paving the way for highly efficient protein production.
Collapse
Affiliation(s)
- Kadri Kangro
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Estonia
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Nuno A G Graça
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Estonia
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mart Ustav
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Estonia
| | - Andres Männik
- Icosagen Cell Factory OÜ, Õssu, Kambja vald, Estonia
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
12
|
Ferraresso F, Strilchuk AW, Juang LJ, Poole LG, Luyendyk JP, Kastrup CJ. Comparison of DLin-MC3-DMA and ALC-0315 for siRNA Delivery to Hepatocytes and Hepatic Stellate Cells. Mol Pharm 2022; 19:2175-2182. [PMID: 35642083 PMCID: PMC9621687 DOI: 10.1021/acs.molpharmaceut.2c00033] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.
Collapse
Affiliation(s)
- Francesca Ferraresso
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lih Jiin Juang
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Lauren G. Poole
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48823, United States
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z4, Canada,Blood Research Institute, Versiti, Milwaukee, WI 53226, United States,Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States,Corresponding author: Dr. Christian J Kastrup, Versiti Blood Research Institute and Medical College of Wisconsin, 8727 W Watertown Plank Rd, Milwaukee, WI, USA; ., Phone: 1-414-937-6805, Fax: N/A
| |
Collapse
|
13
|
Westwood JP, Scully M. Management of acquired, immune thrombocytopenic purpura (iTTP): beyond the acute phase. Ther Adv Hematol 2022; 13:20406207221112217. [PMID: 35923772 PMCID: PMC9340390 DOI: 10.1177/20406207221112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Modern therapy for acute TTP has resulted in a dramatic improvement in
outcomes, with the combination of plasma exchange, immunosuppression,
and caplacizumab being associated with >90% survival rates
following an acute episode. TTP is no longer associated with just the
acute episode, but requires long-term follow-up. There remains
significant morbidity associated with acute TTP, and many patients
suffer marked neuropsychological sequelae, including impairment in
cognitive functioning, affective disorders, and reduction in
health-related quality of life measures. The focus of management
beyond the acute phase centres on relapse prevention,
via careful monitoring of patients and the use
of either ad hoc or regular immunosuppressive therapies. The main
therapy used is rituximab, but despite more limited evidence, other
immunosuppressive therapies may be required to aim for normalisation
of ADAMTS 13 activity. Follow-up with a reduction in ADAMTS 13
activity levels (ADAMTS 13 relapse), rituximab is central to
normalisation of activity levels and prevention of a clinical relapse.
Fundamental to elective therapy is the role of ADAMTS 13 activity
monitoring, and impact of reduced ADAMTS13 activity on end organ
damage. This review discusses monitoring and treatment strategy for
long-term management of TTP, including the variety of therapies
available to maintain remission, prevent relapse and a summary of a
long-term treatment pathway.
Collapse
Affiliation(s)
| | - Marie Scully
- Department of Haematology, UCLH, London, UK
- National Institute for Health Research Cardiometabolic Programme, UCLH/UCL Cardiovascular BRC, 250 Euston Road, NW1 2PG London, UK
| |
Collapse
|
14
|
Anti-ADAMTS13 autoantibody profiling in patients with immune-mediated thrombotic thrombocytopenic purpura. Blood Adv 2021; 5:3427-3435. [PMID: 34495312 DOI: 10.1182/bloodadvances.2020004172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
Anti-A Disintegrin and Metalloproteinase with a ThromboSpondin type 1 motif, member 13 (ADAMTS13) autoantibodies cause a severe ADAMTS13 deficiency in immune-mediated thrombotic thrombocytopenic purpura (iTTP). ADAMTS13 consists of a metalloprotease (M), a disintegrin-like (D) domain, 8 thrombospondin type 1 repeats (T1-T8), a cysteine-rich (C), a spacer (S), and 2 CUB domains (CUB1-2). We recently developed a high-throughput epitope mapping assay based on small, nonoverlapping ADAMTS13 fragments (M, DT, CS, T2-T5, T6-T8, CUB1-2). With this assay, we performed a comprehensive epitope mapping using 131 acute-phase samples and for the first time a large group of remission samples (n = 50). Next, samples were stratified according to their immunoprofiles, a field that is largely unexplored in iTTP. Three dominant immunoprofiles were found in acute-phase samples: profile 1: only anti-CS autoantibodies (26.7%); profile 2: both anti-CS and anti-CUB1-2 autoantibodies (12.2%); and profile 3: anti-DT, anti-CS, anti-T2-T5, anti-T6-T8, and anti-CUB1-2 autoantibodies (8.4%). Interestingly, profile 1 was the only dominant immunoprofile in remission samples (52.0%). Clinical data were available for a relatively small number of patients with acute iTTP (>68), and no correlation was found between immunoprofiles and disease severity. Nevertheless, profile 1 was linked with younger and anti-T2-T5 autoantibodies with older age and the absence of anti-CUB1-2 autoantibodies with cerebral involvement. In conclusion, identifying acute phase and remission immunoprofiles in iTTP revealed that anti-CS autoantibodies seem to persist or reappear during remission providing further support for the clinical development of a targeted anti-CS autoantibody therapy. A large cohort study with acute iTTP samples will validate possible links between immunoprofiles or anti-domain autoantibodies and clinical data.
Collapse
|
15
|
Blasco M, Guillén E, Quintana LF, Garcia-Herrera A, Piñeiro G, Poch E, Carreras E, Campistol JM, Diaz-Ricart M, Palomo M. Thrombotic microangiopathies assessment: mind the complement. Clin Kidney J 2021; 14:1055-1066. [PMID: 33841853 PMCID: PMC8023218 DOI: 10.1093/ckj/sfaa195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
When faced with microangiopathic haemolytic anaemia, thrombocytopenia and organ dysfunction, clinicians should suspect thrombotic microangiopathy (TMA). The endothelial damage that leads to this histological lesion can be triggered by several conditions or diseases, hindering an early diagnosis and aetiological treatment. However, due to systemic involvement in TMA and its low incidence, an accurate early diagnosis is often troublesome. In the last few decades, major improvements have been made in the pathophysiological knowledge of TMAs such as thrombotic thrombocytopenic purpura [TTP, caused by ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin Type 1 motif, member 13) deficiency] and atypical haemolytic uraemic syndrome (aHUS, associated with dysregulation of the alternative complement pathway), together with enhancements in patient management due to new diagnostic tools and treatments. However, diagnosis of aHUS requires the exclusion of all the other entities that can cause TMA, delaying the introduction of terminal complement blockers, which have shown high efficacy in haemolysis control and especially in avoiding organ damage if used early. Importantly, there is increasing evidence that other forms of TMA could present overactivation of the complement system, worsening their clinical progression. This review addresses the diagnostic and therapeutic approach when there is clinical suspicion of TMA, emphasizing complement evaluation as a potential tool for the inclusive diagnosis of aHUS, as well as for the improvement of current knowledge of its pathophysiological involvement in other TMAs. The development of both new complement activation biomarkers and inhibitory treatments will probably improve the management of TMA patients in the near future, reducing response times and improving patient outcomes.
Collapse
Affiliation(s)
- Miquel Blasco
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Elena Guillén
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Luis F Quintana
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | | | - Gastón Piñeiro
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Esteban Poch
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Enric Carreras
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
| | - Josep M Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIPABS), Malalties Nefro-Urològiques i Trasplantament Renal, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Barcelona Endothelium Team, Barcelona, Spain
- Department of Pathology, Hematopathology Unit, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
- Barcelona Endothelium Team, Barcelona, Spain
- Department of Pathology, Hematopathology Unit, Hospital Clínic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Turecek PL, Peck RC, Rangarajan S, Reilly-Stitt C, Laffan MA, Kazmi R, James I, Dushianthan A, Schrenk G, Gritsch H, Ewenstein BM, Mellgard B, Erdlenbruch W, Jain N, Binder NB, Mumford AD. Recombinant ADAMTS13 reduces abnormally up-regulated von Willebrand factor in plasma from patients with severe COVID-19. Thromb Res 2021; 201:100-112. [PMID: 33662796 PMCID: PMC7890348 DOI: 10.1016/j.thromres.2021.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Thrombosis affecting the pulmonary and systemic vasculature is common during severe COVID-19 and causes adverse outcomes. Although thrombosis likely results from inflammatory activation of vascular cells, the mediators of thrombosis remain unconfirmed. In a cross-sectional cohort of 36 severe COVID-19 patients, we show that markedly increased plasma von Willebrand factor (VWF) levels were accompanied by a partial reduction in the VWF regulatory protease ADAMTS13. In all patients we find this VWF/ADAMTS13 imbalance to be associated with persistence of ultra-high-molecular-weight (UHMW) VWF multimers that are highly thrombogenic in some disease settings. Incubation of plasma samples from patients with severe COVID-19 with recombinant ADAMTS13 (rADAMTS13) substantially reduced the abnormally high VWF activity, reduced overall multimer size and depleted UHMW VWF multimers in a time and concentration dependent manner. Our data implicate disruption of normal VWF/ADAMTS13 homeostasis in the pathogenesis of severe COVID-19 and indicate that this can be reversed ex vivo by correction of low plasma ADAMTS13 levels. These findings suggest a potential therapeutic role for rADAMTS13 in helping restore haemostatic balance in COVID-19 patients.
Collapse
Affiliation(s)
| | - Rachel C Peck
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Savita Rangarajan
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; K J Somaiya Superspecialty Hospital and Research Centre, Mumbai, India
| | | | - Michael A Laffan
- Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Rashid Kazmi
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Izabela James
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | | | - Gerald Schrenk
- Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | | | | | | | | | - Nisha Jain
- Baxalta US Inc., a Takeda company, Cambridge, MA, USA
| | - Nikolaus B Binder
- Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
| | - Andrew D Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom; University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
17
|
Setiawan B, Permatadewi CO, de Samakto B, Bugis A, Naibaho RM, Pangarsa EA, Santosa D, Suharti C. Von Willebrand factor:antigen and ADAMTS-13 level, but not soluble P-selectin, are risk factors for the first asymptomatic deep vein thrombosis in cancer patients undergoing chemotherapy. Thromb J 2020; 18:33. [PMID: 33292287 PMCID: PMC7659107 DOI: 10.1186/s12959-020-00247-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background There is a high incidence of deep vein thrombosis (DVT) among cancer patients undergoing chemotherapy. Chemotherapy-induced vascular endothelial cell activation (VECA) is characterized by increased plasma levels of von Willebrand factor (vWF) and soluble P-selectin (sP-selectin), leading to the activation of endothelial cells and signaling cascades. The biological role of a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS-13) is to control the activity of vWF and consequently the risk of thrombosis. The objective of this study was to investigate the roles of sP-selectin, vWF, and ADAMTS-13 as risk factors for the first episode of DVT in cancer patients undergoing chemotherapy. Methods This prospective cohort study was conducted at Dr. Kariadi Hospital, Indonesia, on 40 cancer patients. Prechemotherapy (baseline) and postchemotherapy sP-selectin, vWF antigen (vWF:Ag), and ADAMTS-13 plasma levels were determined with ELISAs before and 3 months after chemotherapy. The clinical characteristics of the patients, cancer type, cancer stage, chemotherapy regimen, ABO blood type, D-dimer level and Khorana risk score were also analyzed using logistic regression. Patients were observed for the possibility of developing DVT during chemotherapy. Results DVT was confirmed in 5 patients (12.5%) after a period of 3 months. In patients with DVT, sP-selectin and vWF were significantly higher while ADAMTS-13 was lower than in their counterparts. The levels of baseline vWF:Ag and ADAMTS-13, with cut-off points ≥ 2.35 IU/mL and ≤ 1.03 IU/mL, respectively, were found to independently predict the incidence of DVT. In the multivariate logistic regression analysis, the relative risk (RR) for DVT in patients with high vWF:Ag was 3.80 (95% CI 1.15–12.48, p = 0.028), and that for patients with low ADAMTS-13 was 2.67 (95% CI 1.22–23.82, p = 0.005). The vWF:Ag/ADAMTS-13 ratio and both vWF:Ag and ADAMTS-13 dynamics during treatment were also able to differentiate those with prospective DVT. However, sP-selectin and other covariates showed no statistical significance. Conclusion We found that prechemotherapy plasma levels of vWF:Ag ≥ 2.35 IU/mL and ADAMTS-13 ≤ 1.03 IU/mL are independent risk factors for DVT incidence among cancer patients.
Collapse
Affiliation(s)
- Budi Setiawan
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia.
| | - Cecilia Oktaria Permatadewi
- Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| | - Baringin de Samakto
- Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| | - Ashar Bugis
- Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| | - Ridho M Naibaho
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia.,Fellow in Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Mulawarman University, Parikesit General Hospital, Kutai Kartanegara, Indonesia
| | - Eko Adhi Pangarsa
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| | - Damai Santosa
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| | - Catharina Suharti
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Medical Faculty of Diponegoro University and Dr. Kariadi Hospital, Semarang, Indonesia
| |
Collapse
|
18
|
Zheng XL, Vesely SK, Cataland SR, Coppo P, Geldziler B, Iorio A, Matsumoto M, Mustafa RA, Pai M, Rock G, Russell L, Tarawneh R, Valdes J, Peyvandi F. ISTH guidelines for the diagnosis of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18:2486-2495. [PMID: 32914582 PMCID: PMC8146131 DOI: 10.1111/jth.15006] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite an increase in our understandings of pathogenesis of thrombotic thrombocytopenic purpura (TTP), the approaches for initial diagnosis and management of TTP vary significantly. OBJECTIVE The evidence-based guidelines of the International Society on Thrombosis and Haemostasis (ISTH) are intended to support patients, clinicians, and other health care professionals in their decisions about the initial diagnosis and management of acute TTP. METHODS In June 2018, ISTH formed a multidisciplinary panel that included hematologists, an intensive care physician, nephrologist, clinical pathologist, biostatistician, and patient representatives, as well as a methodology team from McMaster University. The panel composition was designed to minimize the potential conflicts of interests. The panel used the Grading of Recommendations Assessment, Development, and Evaluation approach and the Population, Intervention, Comparison, Outcome framework to develop and grade their recommendations. Public comments were sought and incorporated in the final document. RESULTS The panel agreed on three recommendations covering the initial diagnosis with emphasis on the importance of ADAMTS13 testing (eg, activity, anti-ADAMTS13 IgG or inhibitor) and assessment of the pretest probability of TTP by clinical assessment and/or the risk assessment models like the PLASMIC or French score. The panel noted how availability and turnaround time of ADAMTS13 test results might affect early diagnosis and management, in particular the use of caplacizumab. CONCLUSIONS There is a lack of high-quality evidence to support strong recommendations for the initial diagnosis and management of a suspected TTP. The panel emphasized the importance of obtaining ADAMTS13 testing in a proper clinical context. Future research should focus on how to monitor and act on ADAMTS13 levels during remission.
Collapse
Affiliation(s)
- X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Sara K. Vesely
- Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Spero R. Cataland
- Department of Medicine, The Ohio State University, Columbus, OH, USA
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, Service d’Hématologie, Hôpital Saint-Antoine, Assistance Publique, Hôpitaux de Paris, Sorbonne Université, Paris, France
| | | | - Alfonso Iorio
- Department of Health Research Methods, Research, and Impact, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | - Reem A. Mustafa
- Department of Medicine, The University of Kansas Mediccal Center, Kansas City, KS, USA
| | - Menaka Pai
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Gail Rock
- University of Ottawa, Ottawa, CA, USA
| | - Lene Russell
- Department of Intensive Care, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rawan Tarawneh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Flora Peyvandi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Dekimpe C, Roose E, Tersteeg C, Joly BS, Dewaele A, Horta S, Pareyn I, Vandenbulcke A, Deckmyn H, Feys HB, Tellier E, Kaplanski G, Scully M, Coppo P, De Meyer SF, Veyradier A, Vanhoorelbeke K. Anti-ADAMTS13 autoantibodies in immune-mediated thrombotic thrombocytopenic purpura do not hamper ELISA-based quantification of ADAMTS13 antigen. J Thromb Haemost 2020; 18:985-990. [PMID: 31989742 DOI: 10.1111/jth.14747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The biological diagnosis of immune-mediated thrombotic thrombocytopenic purpura (iTTP) is based on determination of ADAMTS13 activity (<10%) and anti-ADAMTS13 autoantibodies. ADAMTS13 antigen levels are not routinely measured in iTTP patients, but studies have shown that antigen levels are a valuable prognostic factor. OBJECTIVES To (a) report the validation of our in-house developed ADAMTS13 antigen enzyme-linked immunosorbent assay (ELISA) and determine ADAMTS13 antigen in a large cohort of healthy donor and iTTP patient plasma samples; and (b) to investigate whether ADAMTS13 antigen determination is not disturbed by the presence of anti-ADAMTS13 autoantibodies. METHODS Our in-house ADAMTS13 antigen ELISA was validated in terms of sensitivity, repeatability, and reproducibility. ADAMTS13 antigen levels were determined in plasma samples from 423 healthy donors and 112 acute iTTP patients. Purified IgGs from iTTP patients were added to normal human plasma to determine whether anti-ADAMTS13 autoantibodies hampered ADAMTS13 antigen determination. RESULTS Our in-house ADAMTS13 antigen ELISA has a detection limit of 3% and low intra-assay (coefficient of variation, %CV < 10%) and inter-assay (%CV < 18%) variability. ADAMTS13 antigen levels were significantly reduced (P < .0001) in acute iTTP patients (15 ± 18%) compared to healthy donors (101 ± 18%). The anti-ADAMTS13 autoantibodies in plasma of iTTP patients did not impede ADAMTS13 antigen determinations using our in-house ELISA. CONCLUSIONS Our in-house ADAMT13 antigen ELISA is a powerful tool to correctly determine ADAMTS13 antigen levels in iTTP patients, which supports routine ADAMTS13 antigen measurements in these patients to have better insight into disease prognosis.
Collapse
Affiliation(s)
- Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Elien Roose
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Bérangère S Joly
- Université de Paris, AP-HP Nord, hôpital Lariboisière, Service d'hématologie biologique, Paris, France
- Université de Paris, EA3518 Institut de Recherche Saint-Louis, Paris, France
| | - Aurélie Dewaele
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Inge Pareyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Aline Vandenbulcke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Edwige Tellier
- Aix-Marseille Université, INSERM, INRA, C2VN, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille Université, INSERM, INRA, C2VN, Marseille, France
- Aix Marseille Université, APHM, INSERM, INRA, C2VN, Service de médecine interne, Marseille, France
| | - Marie Scully
- Department of Haematology, University College London Hospital, and National Institute for Health Research Cardiometabolic Programme, UCLH/UCL BRC, London, UK
| | - Paul Coppo
- Département d'Hématologie Clinique, Hôpital Saint Antoine, Assistance Publique-Hôpitaux de Paris and Université Pierre et Marie Curie, Paris, France
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Agnès Veyradier
- Université de Paris, AP-HP Nord, hôpital Lariboisière, Service d'hématologie biologique, Paris, France
- Université de Paris, EA3518 Institut de Recherche Saint-Louis, Paris, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
20
|
The role of ADAMTS13 testing in the diagnosis and management of thrombotic microangiopathies and thrombosis. Blood 2018; 132:903-910. [PMID: 30006329 DOI: 10.1182/blood-2018-02-791533] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/03/2018] [Indexed: 12/24/2022] Open
Abstract
ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, 13) is a metalloprotease responsible for cleavage of ultra-large von Willebrand factor (VWF) multimers. Severely deficient activity of the protease can trigger an acute episode of thrombotic thrombocytopenic purpura (TTP). Our understanding of the pathophysiology of TTP has allowed us to grasp the important role of ADAMTS13 in other thrombotic microangiopathies (TMAs) and thrombotic disorders, such as ischemic stroke and coronary artery disease. Through its action on VWF, ADAMTS13 can have prothrombotic and proinflammatory properties, not only when its activity is severely deficient, but also when it is only moderately low. Here, we will discuss the biology of ADAMTS13 and the different assays developed to evaluate its function in the context of TTP, in the acute setting and during follow-up. We will also discuss the latest evidence regarding the role of ADAMTS13 in other TMAs, stroke, and cardiovascular disease. This information will be useful for clinicians not only when evaluating patients who present with microangiopathic hemolytic anemia and thrombocytopenia, but also when making clinical decisions regarding the follow-up of patients with TTP.
Collapse
|
21
|
Kremer Hovinga JA, Heeb SR, Skowronska M, Schaller M. Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost 2018; 16:618-629. [PMID: 29356300 DOI: 10.1111/jth.13956] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Thrombotic microangiopathies are rare disorders characterized by the concomitant occurrence of severe thrombocytopenia, microangiopathic hemolytic anemia, and a variable degree of ischemic end-organ damage. The latter particularly affects the brain, the heart, and the kidneys. The primary forms, thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), although their clinical presentations often overlap, have distinctive pathophysiologies. TTP is the consequence of a severe ADAMTS-13 deficiency, either immune-mediated as a result of circulating autoantibodies, or caused by mutations in ADAMTS-13. HUS develops following an infection with Shiga-toxin producing bacteria, or as the result of excessive activation of the alternative pathway of the complement system because of mutations in genes encoding complement system proteins.
Collapse
Affiliation(s)
- J A Kremer Hovinga
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - S R Heeb
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - M Skowronska
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - M Schaller
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Hrdinová J, Verbij FC, Kaijen PHP, Hartholt RB, van Alphen F, Lardy N, Ten Brinke A, Vanhoorelbeke K, Hindocha PJ, De Groot AS, Meijer AB, Voorberg J, Peyron I. Mass spectrometry-assisted identification of ADAMTS13-derived peptides presented on HLA-DR and HLA-DQ. Haematologica 2018; 103:1083-1092. [PMID: 29567779 PMCID: PMC6058777 DOI: 10.3324/haematol.2017.179119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/14/2018] [Indexed: 12/21/2022] Open
Abstract
Formation of microthrombi is a hallmark of acquired thrombotic thrombocytopenic purpura. These microthrombi originate from insufficient processing of ultra large von Willebrand factor multimers by ADAMTS13 due to the development of anti-ADAMTS13 autoantibodies. Several studies have identified the major histocompatibility complex class II alleles HLA-DRB1*11, HLA-DQB1*03 and HLA-DQB1*02:02 as risk factors for acquired thrombotic thrombocytopenic purpura development. Previous research in our department indicated that ADAMTS13 CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR are presented on HLA-DRB1*11 and HLA-DRB1*03, respectively. Here, we describe the repertoire of ADAMTS13 peptides presented on HLA-DQ. In parallel, the repertoire of ADAMTS13-derived peptides presented on HLA-DR was monitored. Using HLA-DR- and HLA-DQ-specific antibodies, we purified HLA/peptide complexes from ADAMTS13-pulsed monocyte-derived dendritic cells. Using this approach, we identified ADAMTS13-derived peptides presented on HLA-DR for all 9 samples analyzed; ADAMTS13-derived peptides presented on HLA-DQ were identified in 4 out of 9 samples. We were able to confirm the presentation of the CUB2 domain-derived peptides FINVAPHAR and LIRDTHSLR on HLA-DR. In total, 12 different core-peptide sequences were identified on HLA-DR and 8 on HLA-DQ. For HLA-DR11, several potential new core-peptides were found; 4 novel core-peptides were exclusively identified on HLA-DQ. Furthermore, an in silico analysis was performed using the EpiMatrix and JanusMatrix tools to evaluate the eluted peptides, in the context of HLA-DR, for putative effector or regulatory T-cell responses at the population level. The results from this study provide a basis for the identification of immuno-dominant epitopes on ADAMTS13 involved in the onset of acquired thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Johana Hrdinová
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Fabian C Verbij
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Paul H P Kaijen
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Robin B Hartholt
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Floris van Alphen
- Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Neubury Lardy
- Department of Immunogenetics, Sanquin, Amsterdam, the Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Belgium
| | | | - Anne S De Groot
- EpiVax Inc., Providence, RI, USA.,Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands.,Department of Research Facilities, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands.,Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands .,Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ivan Peyron
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
23
|
Bustamante A, Ning M, García-Berrocoso T, Penalba A, Boada C, Simats A, Pagola J, Ribó M, Molina C, Lo E, Montaner J. Usefulness of ADAMTS13 to predict response to recanalization therapies in acute ischemic stroke. Neurology 2018; 90:e995-e1004. [PMID: 29444972 PMCID: PMC5874450 DOI: 10.1212/wnl.0000000000005162] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/12/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We aimed to analyze ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) in relation to arterial recanalization in patients treated with IV tissue plasminogen activator (tPA) and in relation to futile recanalization in patients treated with mechanical thrombectomy. METHODS Acute ischemic stroke patients (n = 108) with documented arterial occlusions treated with IV-tPA were selected. ADAMTS13 activity was measured by ELISA in samples collected before treatment. Recanalization was assessed at 2 hours by transcranial Doppler. In 78 consecutive patients treated with endovascular thrombectomy, ADAMTS13 antigen was measured by ELISA and futile recanalization was defined as complete recanalization plus modified Rankin Scale score >2 at 3 months. Independent predictors of recanalization and futile recanalization were determined by logistic regression, adjusted by age, NIH Stroke Scale score, and time from stroke onset. RESULTS Patients who achieved tPA-induced recanalization had higher baseline ADAMTS13 activity (78.1% [68%-88%] vs 70.1% [61%-79%], p = 0.021). In logistic regression analysis, ADAMTS13 activity >75% was an independent predictor of recanalization (odds ratio = 6.76 [1.52-30.02], p = 0.012), together with absence of early ischemic signs and Oxfordshire Community Stroke Project classification. Regarding endovascular therapies, a reduced ADAMTS13 concentration (<982 ng/mL) was an independent predictor of futile recanalization (odds ratio = 67.4 [1.4-3,282.1], p = 0.034), together with age and diabetes mellitus. The addition of ADAMTS13 to clinical predictors of tPA-induced recanalization and futile recanalization improved discrimination and reclassification (integrated discrimination improvement = 10.06% and 28.4%, net reclassification improvement = 61.0% and 107.4%, respectively). CONCLUSIONS A reduced ADAMTS13 was associated with poor response to recanalization therapies. If confirmed in future prospective studies, a panel of blood biomarkers including ADAMTS13 might be a useful tool to guide reperfusion therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Joan Montaner
- From the Neurovascular Research Laboratory (A.B., T.G.-B., A.P., C.B., A.S., J.M.), Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Clinical Proteomics Research Center and Cardio-Neurology Clinic (M.N., E.L.), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and Stroke Unit (J.P., M.R., C.M.), Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| |
Collapse
|
24
|
Kokame K, Matsumoto M, Fujimura Y, Miyata T. ADAMTS13 activity and genetic mutations in Japan. Hamostaseologie 2018; 33:131-7. [DOI: 10.5482/hamo-12-11-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/13/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThrombotic thrombocytopenic purpura (TTP), a life threatening disease, can be induced by congenital or acquired deficiency of plasma metalloprotease ADAMTS13. Since the publication of the first genetic analysis in patients with congenital ADAMTS13 deficiency in 2001, more than 100 genetic defects in the ADAMTS13 gene have been reported worldwide. Genetic analysis in patients with ADAMTS13 deficiency has greatly contributed to the understanding of the etiology of TTP. A rapid and quantitative assay method for the plasma ADAMTS13 activity was developed recently in 2005 and opened a new area of TTP research – namely genetic research using a general population to evaluate age and gender differences of ADAMTS13 activity as well as phenotype – genotype correlations of genetic polymorphisms and estimation of a homozygote or a compound heterozygote ADAMTS13 deficiencies. The Japanese general population study included 3616 individuals with an age between 30 – 80 years confirming other studies that while ADAMTS13 activity decreased with age, VWF antigen increased and VWF antigen levels are lowest in blood group O indviduals, whereas ADAMTS13 activity levels were not associated with the AB0 blood group. 25 polymorphisms with a minor allele frequency of more than 0.01 were found, among them 6 missense mutations and 19 synonymous mutations, except P475S missense polymorphisms that was only idenitified in an East Asian population, characterized by reduced ADAMTS13 activity. Prevalence of congenital ADAMTS13 deficiency in the Japanese population was estimated about one individual in 1.1 × 106 to be homozygote or compound heterozygote for ADAMTS13 deficiency. So far more than 40 mutations in Japanese congenital TTP patients were found, but R193W, Q449*, C754Afs*24 (c.2259delA) and C908Y were identified in more than four patients suggesting the precipitaion of these mutations in the Japanese population.
Collapse
|
25
|
Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood 2017; 130:2055-2063. [PMID: 28912376 DOI: 10.1182/blood-2017-06-788026] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/07/2017] [Indexed: 02/02/2023] Open
Abstract
Safety, tolerability, and pharmacokinetics of recombinant ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; BAX 930; SHP655) were investigated in 15 patients diagnosed with severe congenital ADAMTS-13 deficiency (plasma ADAMTS-13 activity <6%) in a prospective phase 1, first-in-human, multicenter dose escalation study. BAX 930 was well tolerated, no serious adverse events occurred, and no anti-ADAMTS-13 antibodies were observed. After single-dose administration of BAX 930 at 5, 20, or 40 U/kg body weight to adolescents and adults, there was approximate dose proportionality with respect to maximum plasma concentration (Cmax [U/mL]) and area under the concentration-time curve (AUC [h∙U/mL]). Dose-related increases of individual ADAMTS-13:Ag and activity were observed and reached a maximum within 1 hour. With escalating BAX 930 doses administered, a dose-dependent persistence of ADAMTS-13-mediated von Willebrand factor (VWF) cleavage products and reduced VWF multimeric size were observed. This study demonstrated that pharmacokinetic parameters of BAX 930 were comparable to those estimated in previous plasma infusion studies and provided evidence of pharmacodynamic activity. This study was registered at www.clinicaltrials.gov as #NCT02216084.
Collapse
|
26
|
Tang H, Lee M, Kim EH, Bishop D, Rodgers GM. siRNA-knockdown of ADAMTS-13 modulates endothelial cell angiogenesis. Microvasc Res 2017; 113:65-70. [PMID: 28546076 DOI: 10.1016/j.mvr.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/25/2022]
Abstract
ADAMTS-13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13, is a zinc-containing metalloprotease that cleaves von Willebrand factor (vWf). Previous publications by our laboratory have shown that ADAMTS-13 may also be involved in angiogenesis. For this study, we report the successful transient knockdown of endogenous ADAMTS-13 in human umbilical vein endothelial cells (HUVEC) via siRNA and the effects of reduced endogenous ADAMTS-13 on HUVEC angiogenesis functions. 15nM of ADAMTS-13 siRNA reduced HUVEC ADAMTS-13 protein levels by 90% after 24h incubation, whereas control siRNA did not affect endogenous ADAMTS-13 levels. Furthermore, this transfection did not affect the HUVEC endogenous protein level of ADAMTS-1, a related family member of ADAMTS-13 indicating the specificity of the siRNA. Transfection of HUVEC with 15nM of ADAMTS-13 siRNA resulted in a 21% decrease in proliferation after 24h incubation. The effects of ADAMTS-13 knockdown on migration of HUVEC across a scratch wound were also evaluated. 24h after transfection with control siRNA, there was increased cell migration across the scratch wound. This dramatic migration did not occur with ADAMTS-13 knockdown cells. Decreased protein levels of endogenous ADAMTS-13 also affected angiogenesis as measured by endothelial cell tube formation using a Matrigel matrix method. The tube lengths, sizes and junction numbers of the ADAMTS-13 knockdown cells were all significantly lower compared to control cells by about 40%. The protein level of vascular endothelial growth factor (VEGF), a well-known regulator of angiogenesis, was significantly decreased by 45% upon knockdown of ADAMTS-13. Moreover, activity of the AKT pathway, one of the VEGF angiogenesis downstream signaling pathways was down-regulated by ADAMTS-13 siRNA. These data indicate that in cultured endothelial cells, one role of endogenous ADAMTS-13 is regulation of angiogenesis, mediated through VEGF and AKT signaling pathway. Overall, our data suggest an additional model of endogenous ADAMTS-13 functionality, beyond that of cleaving von Willebrand factor.
Collapse
Affiliation(s)
- Huiyuan Tang
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA.
| | - Manfai Lee
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Eun Ho Kim
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - Daniel Bishop
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA
| | - George M Rodgers
- Division of Hematology and Hematologic Malignancies, University of Utah Health Sciences Center, Salt Lake City, UT 84132, USA; Department of Pathology and ARUP Laboratories, Salt Lake City, UT 84132, USA
| |
Collapse
|
27
|
Kottke-Marchant K. Diagnostic approach to microangiopathic hemolytic disorders. Int J Lab Hematol 2017; 39 Suppl 1:69-75. [DOI: 10.1111/ijlh.12671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/03/2017] [Indexed: 01/29/2023]
Affiliation(s)
- K. Kottke-Marchant
- Medical Director Hemostasis and Thrombosis Robert J; Tomsich Pathology and Laboratory Medicine Institute Cleveland Clinic; 9500 Euclid Avenue LL3-1 Cleveland, OH 44195
| |
Collapse
|
28
|
Abstract
Thrombotic thrombocytopenic purpura (TTP; also known as Moschcowitz disease) is characterized by the concomitant occurrence of often severe thrombocytopenia, microangiopathic haemolytic anaemia and a variable degree of ischaemic organ damage, particularly affecting the brain, heart and kidneys. Acute TTP was almost universally fatal until the introduction of plasma therapy, which improved survival from <10% to 80-90%. However, patients who survive an acute episode are at high risk of relapse and of long-term morbidity. A timely diagnosis is vital but challenging, as TTP shares symptoms and clinical presentation with numerous conditions, including, for example, haemolytic uraemic syndrome and other thrombotic microangiopathies. The underlying pathophysiology is a severe deficiency of the activity of a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), the protease that cleaves von Willebrand factor (vWF) multimeric strings. Ultra-large vWF strings remain uncleaved after endothelial cell secretion and anchorage, bind to platelets and form microthrombi, leading to the clinical manifestations of TTP. Congenital TTP (Upshaw-Schulman syndrome) is the result of homozygous or compound heterozygous mutations in ADAMTS13, whereas acquired TTP is an autoimmune disorder caused by circulating anti-ADAMTS13 autoantibodies, which inhibit the enzyme or increase its clearance. Consequently, immunosuppressive drugs, such as corticosteroids and often rituximab, supplement plasma exchange therapy in patients with acquired TTP.
Collapse
|
29
|
South K, Freitas MO, Lane DA. Conformational quiescence of ADAMTS-13 prevents proteolytic promiscuity. J Thromb Haemost 2016; 14:2011-2022. [PMID: 27514025 PMCID: PMC5111603 DOI: 10.1111/jth.13445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/29/2022]
Abstract
Essentials Recently, ADAMTS-13 has been shown to undergo substrate induced conformation activation. Conformational quiescence of ADAMTS-13 may serve to prevent off-target proteolysis in plasma. Conformationally active ADAMTS-13 variants are capable of proteolysing the Aα chain of fibrinogen. This should be considered as ADAMTS-13 variants are developed as potential therapeutic agents. Click to hear Dr Zheng's presentation on structure function and cofactor-dependent regulation of ADAMTS-13 SUMMARY: Background Recent work has revealed that ADAMTS-13 circulates in a 'closed' conformation, only fully interacting with von Willebrand factor (VWF) following a conformational change. We hypothesized that this conformational quiescence also maintains the substrate specificity of ADAMTS-13 and that the 'open' conformation of the protease might facilitate proteolytic promiscuity. Objectives To identify a novel substrate for a constitutively active gain of function (GoF) ADAMTS-13 variant (R568K/F592Y/R660K/Y661F/Y665F). Methods Fibrinogen proteolysis was characterized using SDS PAGE and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fibrin formation was monitored by turbidity measurements and fibrin structure visualized by confocal microscopy. Results ADAMTS-13 exhibits proteolytic activity against the Aα chain of human fibrinogen, but this is only manifest on its conformational activation. Accordingly, the GoF ADAMTS-13 variant and truncated variants such as MDTCS exhibit this activity. The cleavage site has been determined by LC-MS/MS to be Aα chain Lys225-Met226. Proteolysis of fibrinogen by GoF ADAMTS-13 impairs fibrin formation in plasma-based assays, alters clot structure and increases clot permeability. Although GoF ADAMTS-13 does not appear to proteolyse preformed cross-linked fibrin, its proteolytic activity against fibrinogen increases the susceptibility of fibrin to tissue-type plasminogen activator (t-PA)-induced lysis by plasmin and increases the fibrin clearance rate more than 8-fold compared with wild-type (WT) ADAMTS-13 (EC50 values of 3.0 ± 1.7 nm and 25.2 ± 9.7 nm, respectively) in in vitro thrombosis models. Conclusion The 'closed' conformation of ADAMTS-13 restricts its specificity and protects against fibrinogenolysis. Induced substrate promiscuity will be important as ADAMTS-13 variants are developed as potential therapeutic agents against thrombotic thrombocytopenic purpura (TTP) and other cardiovascular diseases.
Collapse
Affiliation(s)
- K South
- Centre for Haematology, Imperial College London, London, UK.
| | - M O Freitas
- Centre for Haematology, Imperial College London, London, UK
| | - D A Lane
- Centre for Haematology, Imperial College London, London, UK
| |
Collapse
|
30
|
Ferraro F, Mafalda Lopes da S, Grimes W, Lee HK, Ketteler R, Kriston-Vizi J, Cutler DF. Weibel-Palade body size modulates the adhesive activity of its von Willebrand Factor cargo in cultured endothelial cells. Sci Rep 2016; 6:32473. [PMID: 27576551 PMCID: PMC5006059 DOI: 10.1038/srep32473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/14/2023] Open
Abstract
Changes in the size of cellular organelles are often linked to modifications in their function. Endothelial cells store von Willebrand Factor (vWF), a glycoprotein essential to haemostasis in Weibel-Palade bodies (WPBs), cigar-shaped secretory granules that are generated in a wide range of sizes. We recently showed that forcing changes in the size of WPBs modifies the activity of this cargo. We now find that endothelial cells treated with statins produce shorter WPBs and that the vWF they release at exocytosis displays a reduced capability to recruit platelets to the endothelial cell surface. Investigating other functional consequences of size changes of WPBs, we also report that the endothelial surface-associated vWF formed at exocytosis recruits soluble plasma vWF and that this process is reduced by treatments that shorten WPBs, statins included. These results indicate that the post-exocytic adhesive activity of vWF towards platelets and plasma vWF at the endothelial surface reflects the size of their storage organelle. Our findings therefore show that changes in WPB size, by influencing the adhesive activity of its vWF cargo, may represent a novel mode of regulation of platelet aggregation at the vascular wall.
Collapse
Affiliation(s)
- Francesco Ferraro
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Silva Mafalda Lopes da
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - William Grimes
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Hwee Kuan Lee
- Imaging Informatics Division, Bioinformatics Institute, A*STAR 30 Biopolis Street #07-01, Matrix, Singapore 138671
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| | - Daniel F. Cutler
- MRC Laboratory for Molecular Cell Biology, UCL, Gower Street, London, WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW ADAMTS13 is a zinc-containing metalloprotease that cleaves von Willebrand factor (VWF). Deficiency of plasma ADAMTS13 activity is accountable for a potentially fatal blood disorder thrombotic thrombocytopenic purpura (TTP). Understanding of ADAMTS13-VWF interaction is essential for developing novel treatments to this disorder. RECENT FINDINGS Despite the proteolytic activity of ADAMTS13 being restricted to the metalloprotease domain, the ancillary proximal C-terminal domains including the disintegrin domain, first TSP-1 repeat, cysteine-rich region, and spacer domain are all required for cleavage of VWF and its analogs. Recent studies have added to our understandings of the role of the specific regions in the disintegrin domain, the cysteine-rich domain, and the spacer domain responsible for its interaction with VWF. Additionally, regulative functions of the distal portion of ADAMTS13 including the TSP-1 2-8 repeats and the CUB domains have been proposed. Finally, fine mapping of anti-ADAMTS13 antibody epitopes have provided further insight into the essential structural elements in ADAMTS13 for VWF binding and the mechanism of autoantibody-mediated TTP. SUMMARY Significant progress has been made in our understandings of the structure-function relationship of ADAMTS13 in the past decade. To further investigate ADAMTS13-VWF interactions for medical applications, these interactions must be studied under physiological conditions in vivo.
Collapse
|
32
|
Ostertag EM, Bdeir K, Kacir S, Thiboutot M, Gulendran G, Yunk L, Hayes VM, Motto DG, Poncz M, Zheng XL, Cines DB, Siegel DL. ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 2. Pathogenicity in an animal model. Transfusion 2016; 56:1775-85. [PMID: 27040023 DOI: 10.1111/trf.13583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/25/2016] [Accepted: 02/06/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Acquired thrombotic thrombocytopenic purpura (TTP) is a potentially fatal disease in which ultralarge von Willebrand factor (UL-VWF) multimers accumulate as a result of autoantibody inhibition of the VWF protease, ADAMTS13. Current treatment is not specifically directed at the responsible autoantibodies and in some cases is ineffective or of transient benefit. More rational, reliable, and durable therapies are needed, and a human autoantibody-mediated animal model would be useful for their development. Previously, TTP patient anti-ADAMTS13 single-chain variable-region fragments (scFv's) were cloned that inhibited ADAMTS13 proteolytic activity in vitro and expressed features in common with inhibitory immunoglobulin G in patient plasma. Here, pathogenicity of these scFv's is explored in vivo by transfecting mice with inhibitory antibody cDNA. STUDY DESIGN AND METHODS Hydrodynamic tail vein injection of naked DNA encoding human anti-ADAMTS13 scFv was used to create sustained ADAMTS13 inhibition in mice. Accumulation of UL-VWF multimers was measured and formation of platelet (PLT) thrombi after focal or systemic vascular injury was examined. RESULTS Transfected mice expressed physiological plasma levels of human scFv and developed sustained ADAMTS13 inhibition and accumulation of unprocessed UL-VWF multimers. Induced focal endothelial injury generated PLT thrombi extending well beyond the site of initial injury, and systemic endothelial injury induced thrombocytopenia, schistocyte formation, PLT thrombi, and death. CONCLUSIONS These results demonstrate for the first time the ability of human recombinant monovalent anti-ADAMTS13 antibody fragments to recapitulate key pathologic features of untreated acquired TTP in vivo, validating their clinical significance and providing an animal model for testing novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Eric M Ostertag
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Poseida Therapeutics, Inc, San Diego, California
| | - Khalil Bdeir
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Kacir
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle Thiboutot
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gayathri Gulendran
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lenka Yunk
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vincent M Hayes
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David G Motto
- Bloodworks Northwest Research Institute, Seattle, Washington
| | - Mortimer Poncz
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - X Long Zheng
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Froissart A, Veyradier A, Hié M, Benhamou Y, Coppo P. Rituximab in autoimmune thrombotic thrombocytopenic purpura: A success story. Eur J Intern Med 2015; 26:659-65. [PMID: 26293834 DOI: 10.1016/j.ejim.2015.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 11/20/2022]
Abstract
Despite a significant improvement of thrombotic thrombocytopenic purpura (TTP) prognosis since the use of plasma exchange, morbidity and mortality remained significant because of poor response to standard treatment or exacerbations and relapses. Rituximab, a chimeric monoclonal antibody directed against the B-lymphocyte CD20 antigen, has shown a particular interest in this indication. Recent studies also reported strong evidence for its efficiency in the prevention of relapses. This review addresses these recent progresses and still opened questions in this topic: should rituximab be proposed in all patients at the acute phase? Should all patients benefit from a preemptive treatment? Is the infectious risk acceptable in this context?
Collapse
Affiliation(s)
- Antoine Froissart
- Service de médecine interne, CHI, Créteil, France; Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France
| | - Agnès Veyradier
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France; Service d'hématologie biologique, Hôpital Lariboisière, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Miguel Hié
- Service de Médecine Interne, Hôpital la Pitié-Salpétrière, Paris, France
| | - Ygal Benhamou
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France; Service de médecine interne, CHU Charles Nicolle, Rouen, France
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques, AP-HP, Paris, France; Service d'hématologie, Hôpital Saint Antoine, Paris, France; Inserm U1009, Institut Gustave Roussy, Villejuif, France.
| |
Collapse
|
34
|
Abstract
Pathogenesis of thrombotic thrombocytopenic purpura (TTP) was a mystery for over half a century until the discovery of ADAMTS13. ADAMTS13 is primarily synthesized in the liver, and its main function is to cleave von Willebrand factor (VWF) anchored on the endothelial surface, in circulation, and at the sites of vascular injury. Deficiency of plasma ADAMTS13 activity (<10%) resulting from mutations of the ADAMTS13 gene or autoantibodies against ADAMTS13 causes hereditary or acquired (idiopathic) TTP. ADAMTS13 activity is usually normal or modestly reduced (>20%) in other forms of thrombotic microangiopathy secondary to hematopoietic progenitor cell transplantation, infection, and disseminated malignancy or in hemolytic uremic syndrome. Plasma infusion or exchange remains the initial treatment of choice to date, but novel therapeutics such as recombinant ADAMTS13 and gene therapy are under development. Moreover, ADAMTS13 deficiency has been shown to be a risk factor for the development of myocardial infarction, stroke, cerebral malaria, and preeclampsia.
Collapse
Affiliation(s)
- X Long Zheng
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
35
|
Thomas MR, de Groot R, Scully MA, Crawley JTB. Pathogenicity of Anti-ADAMTS13 Autoantibodies in Acquired Thrombotic Thrombocytopenic Purpura. EBioMedicine 2015; 2:942-52. [PMID: 26425702 PMCID: PMC4563118 DOI: 10.1016/j.ebiom.2015.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022] Open
Abstract
Background Acquired thrombotic thrombocytopenic purpura (TTP) is an autoimmune disease in which anti-ADAMTS13 autoantibodies cause severe enzyme deficiency. ADAMTS13 deficiency causes the loss of regulation of von Willebrand factor multimeric size and platelet-tethering function, which results in the formation of disseminated microvascular platelet microthrombi. Precisely how anti-ADAMTS13 autoantibodies, or antibody subsets, cause ADAMTS13 deficiency (ADAMTS13 activity generally < 10%) has not been formally investigated. Methods We analysed 92 acquired TTP episodes at presentation, through treatment and remission/relapse using epitope mapping and functional analyses to understand the pathogenic mechanisms of anti-ADAMTS13 IgG. Results 89/92 of TTP episodes had IgG recognising the ADAMTS13 N-terminal domains. The central spacer domain was the only N-terminal antigenic target detected. 38/92 TTP episodes had autoantibodies recognising the N-terminal domains alone; 54/92 TTP episodes also had antibodies against the ADAMTS13 C-terminal domains (TSP2–8 and/or CUB domains). Changes in autoantibody specificity were detected in 9/16 patients at relapse, suggesting a continued development of the disease. Functional analyses on IgG from 43 patients revealed inhibitory IgG were limited to anti-spacer domain antibodies. However, 15/43 patients had autoantibodies with no detectable inhibitory action and as many as 32/43 patients had autoantibodies with inhibitory function that was insufficient to account for the severe deficiency state, suggesting that in many patients there is an alternative pathogenic mechanism. We therefore analysed plasma ADAMTS13 antigen levels in 91 acquired TTP presentation samples. We demonstrated markedly reduced ADAMTS13 antigen levels in all presentation samples, median 6% normal (range 0–47%), with 84/91 patients having < 25% ADAMTS13 antigen. ADAMTS13 antigen in the lowest quartile at first presentation was associated with increased mortality (odds ratio 5.7). Conclusions Anti-spacer domain autoantibodies are the major inhibitory antibodies in acquired TTP. However, depletion of ADAMTS13 antigen (rather than enzyme inhibition) is a dominant pathogenic mechanism. ADAMTS13 antigen levels at presentation have prognostic significance. Taken together, our results provide new insights into the pathophysiology of acquired TTP. Anti-spacer domain autoantibodies are the major inhibitory antibodies in acquired TTP. Depletion of ADAMTS13 antigen (rather than enzyme inhibition) is the prevailing pathogenic mechanism in acquired TTP.
Collapse
Affiliation(s)
- Mari R Thomas
- Haemostasis Research Unit, University College London, 51 Chenies Mews, London WC1E 6HX, United Kingdom ; Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Rens de Groot
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Marie A Scully
- University College Hospital, London NW1 2BU, United Kingdom
| | - James T B Crawley
- Centre for Haematology, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
36
|
Hubbard AR, Heath AB, Kremer Hovinga JA. Establishment of the WHO 1st International Standard ADAMTS13, plasma (12/252): communication from the SSC of the ISTH. J Thromb Haemost 2015; 13:1151-3. [PMID: 25714758 DOI: 10.1111/jth.12881] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/14/2015] [Indexed: 12/01/2022]
|
37
|
Clark WF, Rock G, Barth D, Arnold DM, Webert KE, Yenson PR, Kelton JG, Li L, Foley SR. A phase-II sequential case-series study of all patients presenting to four plasma exchange centres with presumed relapsed/refractory thrombotic thrombocytopenic purpura treated with rituximab. Br J Haematol 2015; 170:208-17. [PMID: 25855259 DOI: 10.1111/bjh.13408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
Abstract
The primary objective of this phase II study was to evaluate the efficacy of rituximab in the management of adult patients with physician-diagnosed presumed thrombotic thrombocytopenic purpura (TTP); relapsed or refractory. We conducted a multicentre study in four Canadian hospital-based apheresis units. Forty patients with presumed TTP (20 refractory and 20 relapsing) were sequentially enrolled and all received rituximab in a standardized manner. A complete response was documented in 14 of 19 refractory patients by week 8 and 15/16 were alive and in remission at 52 weeks (one patient was lost to follow-up, one was a non-responder, and three died). Among relapsing patients, 16/18 had a complete response at week 8 and 18/18 at week 52 (one patient lost to follow-up and one withdrew). At 1 year, all relapsing and 85% of refractory patients survived. Of 38/40 patients who had ADMATS13 testing at study entry, 13/19 refractory and 10/19 relapsing patients had ADAMTS13 < 10% (typical TTP); whereas 6/19 refractory and 9/19 relapsing cases had ADAMTS13 > 10% (other thrombotic microangiopathy; TMA). Refractory-typical TTP in contrast to refractory-other TMA and all relapsing patients treated with plasma exchange and rituximab, were less likely to be responsive and more likely to die or relapse.
Collapse
Affiliation(s)
- William F Clark
- Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| | - Gail Rock
- Department of Pathology, University of Ottawa, Ottawa, ON, Canada
| | - David Barth
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donald M Arnold
- Division of Hematology and Thromboembolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kathyrn E Webert
- Division of Hematology and Thromboembolism, Department of Medicine and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Paul R Yenson
- Division of Hematology, Department of Medicine, Vancouver General Hospital, Vancouver, BC, Canada
| | - John G Kelton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Lihua Li
- Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| | - Steven R Foley
- Division of Clinical Pathology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
38
|
Kraus E, Kraus K, Obser T, Oyen F, Klemm U, Schneppenheim R, Brehm MA. Platelet-free shear flow assay facilitates analysis of shear-dependent functions of VWF and ADAMTS13. Thromb Res 2014; 134:1285-91. [DOI: 10.1016/j.thromres.2014.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
|
39
|
Abstract
Thrombospondin 1 (TSP1) has been suggested as a counter receptor to platelet glycoprotein Ibα that supports initial platelet adhesion in absence of von Willebrand factor (VWF). Conversely, several other studies have shown that TSP1 interacts with VWF and may play a mechanistic role in modulating thrombosis. However, the in vivo evidence to support this mechanism remains unclear. Using intravital microscopy, in a 10% FeCl3-induced thrombosis model, we report similar platelet adhesion in Tsp1(-/-)/Vwf(-/-) mice compared with littermate Vwf(-/-) mice, suggesting that TSP1 does not mediate initial platelet adhesion in the absence of VWF. Tsp1(-/-) mice exhibited prolonged occlusion time and a significant decrease in the rate of thrombus growth (P < .05 vs wild-type), but not in the initial platelet adhesion. Complete deficiency of VWF abrogated the rate of thrombus growth in Tsp1(-/-) mice; therefore, we generated Tsp1(-/-)/Vwf(+/-) mice to determine whether TSP1 modulates thrombus growth under conditions of partial VWF deficiency. Tsp1(-/-)/Vwf(+/-) mice exhibited delayed thrombus growth kinetics and prolonged occlusion time (P < .05 vs Vwf(+/-)). Finally, we demonstrate that platelet-derived TSP1 modulates arterial thrombosis in vivo. We conclude that TSP1 released from platelets plays a mechanistic role in modulating thrombosis in the presence of VWF.
Collapse
|
40
|
Grillberger R, Gruber B, Skalicky S, Schrenk G, Knöbl P, Plaimauer B, Turecek PL, Scheiflinger F, Rottensteiner H. A novel flow-based assay reveals discrepancies in ADAMTS-13 inhibitor assessment as compared with a conventional clinical static assay. J Thromb Haemost 2014; 12:1523-32. [PMID: 25040659 DOI: 10.1111/jth.12653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/03/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Several static Bethesda-type assays are routinely used to determine ADAMTS-13-neutralizing autoantibodies in acquired thrombotic thrombocytopenic purpura (TTP), but the inhibitory activity of these antibodies has not been thoroughly evaluated under the more physiologic condition of flow. OBJECTIVES We investigated whether ADAMTS-13 inhibitor assessment with the FRETS-VWF73 assay is predictive for evaluation under flow. METHODS Anti-ADAMTS-13 autoantibodies were purified from patients with acquired TTP by chromatography involving an ADAMTS-13 affinity matrix and/or protein G. ADAMTS-13 activity was measured with the FRETS-VWF73 assay and a novel flow assay determining the ADAMTS-13-mediated decrease in platelet aggregate surface coverage, caused by perfusion of a suspension containing platelets, erythrocytes and von Willebrand factor (VWF) over a surface coated with extracellular matrix components. The neutralizing activities of ADAMTS-13 inhibitors were compared under static conditions and under flow by use of the two assays. RESULTS The suitability of the flow-based ADAMTS-13 activity assay for quantification of ADAMTS-13 inhibitors could be demonstrated by reversibility of the ADAMTS-13-dependent decrease in surface coverage upon addition of goat ADAMTS-13 antiserum. Testing the neutralizing activity of purified autoantibodies from six patients in the flow assay according to their FRETS-VWF73-based inhibitor titers gave rise to vastly different inhibitory effects, indicating a discrepancy in inhibitor assessment between static and flow conditions. CONCLUSIONS Anti-ADAMTS-13 autoantibodies may show inhibitory properties in vivo that are not consistent with the ADAMTS-13 inhibitor levels determined in routine static assays, possibly because certain epitopes are selectively exposed under shear. Consequently, the course of disease and treatment efficacy may vary among TTP patients, despite common inhibitor titers.
Collapse
|
41
|
Ferrari S, Palavra K, Gruber B, Kremer Hovinga JA, Knöbl P, Caron C, Cromwell C, Aledort L, Plaimauer B, Turecek PL, Rottensteiner H, Scheiflinger F. Persistence of circulating ADAMTS13-specific immune complexes in patients with acquired thrombotic thrombocytopenic purpura. Haematologica 2013; 99:779-87. [PMID: 24241492 DOI: 10.3324/haematol.2013.094151] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Anti-ADAMTS13 autoantibodies are the main cause of acquired thrombotic thrombocytopenic purpura. Binding of these antibodies to ADAMTS13 eventually results in the formation of antigen-antibody immune complexes. Circulating ADAMTS13-specific immune complexes have been described in patients with acquired thrombotic thrombocytopenic purpura, although the prevalence and persistence of these immune complexes over time have hitherto remained elusive. Here, we analyzed a large cohort of patients with acquired thrombotic thrombocytopenic purpura for the presence of free and complexed anti-ADAMTS13 antibodies. In the acute phase (n=68), 100% of patients had free IgG antibodies and 97% had ADAMTS13-specific immune complexes. In remission (n=28), 75% of patients had free antibodies (mainly IgG) and 93% had ADAMTS13-specific immune complexes. Free antibodies were mainly of subclasses IgG1 and IgG4, whereas IgG4 was by far the most prevalent in ADAMTS13-specific immune complexes. Comparison of ADAMTS13 inhibitor and anti-ADAMTS13 IgG (total and subclasses) antibody titers in acute phase and in remission samples showed a statistically significant decrease in all parameters in remission. Although non-significant, a trend towards reduced or undetectable titers in remission was also observed for ADAMTS13-specific immune complexes of subclasses IgG1, IgG2 and IgG3. No such trend was discernible for IgG4; IgG4 immune complexes persisted over years, even in patients who had been treated with rituximab and who showed no features suggesting relapse.
Collapse
|
42
|
Ferrari S, Knöbl P, Kolovratova V, Plaimauer B, Turecek PL, Varadi K, Rottensteiner H, Scheiflinger F. Inverse correlation of free and immune complex-sequestered anti-ADAMTS13 antibodies in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10:156-8. [PMID: 22044668 DOI: 10.1111/j.1538-7836.2011.04548.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Xiao J, Jin SY, Xue J, Sorvillo N, Voorberg J, Zheng XL. Essential domains of a disintegrin and metalloprotease with thrombospondin type 1 repeats-13 metalloprotease required for modulation of arterial thrombosis. Arterioscler Thromb Vasc Biol 2011; 31:2261-9. [PMID: 21799176 PMCID: PMC3174348 DOI: 10.1161/atvbaha.111.229609] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE A disintegrin and metalloprotease with thrombospondin type 1 repeats-13 (ADAMTS13) inhibits platelet aggregation and arterial thrombosis by cleavage of von Willebrand factor. However, the structural components of ADAMTS13 required for inhibition of arterial thrombosis are not fully defined. METHODS AND RESULTS Using recombinant proteins and a murine model, we demonstrated that an ADAMTS13 variant truncated after either the eighth thrombospondin type 1 repeat or the spacer domain inhibits ferric chloride-induced arterial thrombosis in ADAMTS13(-/-) mice with efficacy similar to that of full-length ADAMTS13. The results obtained from monitoring thrombus formation in carotid and mesenteric arteries were highly concordant. Further analyses by site-directed mutagenesis and human monoclonal antibody inhibition assay revealed that the Cys-rich and spacer domains of ADAMTS13, particularly the amino acid residues between Arg559 and Glu664 in the spacer domain, may be critical for modulation of arterial thrombosis in vivo. Finally, the thrombosis-modulating function of ADAMTS13 and variants/mutants was highly correlated with the von Willebrand factor-cleavage activity under fluid shear stress. CONCLUSIONS Our results suggest that the amino terminus of ADAMTS13, specifically the variable region of the spacer domain, is crucial for modulation of arterial thromboses under (patho)physiological conditions. These findings shed more light on the structure-function relationship of ADAMTS13 in vivo and may be applicable for rational design of protein- or gene-based therapy of arterial thromboses.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Sheng-Yu Jin
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Jing Xue
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Nicoletta Sorvillo
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia and The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
44
|
Pos W, Sorvillo N, Fijnheer R, Feys HB, Kaijen PHP, Vidarsson G, Voorberg J. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica 2011; 96:1670-7. [PMID: 21712537 DOI: 10.3324/haematol.2010.036327] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The majority of patients diagnosed with thrombotic thrombocytopenic purpura have autoantibodies directed towards the spacer domain of ADAMTS13. DESIGN AND METHODS In this study we explored the epitope specificity and immunoglobulin class and immunoglobulin G subclass distribution of anti-ADAMTS13 antibodies. The epitope specificity of anti-spacer domain antibodies was examined using plasma from 48 patients with acute acquired thrombotic thrombocytopenic purpura by means of immunoprecipitation of ADAMTS13 variants containing single or multiple alanine substitutions. Using similar methods, we also determined the presence of anti-TSP2-8 and CUB1-2 domain antibodies in this cohort of patients. RESULTS Antibody profiling revealed that anti-ADAMTS13 immunoglobulin G1 and immunoglobulin G4 predominate in plasma of patients with acquired thrombotic thrombocytopenic purpura. Analysis of anti-spacer domain antibodies revealed that Arg568 and Phe592, in addition to residues Arg660, Tyr661, and Tyr665, also contribute to an antigenic surface in the spacer domain. The majority of patients (90%) lost reactivity towards the spacer domain following introduction of multiple alanine substitutions at Arg568, Phe592, Arg660, Tyr661 and Tyr665. Anti-TSP2-8 and anti-CUB1-2 domain-directed antibodies were present in, respectively, 17% and 35% of the patients' samples analyzed. CONCLUSIONS Immunoglobulin G directed towards a single antigenic surface comprising residues Arg568, Phe592, Arg660, Tyr661 and Tyr665 predominates in the plasma of patients with acquired thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Wouter Pos
- Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Yang S, Jin M, Lin S, Cataland S, Wu H. ADAMTS13 activity and antigen during therapy and follow-up of patients with idiopathic thrombotic thrombocytopenic purpura: correlation with clinical outcome. Haematologica 2011; 96:1521-7. [PMID: 21606162 DOI: 10.3324/haematol.2011.042945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The assay for ADAMTS13 activity helps clinicians to confirm the clinical diagnosis of idiopathic thrombotic thrombocytopenic purpura. The clinical value of testing for the antigen level of ADAMTS13 protein is, however, less clear. DESIGN AND METHODS In this study, both ADAMTS13 antigen and activity levels were measured in 835 sequential samples from 40 consecutive patients who were followed for an average of 29 months throughout the course of acute episode plasma exchange treatment and clinical remission. RESULTS During acute episodes, ADAMTS13 activity was severely deficient while ADAMTS13 antigen levels were more variable, ranging from severely deficient to as high as within the reference range. A severe depletion of ADAMTS13 antigen level during acute disease was, however, statistically associated with disease mortality (P=0.0322). For patients who achieved initial clinical responses, ADAMTS13 antigen levels appeared to be restored faster than ADAMTS13 activity to the normal range. Further analysis demonstrated that the ADAMTS13 antigen level at the time of initial clinical recovery was significantly higher in the patients who subsequently achieved a sustained clinical remission than in the group who soon after had an exacerbation (P=0.0187). CONCLUSIONS Our data suggest that evaluation of ADAMTS13 antigen levels during the course of therapy and follow-up may offer additional useful information for the management of patients with thrombotic thrombocytopenic purpura.
Collapse
Affiliation(s)
- Shangbin Yang
- Department of Pathology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
46
|
Plaimauer B, Kremer Hovinga JA, Juno C, Wolfsegger MJ, Skalicky S, Schmidt M, Grillberger L, Hasslacher M, Knöbl P, Ehrlich H, Scheiflinger F. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 2011; 9:936-44. [PMID: 21294825 DOI: 10.1111/j.1538-7836.2011.04224.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe deficiency of the von Willebrand factor (VWF)-cleaving protease ADAMTS13 as observed in acquired thrombotic thrombocytopenic purpura (TTP) is caused by inhibitory and non-inhibitory autoantibodies directed against the protease. Current treatment with plasma exchange is considered to remove circulating antibodies and to concurrently replenish the deficient enzyme. OBJECTIVES To explore the use of recombinant ADAMTS13 (rADAMTS13) as a potential therapeutic agent in acquired TTP, we investigated its efficacy in normalizing VWF-cleaving activity in the presence of ADAMTS13 inhibitors. METHODS Thirty-six plasma samples from TTP patients were adjusted to predefined inhibitor titers, and recovery of ADAMTS13 activity was analyzed following supplementation with rADAMTS13. RESULTS We showed a linear relation between the inhibitor titer measured and effective rADAMTS13 concentration necessary for reconstitution of VWF-cleaving activity in the presence of neutralizing autoantibodies. CONCLUSIONS Our results support the further investigation of the potential therapeutic applicability of rADAMTS13 as an adjunctive therapy in acquired TTP.
Collapse
Affiliation(s)
- B Plaimauer
- Baxter Innovations GmbH, Wagramer Strasse, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rybaltowski M, Suzuki Y, Mogami H, Chlebinska I, Brzoska T, Tanaka A, Banno F, Miyata T, Urano T. In vivo imaging analysis of the interaction between unusually large von Willebrand factor multimers and platelets on the surface of vascular wall. Pflugers Arch 2011; 461:623-33. [DOI: 10.1007/s00424-011-0958-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/13/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
48
|
Abstract
PURPOSE OF REVIEW Thrombotic microangiopathies (TMAs) manifest as a spectrum of related disorders in the form of thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). New data on both diseases support more and more the relatedness of the disorders and reveal related pathomechanisms, which, however, manifest in different organs. TTP develops primarily at neurological sites, and also in the kidney, and HUS is a kidney disease. In TTP thrombi formation occurs subsequently to the release of multimers of von Willebrand factor (vWF), and in HUS endothelial cell damage is considered the reason for complement and platelet activation leading to thrombus formation. RECENT FINDINGS Genetic mutations are associated with both disorders: in TTP the ADAMTS13 gene, the vWF cleaving protease, is affected, and in HUS several complement genes are mutated. In addition autoimmune forms, with acquired, de-novo generated inhibitors in the form of autoantibodies exist for both disorders, affecting ADAMTS13 in TTP or the central complement inhibitor factor H in HUS. In HUS autoantibodies can develop in the context of a specific mostly homozygous chromosomal deletion that represents a new subform of the disease, which is termed DEAP-HUS (deficient for CFHR proteins and autoantibody positive HUS). SUMMARY As the underlying disease mechanisms of TMA are now being better understood new options for a more precise diagnosis, improved therapy and prognosis for kidney transplantation become available for the benefit of patients. Here we summarize the recent developments in this rapidly progressing field.
Collapse
|
49
|
Peyvandi F, Palla R, Lotta LA, Mackie I, Scully MA, Machin SJ. ADAMTS-13 assays in thrombotic thrombocytopenic purpura. J Thromb Haemost 2010; 8:631-40. [PMID: 20088924 DOI: 10.1111/j.1538-7836.2010.03761.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ADAMTS-13, the thirteenth member of the ADAMTS (A Disintegrin And Metalloprotease with Thrombo-Spondin 1 repeats) family, is the plasma metalloprotease responsible for regulating the multimeric structure of VWF. In congenital or acquired deficiency it is actively involved in the pathophysiology of thrombotic thrombocytopenic purpura (TTP), a rare but life threatening disease characterized by microangiopathic haemolytic anaemia and consumptive thrombocytopenia leading to disseminated microvascular thrombosis and variable signs and symptoms of organ ischemia and damage. In the last few years, a number of in house and commercial laboratory assays for ADAMTS-13 and its autoantibodies have been developed. The features and clinical utility of ADAMTS-13 assays are summarized in this review.
Collapse
Affiliation(s)
- F Peyvandi
- Department of Medicine and Medical Specialities, Angelo Bianchi Bonomi Hemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Luigi Villa Foundation, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Knecht ME, Mayr M, Ferrari S, Scheiflinger F, Trendelenburg M. A patient with SLE-associated thrombotic microangiopathy and non-neutralizing antibodies against ADAMTS13. Nephrol Dial Transplant 2010; 25:1720-2. [DOI: 10.1093/ndt/gfq021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|