1
|
Lu J, Zhang C, Shi S, Li S, Liu J, Wu J, Huang C, Lei M. Stoichiometry and architecture of the platelet membrane complex glycoprotein Ib-IX-V. Biol Chem 2024; 405:91-104. [PMID: 36942505 DOI: 10.1515/hsz-2022-0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Glycoprotein (GP) Ib-IX-V is the second most abundant platelet receptor for thrombin and other ligands crucial for hemostasis and thrombosis. Its activity is involved in platelet adhesion to vascular injury sites and thrombin-induced platelet aggregation. GPIb-IX-V is a heteromeric complex composed of four subunits, GPIbα, GPIbβ, GPV and GPIX, in a stoichiometric ratio that has been wildly debated. Despite its important physiological roles, the overall structure and molecular arrangement of GPIb-IX-V are not yet fully understood. Here, we purify stable and functional human GPIb-IX-V complex from reconstituted EXPi293F cells in high homogeneity, and perform biochemical and structural characterization of this complex. Single-particle cryo-electron microscopy structure of GPIb-IX-V is determined at ∼11 Å resolution, which unveils the architecture of GPIb-IX-V and its subunit organization. Size-exclusion chromatography-multi-angle static light scattering analysis reveals that GPIb-IX-V contains GPIb-IX and GPV at a 1:1 stoichiometric ratio and surface plasmon resonance assays show that association of GPV leads to slow kinetics of thrombin binding to GPIb-IX-V. Taken together, our results provide the first three-dimensional architecture of the intact GPIb-IX-V complex, which extends our understanding of the structure and functional mechanism of this complex in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Juanjuan Lu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chunli Zhang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaohua Shi
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Shaobai Li
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Chenhui Huang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Ming Lei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
- State Key laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Beck S, Öftering P, Li R, Hemmen K, Nagy M, Wang Y, Zarpellon A, Schuhmann MK, Stoll G, Ruggeri ZM, Heinze KG, Heemskerk JW, Ruf W, Stegner D, Nieswandt B. Platelet glycoprotein V spatio-temporally controls fibrin formation. NATURE CARDIOVASCULAR RESEARCH 2023; 2:368-382. [PMID: 37206993 PMCID: PMC10195106 DOI: 10.1038/s44161-023-00254-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 02/15/2023] [Indexed: 05/21/2023]
Abstract
The activation of platelets and coagulation at vascular injury sites is crucial for haemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial haemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP) V is cleaved by thrombin. We demonstrate with genetic and pharmacological approaches that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation, but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in haemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve haemostasis.
Collapse
Affiliation(s)
- Sarah Beck
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Patricia Öftering
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | - Katherina Hemmen
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Magdolna Nagy
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine; Atlanta, USA
| | | | | | - Guido Stoll
- University Hospital Würzburg, Department of Neurology, Würzburg, Germany
| | | | - Katrin G. Heinze
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
| | - Johan W.M. Heemskerk
- Department of Biochemistry, CARIM, Maastricht University; Maastricht, The Netherlands
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center Mainz; Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research; La Jolla, CA, USA
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Bernhard Nieswandt
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
3
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Nording H, Baron L, Haberthür D, Emschermann F, Mezger M, Sauter M, Sauter R, Patzelt J, Knoepp K, Nording A, Meusel M, Meyer-Saraei R, Hlushchuk R, Sedding D, Borst O, Eitel I, Karsten CM, Feil R, Pichler B, Erdmann J, Verschoor A, Chavakis E, Chavakis T, von Hundelshausen P, Köhl J, Gawaz M, Langer HF. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat Commun 2021; 12:3352. [PMID: 34099640 PMCID: PMC8185003 DOI: 10.1038/s41467-021-23499-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Platelets contribute to the regulation of tissue neovascularization, although the specific factors underlying this function are unknown. Here, we identified the complement anaphylatoxin C5a-mediated activation of C5a receptor 1 (C5aR1) on platelets as a negative regulatory mechanism of vessel formation. We showed that platelets expressing C5aR1 exert an inhibitory effect on endothelial cell functions such as migration and 2D and 3D tube formation. Growth factor- and hypoxia-driven vascularization was markedly increased in C5ar1-/- mice. Platelet-specific deletion of C5aR1 resulted in a proangiogenic phenotype with increased collateralization, capillarization and improved pericyte coverage. Mechanistically, we found that C5a induced preferential release of CXC chemokine ligand 4 (CXCL4, PF4) from platelets as an important antiangiogenic paracrine effector molecule. Interfering with the C5aR1-CXCL4 axis reversed the antiangiogenic effect of platelets both in vitro and in vivo.In conclusion, we identified a mechanism for the control of tissue neovascularization through C5a/C5aR1 axis activation in platelets and subsequent induction of the antiangiogenic factor CXCL4.
Collapse
Affiliation(s)
- Henry Nording
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Lasse Baron
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - David Haberthür
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Frederic Emschermann
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Matthias Mezger
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Manuela Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Reinhard Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Johannes Patzelt
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Kai Knoepp
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Anne Nording
- grid.10392.390000 0001 2190 1447Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Moritz Meusel
- grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Roza Meyer-Saraei
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Ruslan Hlushchuk
- grid.5734.50000 0001 0726 5157Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel Sedding
- grid.9018.00000 0001 0679 2801Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Martin-Luther-University Halle (Saale), Halle (Saale), Germany
| | - Oliver Borst
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Ingo Eitel
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Robert Feil
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Bernd Pichler
- grid.10392.390000 0001 2190 1447Institute for Preclinical Imaging, Eberhard Karls University, Tübingen, Germany
| | - Jeanette Erdmann
- grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Admar Verschoor
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Emmanouil Chavakis
- grid.411088.40000 0004 0578 8220Department for Internal Medicine III/Cardiology, University Hospital of the Johann-Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Triantafyllos Chavakis
- grid.4488.00000 0001 2111 7257Department of Clinical Pathobiochemistry, Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Philipp von Hundelshausen
- grid.5252.00000 0004 1936 973XInstitute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Jörg Köhl
- grid.4562.50000 0001 0057 2672Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany ,grid.239573.90000 0000 9025 8099Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Meinrad Gawaz
- grid.10392.390000 0001 2190 1447University Hospital, Department of Cardiovascular Medicine, Eberhard Karls University, Tübingen, Germany
| | - Harald F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany ,grid.452396.f0000 0004 5937 5237DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany ,grid.412468.d0000 0004 0646 2097University Hospital, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Aliter KF, Al-Horani RA. Thrombin Inhibition by Argatroban: Potential Therapeutic Benefits in COVID-19. Cardiovasc Drugs Ther 2020; 35:195-203. [PMID: 32870433 PMCID: PMC7459262 DOI: 10.1007/s10557-020-07066-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Thrombin is a trypsin-like serine protease with multiple physiological functions. Its role in coagulation and thrombosis is well-established. Nevertheless, thrombin also plays a major role in inflammation by activating protease-activated receptors. In addition, thrombin is also involved in angiogenesis, fibrosis, and viral infections. Considering the pathogenesis of COVID-19 pandemic, thrombin inhibitors may exert multiple potential therapeutic benefits including antithrombotic, anti-inflammatory, and antiviral activities. In this review, we describe the clinical features of COVID-19, the thrombin’s roles in various pathologies, and the potential of argatroban in COVID-19 patients. Argatroban is a synthetic, small molecule, direct, competitive, and selective inhibitor of thrombin. It is approved to parenterally prevent and/or treat heparin-induced thrombocytopenia in addition to other thrombotic conditions. Argatroban also possesses anti-inflammatory and antiviral activities and has a well-established pharmacokinetics profile. It also appears to lack a significant risk of drug–drug interactions with therapeutics currently being evaluated for COVID-19. Thus, argatroban presents a substantial promise in treating severe cases of COVID-19; however, this promise is yet to be established in randomized, controlled clinical trials.
Collapse
Affiliation(s)
- Kholoud F Aliter
- Department of Chemistry, School of STEM, Dillard University, New Orleans, LA, 70122, USA
| | - Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA, 70125-1089, USA.
| |
Collapse
|
6
|
Zhang Y, Diamond SL. Src family kinases inhibition by dasatinib blocks initial and subsequent platelet deposition on collagen under flow, but lacks efficacy with thrombin generation. Thromb Res 2020; 192:141-151. [PMID: 32480168 DOI: 10.1016/j.thromres.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Kinase inhibitors can pose bleeding risks as platelet signaling evolves during clotting. Using microfluidics (200 s-1 wall shear rate) to perfuse Factor XIIa-inhibited or thrombin-inhibited whole blood (WB) over collagen ± tissue factor (TF), we explored the potency of the Src family kinase (SFK) inhibitor dasatinib or the spleen tyrosine kinase (Syk) inhibitor GS-9973 present at clot initiation or added after 90 s (via rapid switch to inhibitor-pretreated WB). When initially present, dasatinib potently inhibited platelet deposition on collagen (no TF). Furthermore, dasatinib immediately inhibited subsequent platelet deposition when introduced 90 s after clot initiation. However, when thrombin was generated, dasatinib was markedly less potent against platelet deposition on collagen/TF (but blocked fibrin deposition) and had no effect when added 90 s after clot initiation. Similarly, dasatinib added at 90 s had no effect on clotting on collagen/TF when fibrin was also blocked with Gly-Pro-Arg-Pro, indicating that strong thrombin-induced signaling (but not fibrin-induced signaling) can bypass the SFK inhibition at later times. The Syk inhibitor GS-9973 was less potent than dasatinib when present initially, but inhibited clot growth when added at 90 s, even in the presence of thrombin (±fibrin). Interestingly, the active form (R-406) of fostamatinib inhibits platelet function in only 2 0f 5 healthy blood samples. SFK-inhibitors may have reduced antithrombotic activity and reduced bleeding risks in settings of high TF and local thrombin generation. For oncology patients, SFK-inhibitors like dasatinib may have reduced antithrombotic activity and reduced bleeding risk in settings of local thrombin generation.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Lin YC, Ko YC, Hung SC, Lin YT, Lee JH, Tsai JY, Kung PH, Tsai MC, Chen YF, Wu CC. Selective Inhibition of PAR4 (Protease-Activated Receptor 4)-Mediated Platelet Activation by a Synthetic Nonanticoagulant Heparin Analog. Arterioscler Thromb Vasc Biol 2020; 39:694-703. [PMID: 30727756 DOI: 10.1161/atvbaha.118.311758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- PAR4 (protease-activated receptor 4), one of the thrombin receptors in human platelets, has emerged as a promising target for the treatment of arterial thrombotic disease. Previous studies implied that thrombin exosite II, known as a binding site for heparin, may be involved in thrombin-induced PAR4 activation. In the present study, a heparin octasaccharide analog containing the thrombin exosite II-binding domain of heparin was chemically synthesized and investigated for anti-PAR4 effect. Approach and Results- PAR4-mediated platelet aggregation was examined using either thrombin in the presence of a PAR1 antagonist or γ-thrombin, which selectively activates PAR4. SCH-28 specifically inhibits PAR4-mediated platelet aggregation, as well as the signaling events downstream of PAR4 in response to thrombin. Moreover, SCH-28 prevents thrombin-induced β-arrestin recruitment to PAR4 but not PAR1 in Chinese Hamster Ovary-K1 cells using a commercial enzymatic complementation assay. Compared with heparin, SCH-28 is more potent in inhibiting PAR4-mediated platelet aggregation but has no significant anticoagulant activity. In an in vitro thrombosis model, SCH-28 reduces thrombus formation under whole blood arterial flow conditions. Conclusions- SCH-28, a synthetic small-molecular and nonanticoagulant heparin analog, inhibits thrombin-induced PAR4 activation by interfering with thrombin exosite II, a mechanism of action distinct from other PAR4 inhibitors that target the receptor. The characteristics of SCH-28 provide a new strategy for targeting PAR4 with the potential for the treatment of arterial thrombosis.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Yen-Chun Ko
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (Y.-C.K., S.-C.H.)
| | - Shang-Cheng Hung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan (Y.-C.K., S.-C.H.)
| | - Ying-Ting Lin
- Department of Biotechnology, College of Life Science (Y.-T.L., J.-H.L.), Kaohsiung Medical University, Taiwan
| | - Jia-Hau Lee
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan.,Department of Biotechnology, College of Life Science (Y.-T.L., J.-H.L.), Kaohsiung Medical University, Taiwan
| | - Ju-Ying Tsai
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Po-Hsiung Kung
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Meng-Chun Tsai
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Yih-Fung Chen
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan
| | - Chin-Chung Wu
- From the Graduate Institute of Natural Products (Y.-C.L., J.-H.L., J.-Y.T., P.-H.K., M.-C.T., Y.-F.C., C.-C.W.), Kaohsiung Medical University, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan (C.-C.W.).,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan (C.-C.W.)
| |
Collapse
|
8
|
Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets Are at the Nexus of Vascular Diseases. Front Cardiovasc Med 2019; 6:132. [PMID: 31572732 PMCID: PMC6749018 DOI: 10.3389/fcvm.2019.00132] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets are important actors of cardiovascular diseases (CVD). Current antiplatelet drugs that inhibit platelet aggregation have been shown to be effective in CVD treatment. However, the management of bleeding complications is still an issue in vascular diseases. While platelets can act individually, they interact with vascular cells and leukocytes at sites of vascular injury and inflammation. The main goal remains to better understand platelet mechanisms in thrombo-inflammatory diseases and provide new lines of safe treatments. Beyond their role in hemostasis and thrombosis, recent studies have reported the role of several aspects of platelet functions in CVD progression. In this review, we will provide a comprehensive overview of platelet mechanisms involved in several vascular diseases.
Collapse
Affiliation(s)
- Héloïse Lebas
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Katia Yahiaoui
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Raphaël Martos
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Yacine Boulaftali
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| |
Collapse
|
9
|
The Glycoprotein Ib-IX-V Complex. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Dual inhibition of HY023016 based on binding properties of platelet membrane receptor subunit glycoprotein Ibα and thrombin exosites. Eur J Pharmacol 2018; 822:51-58. [DOI: 10.1016/j.ejphar.2018.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/21/2022]
|
11
|
Petzold T, Thienel M, Konrad I, Schubert I, Regenauer R, Hoppe B, Lorenz M, Eckart A, Chandraratne S, Lennerz C, Kolb C, Braun D, Jamasbi J, Brandl R, Braun S, Siess W, Schulz C, Massberg S. Oral thrombin inhibitor aggravates platelet adhesion and aggregation during arterial thrombosis. Sci Transl Med 2016; 8:367ra168. [DOI: 10.1126/scitranslmed.aad6712] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
|
12
|
Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood 2015; 127:626-36. [PMID: 26585954 DOI: 10.1182/blood-2015-04-638387] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Thrombin-induced cellular response in platelets not only requires protease-activated receptors (PARs), but also involves another thrombin receptor, the glycoprotein Ib-IX complex (GPIb-IX). It remains controversial how thrombin binding to GPIb-IX stimulates platelet responses. It was proposed that GPIb-IX serves as a dock that facilitates thrombin cleavage of protease-activated receptors, but there are also reports suggesting that thrombin binding to GPIb-IX induces platelet activation independent of PARs. Here we show that GPIb is neither a passive thrombin dock nor a PAR-independent signaling receptor. We demonstrate a novel signaling-mediated cooperativity between PARs and GPIb-IX. Low-dose thrombin-induced PAR-dependent cell responses require the cooperativity of GPIb-IX signaling, and conversely, thrombin-induced GPIb-IX signaling requires cooperativity of PARs. This mutually dependent cooperativity requires a GPIb-IX-specific 14-3-3-Rac1-LIMK1 signaling pathway, and activation of this pathway also requires PAR signaling. The cooperativity between GPIb-IX signaling and PAR signaling thus drives platelet activation at low concentrations of thrombin, which are important for in vivo thrombosis.
Collapse
|
13
|
Kaplan ZS, Zarpellon A, Alwis I, Yuan Y, McFadyen J, Ghasemzadeh M, Schoenwaelder SM, Ruggeri ZM, Jackson SP. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun 2015. [PMID: 26204458 DOI: 10.1038/ncomms8835] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thrombin is a central regulator of leukocyte recruitment and inflammation at sites of vascular injury, a function thought to involve primarily endothelial PAR cleavage. Here we demonstrate the existence of a distinct leukocyte-trafficking mechanism regulated by components of the haemostatic system, including platelet PAR4, GPIbα and fibrin. Utilizing a mouse endothelial injury model we show that thrombin cleavage of platelet PAR4 promotes leukocyte recruitment to sites of vascular injury. This process is negatively regulated by GPIbα, as seen in mice with abrogated thrombin-platelet GPIbα binding (hGPIbα(D277N)). In addition, we demonstrate that fibrin limits leukocyte trafficking by forming a physical barrier to intravascular leukocyte migration. These studies demonstrate a distinct 'checkpoint' mechanism of leukocyte trafficking involving balanced thrombin interactions with PAR4, GPIbα and fibrin. Dysregulation of this checkpoint mechanism is likely to contribute to the development of thromboinflammatory disorders.
Collapse
Affiliation(s)
- Zane S Kaplan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Alessandro Zarpellon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Imala Alwis
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Yuping Yuan
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - James McFadyen
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Mehran Ghasemzadeh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.,Heart Research Institute &Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
15
|
Saini A, Hartman ME, Gage BF, Said A, Gazit AZ, Eghtesady P, Boston US, Spinella PC. Incidence of Platelet Dysfunction by Thromboelastography-Platelet Mapping in Children Supported with ECMO: A Pilot Retrospective Study. Front Pediatr 2015; 3:116. [PMID: 26779465 PMCID: PMC4702183 DOI: 10.3389/fped.2015.00116] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bleeding complications are common and decrease the odds of survival in children supported with extracorporeal membrane oxygenation (ECMO). The role of platelet dysfunction on ECMO-induced coagulopathy and resultant bleeding complications is not well understood. The primary objective of this pilot study was to determine the incidence and magnitude of platelet dysfunction according to thromboelastography (TEG(®))-platelet mapping (PM) testing. METHODS Retrospective chart review of children <18 years old who required ECMO at a tertiary level hospital. We collected TEG(®)-PM and conventional coagulation tests data. We also collected demographic, medications, blood products administered, and clinical outcome data. We defined severe platelet dysfunction as <50% aggregation in response to an agonist. RESULTS We identified 24 out of 46 children on ECMO, who had TEG(®)-PM performed during the study period. We found the incidence of severe bleeding was 42% and mortality was 54% in our study cohort. In all samples measured, severe qualitative platelet dysfunction was more common for adenosine diphosphate (ADP)-mediated aggregation (92%) compared to arachidonic acid (AA)-mediated aggregation (75%) (p = 0.001). Also, ADP-mediated percent of platelet aggregation was significant lower than AA-mediated platelet aggregation [15% (interquartile range, IQR 2.8-48) vs. 49% (IQR 22-82.5), p < 0.001]. There was no difference in kaolin-activated heparinase TEG(®) parameters between the bleeding group and the non-bleeding group. Only absolute platelet count and TEG(®)-PM had increased predictive value on receiver operating characteristics analyses for severe bleeding and mortality compared to activated clotting time. CONCLUSION We found frequent and severe qualitative platelet dysfunction on TEG(®)-PM testing in children on ECMO. Larger studies are needed to determine if the assessment of qualitative platelet function by TEG(®)-PM can improve prediction of bleeding complications for children on ECMO.
Collapse
Affiliation(s)
- Arun Saini
- Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Mary E Hartman
- Department of Pediatrics, Washington University in St. Louis , St. Louis, MO , USA
| | - Brian F Gage
- Department of Medicine, Washington University in St. Louis , St. Louis, MO , USA
| | - Ahmed Said
- Department of Pediatrics, Washington University in St. Louis , St. Louis, MO , USA
| | - Avihu Z Gazit
- Department of Pediatrics, Washington University in St. Louis , St. Louis, MO , USA
| | - Pirooz Eghtesady
- Department of Cardiothoracic Surgery, Washington University in St. Louis , St. Louis, MO , USA
| | - Umar S Boston
- Department of Cardiothoracic Surgery, Washington University in St. Louis , St. Louis, MO , USA
| | - Philip C Spinella
- Department of Pediatrics, Washington University in St. Louis , St. Louis, MO , USA
| |
Collapse
|
16
|
Koltsova EK, Sundd P, Zarpellon A, Ouyang H, Mikulski Z, Zampolli A, Ruggeri ZM, Ley K. Genetic deletion of platelet glycoprotein Ib alpha but not its extracellular domain protects from atherosclerosis. Thromb Haemost 2014; 112:1252-63. [PMID: 25104056 DOI: 10.1160/th14-02-0130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022]
Abstract
The pathogenesis of atherosclerosis involves the interplay of haematopoietic, stromal and endothelial cells. Platelet interactions with endothelium and leukocytes are pivotal for atherosclerosis promotion. Glycoprotein (GP) Ibα is the ligand-binding subunit of the platelet GPIb-IX-V receptor complex; its deficiency causes the Bernard-Soulier syndrome (BSS), characterised by absent platelet GPIb-IX-V, macrothrombocytopenia and bleeding. We designed this study to determine the role of platelet GPIbα in the pathogenesis of atherosclerosis using two unique knockout models. Ldlr-/- mice were reconstituted with wild-type (wt), GPIbα-/- (lacks GPIbα) or chimeric IL-4R/GPIbα-Tg (lacks GPIbα extracellular domain) bone marrow and assayed for atherosclerosis development after feeding with pro-atherogenic "western diet". Here, we report that Ldlr-/-mice reconstituted with GPIbα-/- bone marrow developed less atherosclerosis compared to wt controls; accompanied by augmented accumulation of pro-inflammatory CD11b+ and CD11c+ myeloid cells, reduced oxLDL uptake and decreased TNF and IL 12p35 gene expression in the aortas. Flow cytometry and live cell imaging in whole blood-perfused microfluidic chambers revealed reduced platelet-monocyte aggregates in GPIbα-/- mice, which resulted in decreased monocyte activation. Interestingly, Ldlr-/-mice reconstituted with IL-4R/GPIbα-Tg bone marrow, producing less abnormal platelets, showed atherosclerotic lesions similar to wt mice. Platelet interaction with blood monocytes and accumulation of myeloid cells in the aortas were also essentially unaltered. Moreover, only complete GPIbα ablation altered platelet microparticles and CCL5 chemokine production. Thus, atherosclerosis reduction in mice lacking GPIbα may not result from the defective GPIbα-ligand binding, but more likely is a consequence of functional defects of GPIbα-/- platelets and reduced blood platelet counts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - K Ley
- Klaus Ley, MD, Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA, Fax: +1 858 752 6985, E-mail:
| |
Collapse
|
17
|
Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. J Med Chem 2014; 57:3030-9. [PMID: 24635452 PMCID: PMC4203406 DOI: 10.1021/jm4020026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Exosite 2 of human thrombin contributes
to two opposing pathways, the anticoagulant pathway and the platelet
aggregation pathway. We reasoned that an exosite 2 directed allosteric
thrombin inhibitor should simultaneously induce anticoagulant and
antiplatelet effects. To assess this, we synthesized SbO4L based on
the sulfated tyrosine-containing sequence of GPIbα. SbO4L was
synthesized in three simple steps in high yield and found to be a
highly selective, direct inhibitor of thrombin. Michelis–Menten
kinetic studies indicated a noncompetitive mechanism of inhibition.
Competitive inhibition studies suggested ideal competition with heparin
and glycoprotein Ibα, as predicted. Studies with site-directed
mutants of thrombin indicated that SbO4L binds to Arg233, Lys235,
and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet
activation and aggregation as expected on the basis of competition
with GPIbα. SbO4L presents a novel paradigm of simultaneous
dual anticoagulant and antiplatelet effects achieved through the GPIbα
binding site of thrombin.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
On the versatility of von Willebrand factor. Mediterr J Hematol Infect Dis 2013; 5:e2013046. [PMID: 23936617 PMCID: PMC3736882 DOI: 10.4084/mjhid.2013.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
Von Willebrand factor (VWF) is a large multimeric protein, the function of which has been demonstrated to be pivotal to the haemostatic system. Indeed, quantitative and/or qualitative abnormalities of VWF are associated with the bleeding disorder Von Willebrand disease (VWD). Moreover, increased plasma concentrations of VWF have been linked to an increased risk for thrombotic complications. In the previous decades, many studies have contributed to our understanding of how VWF is connected to the haemostatic system, particularly with regard to structure-function relationships. Interactive sites for important ligands of VWF (such as factor VIII, collagen, glycoprotein Ibα, integrin αIIbβ3 and protease ADAMTS13) have been identified, and mutagenesis studies have confirmed the physiological relevance of the interactions between VWF and these ligands. However, we have also become aware that VWF has a more versatile character than previously thought, given its potential role in various non-hemostatic processes, like intimal thickening, tumor cell apoptosis and inflammatory processes. In the presence review, a summary of our knowledge on VWF structure-function relationships is provided in the context of the “classical” haemostatic task of VWF and in perspective of pathological processes beyond haemostasis.
Collapse
|
19
|
Gachet C. Les mécanismes moléculaires de l’activation plaquettaire. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2013. [DOI: 10.1016/s0001-4079(19)31591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
|
21
|
Broos K, De Meyer SF, Feys HB, Vanhoorelbeke K, Deckmyn H. Blood platelet biochemistry. Thromb Res 2011; 129:245-9. [PMID: 22119499 DOI: 10.1016/j.thromres.2011.11.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 12/12/2022]
Abstract
Defects in platelet function or formation increase the risk for bleeding or thrombosis, which indicates the crucial role for platelets in maintaining haemostasis in normal life. Upon vascular injury, platelets instantly adhere to the exposed extracellular matrix which results in platelet activation and aggregation and the formation a haemostatic plug that stops bleeding. To prevent excessive platelet aggregate formation that eventually would occlude the vessels, this self-amplifying process nevertheless requires a tight control. This review intends to give a comprehensive overview of the currently established main mechanisms in platelet function.
Collapse
Affiliation(s)
- Katleen Broos
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven campus Kortrijk, Kortrijk, Belgium
| | | | | | | | | |
Collapse
|
22
|
Siller-Matula JM, Schwameis M, Blann A, Mannhalter C, Jilma B. Thrombin as a multi-functional enzyme. Focus on in vitro and in vivo effects. Thromb Haemost 2011; 106:1020-33. [PMID: 21979864 DOI: 10.1160/th10-11-0711] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 09/11/2011] [Indexed: 12/16/2022]
Abstract
Thrombin is the central protease in the coagulation cascade and one of the most extensively studied of all enzymes. In addition to its recognised role in the coagulation cascade and haemostasis, thrombin is known to have multiple pleiotropic effects, which mostly have been shown only in in vitro studies: it plays a role in inflammation and cellular proliferation and displays a mitogen activity on smooth muscle cells and endothelial cells, predominantly by activation of angiogenesis. In vivo , thrombin effects were examined in animal models of intravenous or intraarterial thrombin infusion. An extensive literature search regarding in vivo data showed that i) thrombin administered as a bolus causes microembolism, ii) thrombin infused slowly at steady-state conditions (up to 1.6 U/kg/min) leads to bleeds but not to intravascular clotting, iii) large quantity of thrombin infused at low rates (0.05 U/kg/min) does not have any measurable effect, and iv) thrombin increases vascular permeability leading to tissue damage. Although several decades of research on thrombin functions have provided a framework for understanding the biology of thrombin, animal and human studies with use of newer laboratory techniques are still needed to confirm the pleiotropic thrombin functions shown in in vitro studies.
Collapse
Affiliation(s)
- Jolanta M Siller-Matula
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Platelets are a remarkable mammalian adaptation that are required for human survival by virtue of their ability to prevent and arrest bleeding. Ironically, however, in the past century, the platelets' hemostatic activity became maladaptive for the increasingly large percentage of individuals who develop age-dependent progressive atherosclerosis. As a result, platelets also make a major contribution to ischemic thrombotic vascular disease, the leading cause of death worldwide. In this brief review, I provide historical descriptions of a highly selected group of topics to provide a framework for understanding our current knowledge and the trends that are likely to continue into the future of platelet research. For convenience, I separate the eras of platelet research into the "Descriptive Period" extending from ~1880-1960 and the "Mechanistic Period" encompassing the past ~50 years since 1960. We currently are reaching yet another inflection point, as there is a major shift from a focus on traditional biochemistry and cell and molecular biology to an era of single molecule biophysics, single cell biology, single cell molecular biology, structural biology, computational simulations, and the high-throughput, data-dense techniques collectively named with the "omics postfix". Given the progress made in understanding, diagnosing, and treating many rare and common platelet disorders during the past 50 years, I think it appropriate to consider it a Golden Age of Platelet Research and to recognize all of the investigators who have made important contributions to this remarkable achievement..
Collapse
Affiliation(s)
- Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, Tel: 212-327-7490, Fax: 212-327-7493
| |
Collapse
|
24
|
Binding of alpha-thrombin to surface-anchored platelet glycoprotein Ib(alpha) sulfotyrosines through a two-site mechanism involving exosite I. Proc Natl Acad Sci U S A 2011; 108:8628-33. [PMID: 21555542 DOI: 10.1073/pnas.1017042108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The involvement of exosite I in α-thrombin (FIIa) binding to platelet glycoprotein Ibα (GPIbα), which could influence interactions with other substrates, remains undefined. To address the problem, we generated the GPIbα amino terminal domain (GPIbα-N) fully sulfated on three tyrosine residues and solved the structure of its complex with FIIa. We found that sulfotyrosine (Tys) 278 enhances the interaction mainly by establishing contacts with exosite I. We then evaluated how substituting tyrosine with phenylalanine, which cannot be sulfated, affects FIIa binding to soluble or surface-immobilized GPIbα-N. Mutating Tyr(276), which mostly contacts exosite II residues, markedly reduced FIIa interaction with both soluble and immobilized GPIbα-N; mutating Tyr(278) or Tyr(279), which mostly contact exosite I residues, reduced FIIa complexing in solution by 0-20% but affinity for immobilized GPIbα-N 2 to 6-fold, respectively. Moreover, three exosite I ligands--aptamer HD1, hirugen, and lepirudin--did not interfere with soluble FIIa complexing to GPIbα-N, excluding that their binding caused allosteric effects influencing the interaction; nonetheless, all impaired FIIa binding to immobilized GPIbα-N and platelet GPIb nearly as much as aptamer HD22 and heparin, both exosite II ligands. Bound HD1 and hirugen alter Trp(148) orientation in a loop near exosite I preventing contacts with the sulfate oxygen atoms of Tys(279). These results support a mechanism in which binding occurs when the two exosites of one FIIa molecule independently interact with two immobilized GPIbα molecules. Through exosite engagement, GPIbα may influence FIIa-dependent processes relevant to hemostasis and thrombosis.
Collapse
|