1
|
Chen XC, Gai MT, He CH, Zhao BH, Liu F, Ma X, Ma YT, Gao XM, Chen BD. Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways. Cardiovasc Drugs Ther 2025:10.1007/s10557-024-07662-1. [PMID: 39747743 DOI: 10.1007/s10557-024-07662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury. METHODS A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed. RESULTS The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway. CONCLUSION Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.
Collapse
Affiliation(s)
- Xiao-Cui Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Chun-Hui He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- College of Basic Medicine of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
Zhao L, Zhao BH, Ruze A, Li QL, Deng AX, Gao XM. Distinct roles of MIF in the pathogenesis of ischemic heart disease. Cytokine Growth Factor Rev 2024; 80:121-137. [PMID: 39438226 DOI: 10.1016/j.cytogfr.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The role of macrophage migration inhibitory factor (MIF) as a multifunctional cytokine in immunomodulation and inflammatory response is increasingly appreciated. Ischemic heart disease (IHD), the leading cause of global mortality, remains a focal point of research owing to its intricate pathophysiology. MIF has been identified as a critical player in IHD, where it exerts distinct roles. On one hand, MIF plays a protective role by enhancing energy metabolism through activation of AMPK, resisting oxidative stress, inhibiting activation of the JNK pathway, and maintaining intracellular calcium ion homeostasis. Additionally, MIF exerts protective effects through mesenchymal stem cells and exosomes. On the other hand, MIF can assume a pro-inflammatory role, which contributes to the exacerbation of IHD's development and progression. Furthermore, MIF levels significantly increase in IHD patients, and its genetic polymorphisms are positively correlated with prevalence and severity. These findings position MIF as a potential biomarker and therapeutic target in the management of IHD. This review summarizes the structure, source, signaling pathways and biological functions of MIF and focuses on its roles and clinical characteristics in IHD. The genetic variants of MIF associated with IHD is also discussed, providing more understandings of its complex interplay in the disease's pathology.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Disease, Urumqi, China.
| |
Collapse
|
3
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
4
|
Prediction of one-year adverse clinical outcomes by macrophage migration inhibitory factor in stemi patients. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Biomarkers have taken one of the first places as diagnostic and prognostic tools in ST-segment elevation myocardial infarction (STEMI) and are consequently widely used as predictors of short-term and long-term prognosis. One of the promising biomarkers for early cardiovascular outcomes prediction is the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF).
The aim of the study was to elucidate a plausible predictive value of the MIF levels for one-year clinical outcomes in STEMI patients who underwent primary percutaneous coronary intervention (PCI).
Materials and methods. 134 STEMI patients were enrolled in the study after receiving voluntary informed consent. All patients underwent conventional investigations, and additionally, the MIF levels were determined at baseline, directly before and after PCI. During 1-year follow-up, 37 % of patients reached the endpoint, which was composite and included all-cause mortality, non-fatal myocardial infarction, non-fatal stroke, hospitalization for unstable angina, heart failure decompensation, and urgent revascularization.
Results. We have found that pre-PCI MIF levels > 3934 pg/mL (AUC=0.7; 95 % CI 0.578 to 0.753; Youden index=0.31; p=0.008) might be an independent predictor of composite endpoints with sensitivity 54 % and specificity 82 %. A positive correlation between MIF and inflammatory biomarkers was revealed (WBC count r=0.33, p=0.0001; CRP r=0.19, p=0.032). Adverse outcomes associated with higher pre- and post-PCI MIF levels (OR 1.0, 95 % CI 1.0001–1.0008; p=0.013 and OR 1.0, 95 % CI 1.0001–1.0009; p=0.019) and CRP that determined during the first week after the event (OR 1.0, 95 % CI 1.005–1.2, p=0.03). Kaplan-Meier analysis has shown a substantially lower long-term survival rate in patients with a MIF level > 3493 pg/ml compared to a MIF level ≤ 3493 pg/ml (Log rank=0.00025).
Conclusions. The MIF levels exceeding 3934 ng/ml were associated with a higher risk of one-year adverse clinical outcomes in STEMI patients who underwent primary PCI.
Collapse
|
5
|
Ye Y, Han F, Ma M, Sun Q, Huang Z, Zheng H, Yang Z, Luo Z, Liao T, Li H, Hong L, Na N, Sun Q. Plasma Macrophage Migration Inhibitory Factor Predicts Graft Function Following Kidney Transplantation: A Prospective Cohort Study. Front Med (Lausanne) 2021; 8:708316. [PMID: 34540864 PMCID: PMC8440878 DOI: 10.3389/fmed.2021.708316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Delayed graft function (DGF) is a common complication after kidney transplantation (KT) with a poor clinical outcome. There are no accurate biomarkers for the early prediction of DGF. Macrophage migration inhibitory factor (MIF) release during surgery plays a key role in protecting the kidney, and may be a potential biomarker for predicting post-transplant renal allograft recovery. Methods: Recipients who underwent KT between July 2020 and December 2020 were enrolled in the study. Plasma MIF levels were tested in recipients at different time points, and the correlation between plasma MIF and DGF in recipients was evaluated. This study was registered in the Chinese Clinical Trial Registry (ChiCTR2000035596). Results: Intraoperative MIF levels were different between immediate, slowed, and delayed graft function groups (7.26 vs. 6.49 and 5.59, P < 0.001). Plasma MIF was an independent protective factor of DGF (odds ratio = 0.447, 95% confidence interval [CI] 0.264–0.754, P = 0.003). Combining plasma MIF level and donor terminal serum creatinine provided the best predictive power for DGF (0.872; 95%CI 0.795–0.949). Furthermore, plasma MIF was significantly associated with allograft function at 1-month post-transplant (R2 = 0.42, P < 0.001). Conclusion: Intraoperative MIF, as an independent protective factor for DGF, has excellent diagnostic performance for predicting DGF and is worthy of further exploration.
Collapse
Affiliation(s)
- Yongrong Ye
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Han
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maolin Ma
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qipeng Sun
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengyu Huang
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haofeng Zheng
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Kidney Transplantation, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Zhe Yang
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihuan Luo
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Kidney Transplantation, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Tao Liao
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Kidney Transplantation, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Heng Li
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangqing Hong
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiquan Sun
- Division of Kidney Transplantation, Organ Transplantation Research Institution, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Kidney Transplantation, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
6
|
Hofmann E, Soppert J, Ruhl T, Gousopoulos E, Gerra S, Storti G, Tian Y, Brandhofer M, Schweizer R, Song SY, Lindenblatt N, Pallua N, Bernhagen J, Kim BS. The Role of Macrophage Migration Inhibitory Factor in Adipose-Derived Stem Cells Under Hypoxia. Front Physiol 2021; 12:638448. [PMID: 34366876 PMCID: PMC8334873 DOI: 10.3389/fphys.2021.638448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Adipose-derived stem cells (ASCs) are multipotent mesenchymal stem cells characterized by their strong regenerative potential and low oxygen consumption. Macrophage migration inhibitory factor (MIF) is a multifunctional chemokine-like cytokine that is involved in tissue hypoxia. MIF is not only a major immunomodulator but also is highly expressed in adipose tissue such as subcutaneous adipose tissue of chronic non-healing wounds. In the present study, we investigated the effect of hypoxia on MIF in ASCs isolated from healthy versus inflamed adipose tissue. Methods: Human ASCs were harvested from 17 patients (11 healthy adipose tissue samples, six specimens from chronic non-healing wounds). ASCs were treated in a hypoxia chamber at <1% oxygen. ASC viability, MIF secretion as well as expression levels of MIF, its receptor CD74, hypoxia-inducible transcription factor-1α (HIF-1α) and activation of the AKT and ERK signaling pathways were analyzed. The effect of recombinant MIF on the viability of ASCs was determined. Finally, the effect of MIF on the viability and production capacity of ASCs to produce the inflammatory cytokines tumor necrosis factor (TNF), interleukin (IL)-6, and IL-1β was determined upon treatment with recombinant MIF and/or a blocking MIF antibody. Results: Hypoxic treatment inhibited proliferation of ASCs derived from healthy or chronic non-healing wounds. ASCs from healthy adipose tissue samples were characterized by a low degree of MIF secretion during hypoxic challenge. In contrast, in ASCs from adipose tissue samples of chronic non-healing wounds, secretion and expression of MIF and CD74 expression were significantly elevated under hypoxia. This was accompanied by enhanced ERK signaling, while AKT signaling was not altered. Recombinant MIF did stimulate HIF-1α expression under hypoxia as well as AKT and ERK phosphorylation, while no effect on ASC viability was observed. Recombinant MIF significantly reduced the secretion of IL-1β under hypoxia and normoxia, and neutralizing MIF-antibodies diminished TNF-α and IL-1β release in hypoxic ASCs. Conclusions: Collectively, MIF did not affect the viability of ASCs from neither healthy donor site nor chronic wounds. Our results, however, suggest that MIF has an impact on the wound environment by modulating inflammatory factors such as IL-1β.
Collapse
Affiliation(s)
- Elena Hofmann
- Department of Plastic Surgery and Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.,Institute of Biochemistry and Molecular Cell Biology, University Hospital RWTH Aachen, Aachen, Germany
| | - Josefin Soppert
- Institute of Biochemistry and Molecular Cell Biology, University Hospital RWTH Aachen, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim Ruhl
- Department of Plastic Surgery and Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Zurich, Switzerland
| | - Simona Gerra
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Yuan Tian
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Riccardo Schweizer
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Zurich, Switzerland
| | - Seung-Yong Song
- Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Zurich, Switzerland
| | - Norbert Pallua
- Department of Plastic Surgery and Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.,Aesthetic Elite International-Private Clinic, Dusseldorf, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, University Hospital RWTH Aachen, Aachen, Germany.,Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery-Burn Center, University Hospital RWTH Aachen, Aachen, Germany.,Institute of Biochemistry and Molecular Cell Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Zurich, Switzerland
| |
Collapse
|
7
|
Ma H, Li Y, Hou T, Li J, Yang L, Guo H, Li L, Xin M, Gong Z. Sevoflurane Postconditioning Attenuates Hypoxia/Reoxygenation Injury of Cardiomyocytes Under High Glucose by Regulating HIF-1α/MIF/AMPK Pathway. Front Pharmacol 2021; 11:624809. [PMID: 33692685 PMCID: PMC7938236 DOI: 10.3389/fphar.2020.624809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Subject: Cardiovascular disease, as a very common and serious coexisting disease in diabetic patients, and is one of the risk factors that seriously affect the prognosis and complications of surgical patients. Previous studies have shown that sevoflurane post-conditioning (SPostC) exerts a protective effect against myocardial ischemia/reperfusion injury by HIF-1α, but the protective effect is weakened or even disappeared under hyperglycemia. This study aims to explore whether regulating the HIF-1α/MIF/AMPK signaling pathway can restore the protective effect and reveal the mechanism of SPostC on cardiomyocyte hypoxia/reoxygenation injury under high glucose conditions. Methods: H9c2 cardiomyocytes were cultured in normal and high-concentration glucose medium to establish a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes. SPostC was performed with 2.4% sevoflurane for 15 min before reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis; Testing cell energy metabolism by detecting reactive oxygen species (ROS) generation, ATP content and mitochondrial membrane potential; Analysis of the change of HIF-1α, MIF and AMPKα mRNA expression by RT-PCR. Western blotting was used to examine the expression of HIF-1α, MIF, AMPKα and p-AMPKα proteins. HIF-1α and MIF inhibitors and agonists were administered 40 min before hypoxia. Results: 1) SPostC exerts a protective effect by increasing cell viability, reducing LDH levels and cell apoptosis under low glucose (5 μM) after undergoing H/R injury; 2) High glucose concentration (35 μM) eliminated the cardioprotective effect of SPostC, which is manifested by a significantly decrease in the protein and mRNA expression level of the HIF-1α/MIF/AMPK signaling pathway, accompanied by decreased cell viability, increased LDH levels and apoptosis, increased ROS production, decreased ATP synthesis, and decreased mitochondrial membrane potential; 3. Under high glucose (35 μM), the expression levels of HIF-1α and MIF were up-regulated by using agonists, which can significantly increase the level of p-AMPKα protein, and the cardioprotective effect of SPostC was restored. Conclusion: The signal pathway of HIF-1α/MIF/AMPK of H9c2 cardiomyocytes may be the key point of SPostC against H/R injure. The cardioprotective of SPostC could be restored by upregulating the protein expression of HIF-1α and MIF under hyperglycemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhongcheng Gong
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
8
|
Meng F, Li D, Song B, Li L. Impaired Myocardial MIF/AMPK Activation Aggravates Myocardial Ischemia Reperfusion Injury in High-Fat Diet-Induced Obesity. Endocr Metab Immune Disord Drug Targets 2019; 19:1046-1054. [PMID: 30914037 DOI: 10.2174/1871530319666190326143254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 11/22/2022]
Abstract
Background:
Obese patients are more sensitive to myocardial ischemia, which has been
linked with high mortality rates. The following study investigates the effects of impaired macrophage
Migration Inhibitory Factor (MIF)/AMP-Activated Protein Kinase (AMPK) activation on increased
susceptibility to myocardial ischemia/reperfusion (I/R) in high-fat diet-induced obesity.
Methods:
Male C57BL/6J mice were fed with a normal diet (10% kcal as fat, lean group) or a high-fat
diet (60kcal as fat, obese group) for 12 consecutive weeks. To detect the MIF expression and AMPK
activation in response to I/R in isolated hearts from lean and obese mice, myocardial samples were
collected from left ventricular areas at different time points. To determine whether MIF supplementation
is protective against I/R injury, recombined MIF (10 ng/mL) was applied before ischemia. Myocardial
infarct size was estimated by triphenyltetrazolium staining. Western blot was used to detect
myocardial MIF expression, AMPK activation and membrane glucose transporter 4 (Glut4) expression.
Results:
The expression of MIF was remarkably higher in obese group compared to lean group.
Ischemia increased myocardial MIF expression and phosphorylation of AMPK in lean mice, whereas it
had no significant effect on obese mice. Furthermore, administration of recombinant MIF increased
ischemic AMPK activation and membrane Glut4 expression in both lean and obese mice, while it reduced
the infarct size in lean mice only.
Conclusion:
An impaired MIF/AMPK activation response and consequent reduced membrane Glut4
expression may play an important role in increasing myocardial susceptibility to I/R in obesity.
Collapse
Affiliation(s)
- Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Childcare Hospital, Jinan City, Shandong Province, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan City, Shandong Province, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
9
|
Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim BS, Marx G, Rex S, Ochi A, Leng L, Moeckel G, Linkermann A, El Bounkari O, Zarbock A, Bernhagen J, Djudjaj S, Bucala R, Boor P. The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med 2019; 10:10/441/eaan4886. [PMID: 29769287 DOI: 10.1126/scitranslmed.aan4886] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/22/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
Abstract
Acute kidney injury (AKI) represents the most frequent complication after cardiac surgery. Macrophage migration inhibitory factor (MIF) is a stress-regulating cytokine that was shown to protect the heart from myocardial ischemia-reperfusion injury, but its role in the pathogenesis of AKI remains unknown. In an observational study, serum and urinary MIF was quantified in 60 patients scheduled for elective conventional cardiac surgery with the use of cardiopulmonary bypass. Cardiac surgery triggered an increase in MIF serum concentrations, and patients with high circulating MIF (>median) 12 hours after surgery had a significantly reduced risk of developing AKI (relative risk reduction, 72.7%; 95% confidence interval, 12 to 91.5%; P = 0.03). Experimental AKI was induced in wild-type and Mif-/- mice by 30 min of ischemia followed by 6 or 24 hours of reperfusion, or by rhabdomyolysis. Mif-deficient mice exhibited increased tubular cell injury, increased regulated cell death (necroptosis and ferroptosis), and enhanced oxidative stress. Therapeutic administration of recombinant MIF after ischemia-reperfusion in mice ameliorated AKI. In vitro treatment of tubular epithelial cells with recombinant MIF reduced cell death and oxidative stress as measured by glutathione and thiobarbituric acid reactive substances in the setting of hypoxia. Our data provide evidence of a renoprotective role of MIF in experimental ischemia-reperfusion injury by protecting renal tubular epithelial cells, consistent with our observation that high MIF in cardiac surgery patients is associated with a reduced incidence of AKI.
Collapse
Affiliation(s)
- Christian Stoppe
- Department of Intensive Care Medicine, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.
| | - Luisa Averdunk
- Department of Intensive Care Medicine, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Andreas Goetzenich
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany
| | - Josefin Soppert
- Department of Intensive Care Medicine, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany.,Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany
| | - Arnaud Marlier
- Department of Nephrology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sandra Kraemer
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, RWTH Aachen, Aachen, Germany
| | - Jil Vieten
- Department of Intensive Care Medicine, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Ana Kowark
- Department of Anesthesiology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Bong-Song Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery, Burn Center, RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Akinobu Ochi
- Department of Nephropathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gilbert Moeckel
- Department of Nephropathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Critical Care Medicine and Pain Therapy, University Hospital Münster, Münster, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University Munich, Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (EXC 1010 SyNergy), Munich, Germany
| | - Sonja Djudjaj
- Institute of Pathology and Department of Nephrology, University Hospital, RWTH Aachen, Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Hospital, RWTH Aachen, Aachen, Germany. .,Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
10
|
Wu J, Deng X, Gao J, Gao W, Xiao H, Wang X, Zhang Y. Autophagy mediates the secretion of macrophage migration inhibitory factor from cardiomyocytes upon serum-starvation. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1038-1046. [PMID: 31209799 DOI: 10.1007/s11427-019-9567-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine. It is elevated early in the blood of acute myocardial infarction patients. However, it is unclear whether and how MIF is released. This study investigated the cellular source and mechanism of MIF release from hearts. An ischemia-mimic treatment induced the secretion of MIF from neonatal rat cardiomyocytes but not from fibroblasts. The treatment did not cause significant leakage of lactate dehydrogenase, suggesting that ischemia induced the MIF secretion without causing severe cell damage. Plasma samples from patients with acute chest pain at the emergency department were collected for the detection of MIF. MIF levels in patients with acute coronary syndrome (ACS) increased early, when cardiac injury markers were not yet elevated, suggesting that ischemia can induce MIF secretion before the occurrence of severe myocardial damage. Serum-starvation caused MIF secretion from rat cardiomyocytes and Langendorff-perfused rat hearts. The secretion was suppressed by the inhibition of autophagy by inhibitors or by silencing of Atg5. In conclusion, serum-starvation induces the secretion of MIF from cardiomyocytes via autophagy dependent pathway. Clarifying the mechanism of MIF secretion will be helpful for its application in the early diagnosis and treatment of ACS.
Collapse
Affiliation(s)
- Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xiangning Deng
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Juan Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wei Gao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xinyu Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, 100191, China.
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, 100191, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.
| |
Collapse
|
11
|
Novel Molecular Targets Participating in Myocardial Ischemia-Reperfusion Injury and Cardioprotection. Cardiol Res Pract 2019; 2019:6935147. [PMID: 31275641 PMCID: PMC6558612 DOI: 10.1155/2019/6935147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Worldwide morbidity and mortality from acute myocardial infarction (AMI) and related heart failure remain high. While effective early reperfusion of the criminal coronary artery after a confirmed AMI is the typical treatment at present, collateral myocardial ischemia-reperfusion injury (MIRI) and pertinent cardioprotection are still challenging to address and have inadequately understood mechanisms. Therefore, unveiling the related novel molecular targets and networks participating in triggering and resisting the pathobiology of MIRI is a promising and valuable frontier. The present study specifically focuses on the recent MIRI advances that are supported by sophisticated bio-methodology in order to bring the poorly understood interrelationship among pro- and anti-MIRI participant molecules up to date, as well as to identify findings that may facilitate the further investigation of novel targets.
Collapse
|
12
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
13
|
Schindler L, Dickerhof N, Hampton MB, Bernhagen J. Post-translational regulation of macrophage migration inhibitory factor: Basis for functional fine-tuning. Redox Biol 2017; 15:135-142. [PMID: 29247897 PMCID: PMC5975065 DOI: 10.1016/j.redox.2017.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a chemokine-like protein and an important mediator in the inflammatory response. Unlike most other pro-inflammatory cytokines, a number of cell types constitutively express MIF and secretion occurs from preformed stores. MIF is an evolutionarily conserved protein that shows a remarkable functional diversity, including specific binding to surface CD74 and chemokine receptors and the presence of two intrinsic tautomerase and oxidoreductase activities. Several studies have shown that MIF is subject to post-translational modification, particularly redox-dependent modification of the catalytic proline and cysteine residues. In this review, we summarize and discuss MIF post-translational modifications and their effects on the biological properties of this protein. We propose that the redox-sensitive residues in MIF will be modified at sites of inflammation and that this will add further depth to the functional diversity of this intriguing cytokine. MIF is a pro-inflammatory cytokine with tautomerase and oxidoreductase activity. MIF is susceptible to post-translational modifications, including redox modification. Oxidants and electrophiles generated at inflammatory sites can modify MIF. The biological consequences of redox modification need detailed characterization.
Collapse
Affiliation(s)
- Lisa Schindler
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany; Munich Cluster for System Neurology (EXC 1010 SyNergy), Munich, Germany.
| |
Collapse
|
14
|
Myocardial Expression of Macrophage Migration Inhibitory Factor in Patients with Heart Failure. J Clin Med 2017; 6:jcm6100095. [PMID: 29027966 PMCID: PMC5664010 DOI: 10.3390/jcm6100095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory protein and contributes to several different inflammatory and ischemic/hypoxic diseases. MIF was shown to be cardioprotective in experimental myocardial ischemia/reperfusion injury and its expression is regulated by the transcription factor hypoxia-inducible factor (HIF)-1α. We here report on MIF expression in the failing human heart and assess myocardial MIF in different types of cardiomyopathy. Myocardial tissue samples from n = 30 patients were analyzed by quantitative Real-Time PCR. MIF and HIF-1α mRNA expression was analyzed in myocardial samples from patients with ischemic (ICM) and non-ischemic cardiomyopathy (NICM) and from patients after heart transplantation (HTX). MIF expression was elevated in myocardial samples from patients with ICM compared to NICM. Transplanted hearts showed lower MIF levels compared to hearts from patients with ICM. Expression of HIF-1α was analyzed and was shown to be significantly increased in ICM patients compared to patients with NICM. MIF and HIF-1α mRNA is expressed in the human heart. MIF and HIF-1α expression depends on the underlying type of cardiomyopathy. Patients with ICM show increased myocardial MIF and HIF-1α expression.
Collapse
|
15
|
Tilstam PV, Qi D, Leng L, Young L, Bucala R. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin Ther Targets 2017; 21:671-683. [PMID: 28562118 DOI: 10.1080/14728222.2017.1336227] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions that increasingly is being studied in different aspects of cardiovascular disease. MIF was first identified as a proinflammatory and pro-survival mediator within the immune system, and a second structurally related MIF family member, D-dopachrome tautomerase (a.k.a. MIF-2), was reported recently. Both MIF family members are released by myocardium and modulate the manifestations of cardiovascular disease, specifically in myocardial ischemia. Areas covered: A scientific overview is provided for the involvement of MIF family cytokines in the inflammatory pathogenesis of atherosclerosis, myocardial infarction, and ischemia-reperfusion injury. We summarize findings of experimental, human genetic and clinical studies, and suggest therapeutic opportunities for modulating the activity of MIF family proteins that potentially may be applied in a MIF allele specific manner. Expert opinion: Knowledge of MIF, MIF-2 and their receptor pathways are under active investigation in different types of cardiovascular diseases, and novel therapeutic opportunities are being identified. Clinical translation may be accelerated by accruing experience with MIF-directed therapies currently in human testing in cancer and autoimmunity.
Collapse
Affiliation(s)
- Pathricia V Tilstam
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Dake Qi
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA.,b Department of Biomedical Sciences , Memorial University of Newfoundland , St. John's , Canada
| | - Lin Leng
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Lawrence Young
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
16
|
Cytosolic BNIP3 Dimer Interacts with Mitochondrial BAX Forming Heterodimers in the Mitochondrial Outer Membrane under Basal Conditions. Int J Mol Sci 2017; 18:ijms18040687. [PMID: 28333095 PMCID: PMC5412273 DOI: 10.3390/ijms18040687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/14/2017] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
The primary function of mitochondria is energy production, a task of particular importance especially for cells with a high energy demand like cardiomyocytes. The B-cell lymphoma (BCL-2) family member BCL-2 adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is linked to mitochondrial targeting after homodimerization, where it functions in inner membrane depolarization and permeabilization of the mitochondrial outer membrane (MOM) mediating cell death. We investigated the basal distribution of cardiac BNIP3 in vivo and its physical interaction with the pro-death protein BCL2 associated X, apoptosis regulator (BAX) and with mitochondria using immunoblot analysis, co-immunoprecipitation, and continuous wave and pulsed electron paramagnetic resonance spectroscopy techniques. We found that BNIP3 is present as a dimer in the cytosol and in the outer membrane of cardiac mitochondria under basal conditions. It forms disulfide-bridged, but mainly non-covalent dimers in the cytosol. Heterodimers with BAX are formed exclusively in the MOM. Furthermore, our results suggest that BNIP3 interacts with the MOM directly via mitochondrial BAX. However, the physical interactions with BAX and the MOM did not affect the membrane potential and cell viability. These findings suggest that another stimulus other than the mere existence of the BNIP3/BAX dimer in the MOM is required to promote BNIP3 cell-death activity; this could be a potential disturbance of the BNIP3 distribution homeostasis, namely in the direction of the mitochondria.
Collapse
|
17
|
Pohl J, Hendgen-Cotta UB, Stock P, Luedike P, Rassaf T. Elevated MIF-2 levels predict mortality in critically ill patients. J Crit Care 2017; 40:52-57. [PMID: 28329734 DOI: 10.1016/j.jcrc.2017.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/05/2017] [Accepted: 03/12/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE D-dopachrome tautomerase (MIF-2 or DDT) is a member of the macrophage migration inhibitory factor (MIF) superfamily and a close structural homolog to MIF. Circulating MIF-2 has been described to be elevated in patients suffering from sepsis, severe burn injury and after surgery. We sought to evaluate the prognostic value of MIF-2 in critically ill patients. METHODS A total of 72 patients were studied upon admission to the medical intensive care unit (ICU). MIF and MIF-2 levels were assessed and compared to healthy controls. Clinical data, various laboratory parameters and mortality were assessed. RESULTS We found significantly elevated levels of MIF-2 and MIF at admission to the ICU in critically ill patients compared to healthy controls. MIF-2 levels were associated with disease severity as measured by APACHE II scores. MIF-2 levels in ICU patients correlated with biomarkers reflecting organ damage, but were not influenced by acute or chronic kidney disease. Kaplan-Meier analysis revealed distinctly elevated mortality in patients with high plasma MIF-2 levels. CONCLUSIONS MIF-2 levels are elevated in critically ill patients and linked to parameters of organ damage, supporting its value as a potential tool for the assessment of prognosis in critical illness.
Collapse
Affiliation(s)
- Julia Pohl
- University Hospital Essen, West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstr. 55, 45147 Essen, Germany.
| | - Ulrike B Hendgen-Cotta
- University Hospital Essen, West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstr. 55, 45147 Essen, Germany
| | - Pia Stock
- University Hospital Essen, West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstr. 55, 45147 Essen, Germany
| | - Peter Luedike
- University Hospital Essen, West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstr. 55, 45147 Essen, Germany
| | - Tienush Rassaf
- University Hospital Essen, West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
18
|
Exogenous Administration of Recombinant MIF at Physiological Concentrations Failed to Attenuate Infarct Size in a Langendorff Perfused Isolated Mouse Heart Model. Cardiovasc Drugs Ther 2017; 30:445-453. [PMID: 27335054 PMCID: PMC5055564 DOI: 10.1007/s10557-016-6673-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purpose Evidence suggests a two-pronged role of endogenous macrophage migration inhibitory factor (MIF) release in ischemia/reperfusion injury. We aimed to assess whether its exogenous administration confers cardioprotection. Methods Male C57/BL6 mice were randomly allocated to receive recombinant mouse MIF (rMIF) at physiological (ng/mL) concentrations in a dose–response fashion before or after a protocol of 35 min of ischemia and 2 h of reperfusion in an isolated Langendorff-perfused model with infarct size as endpoint. Isolated primary cardiomyocytes were also used for cell survival studies using rMIF at a supra-physiological concentration of 1 μg/mL. Pro-survival kinase activation was also studied using Western blot analyses. Results Exogenous MIF did not elicit a cardioprotective effect either when administered before the ischemic insult or when applied at reperfusion. rMIF did not confer protection when it was applied immediately before or after a hypoxia/reoxygenation insult in primary isolated cardiomyocytes. Consistently, hearts treated with MIF did not show a significant increase in phosphorylated Akt and ERK1/2. Conclusion The exogenous administration of rMIF in a physiological concentration range both before ischemia and at reperfusion did not show cardioprotective effects. Although these results do not address the role of endogenous MIF after an ischemic insult followed by reperfusion, they may limit the potential translational value of rMIF.
Collapse
|
19
|
Abstract
Inflammation is an essential component of the normal mammalian host tissue response and plays an important role during cardiovascular and musculoskeletal diseases. Given the important role of inflammation on the host tissue response after injury, understanding this process represents essential aspects of biomedical research, tissue engineering, and regenerative medicine. Macrophages are central players during the inflammatory response with an extensive role during wound healing. These cells exhibit a spectrum of activation states that span from pro-inflammatory to pro-healing phenotypes. The phenotype of the macrophages can have profound influences on the progression of disease or injury. As such, understanding and subsequent modulation of macrophage phenotype represents an exciting target area for regenerative medicine therapies. In this chapter, we describe the role of macrophages in specific cases of injury and disease. After myocardial infarction, a biphasic response of pro- and anti-inflammatory macrophages are involved in the remodeling process. In volumetric muscle loss, there is an intricate communication between inflammatory cells and progenitor cells affecting repair processes. Osteoarthritis is characterized by increased levels of pro-inflammatory macrophages over an extended period of time with significant impact on the progression of the disease. By harnessing the complex role of macrophages, enhanced therapeutic treatments can be developed that enhance the normal healing response as well as help the survival of therapeutic cells delivered to the site of injury.
Collapse
|
20
|
Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, Engelmann B, Ferrazzi F, Ferdinandy P, Fong A, Fleming I, Gnaiger E, Hernández-Reséndiz S, Kalkhoran SB, Kim MH, Lecour S, Liehn EA, Marber MS, Mayr M, Miura T, Ong SB, Peter K, Sedding D, Singh MK, Suleiman MS, Schnittler HJ, Schulz R, Shim W, Tello D, Vogel CW, Walker M, Li QOY, Yellon DM, Hausenloy DJ, Preissner KT. From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research". Basic Res Cardiol 2016; 111:69. [PMID: 27743118 PMCID: PMC5065587 DOI: 10.1007/s00395-016-0586-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
Collapse
Affiliation(s)
- Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Boening
- Department of Cardiovascular Surgery, Medical School, Justus-Liebig-University, Giessen, Germany
| | - William A Boisvert
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Heerajnarain Bulluck
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Stuart Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Alan Fong
- Department of Cardiology, Sarawak Heart Centre, Sarawak, Malaysia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany
| | - Erich Gnaiger
- D. Swarovski Research Lab, Department of Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck, Innsbruck, Austria
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Cardiovascular Medicine, National Institute of Cardiology, Ignacio Chavez, Mexico, D.F., Mexico
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Moo Hyun Kim
- Department of Cardiology, Dong-A University Hospital, Busan, Korea
| | - Sandrine Lecour
- Hatter Institute and MRC Inter-University Cape Heart Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH University Hospital, Aachen, Germany
| | - Michael S Marber
- Department of Cardiology, The Rayne Institute, St Thomas' Campus, King's College London, London, UK
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Daniel Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - M Saadeh Suleiman
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Hans J Schnittler
- Institute of Anatomy and Vascular Biology, Westfalian-Wilhelms-University, Münster, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Daniel Tello
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Carl-Wilhelm Vogel
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Qilong Oscar Yang Li
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- The Hatter Cardiovascular Institute, University College London, London, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
21
|
Pohl J, Papathanasiou M, Heisler M, Stock P, Kelm M, Hendgen-Cotta UB, Rassaf T, Luedike P. Renal replacement therapy neutralizes elevated MIF levels in septic shock. J Intensive Care 2016; 4:39. [PMID: 27313864 PMCID: PMC4910205 DOI: 10.1186/s40560-016-0163-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is known to amplify the immune response in septic animal models. Few clinical data support this pro-inflammatory role in septic patients. Renal replacement therapy (RRT) as adjuvants in the complex therapy of sepsis has been proposed as a possible approach to eliminate elevated circulating cytokines. Since recent data suggest that MIF can be effectively removed from the circulating blood pool in patients with chronic kidney disease, we here aimed to investigate whether RRT in septic shock can lower plasma levels of this pro-inflammatory cytokine in septic shock patients. METHODS An observational single-center study on an internist intensive care unit (ICU) was conducted. MIF plasma levels and mortality of n = 25 patients with septic shock were assessed with a previously validated method for reliable MIF values. The effect of continuous renal replacement therapy (CRRT) on daily MIF levels and mortality was assessed by comparing patients with and without need for CRRT due to acute kidney injury (AKI). RESULTS MIF plasma levels in patients undergoing CRRT due to septic AKI were steadily decreased compared to those from patients without CRRT hinting at a MIF removal by hemodialysis. MIF release during ICU stay as assessed by MIFAUC was lower in patients undergoing CRRT, and Kaplan-Meier analysis revealed a distinctly lower mortality in patients undergoing CRRT. Analysis of daily MIF levels showed that patients who did not survive septic shock exhibited steadily higher MIF plasma levels and higher MIFAUC compared to those surviving sepsis. Low MIF levels were closely associated with improved survival. CONCLUSIONS This is the first study investigating the effect of efficient MIF removal from the plasma pool of patients with septic shock. Reduction of high circulating MIF by CRRT therapy was accompanied by improved survival. Thus, targeted removal of MIF from the circulating blood pool might be a promising approach to reduce mortality in severe sepsis.
Collapse
Affiliation(s)
- Julia Pohl
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Maria Papathanasiou
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Martin Heisler
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Pia Stock
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Malte Kelm
- Medical Faculty, Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Ulrike B Hendgen-Cotta
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tienush Rassaf
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Peter Luedike
- West-German Heart and Vascular Center Essen, Department of Cardiology and Department ofVascular Medicine, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|