1
|
Brouwers MCGJ, Klop B, Ribalta J, Castro Cabezas M. Familial Combined Hyperlipidemia: Myth or Reality? Curr Atheroscler Rep 2025; 27:45. [PMID: 40167575 PMCID: PMC11961474 DOI: 10.1007/s11883-025-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE OF REVIEW Familial combined hyperlipidemia (FCHL) was first described by Goldstein and co-workers in 1973 as a multiple-type hyperlipidemia in pedigrees with premature myocardial infarction. However, it can be questioned what actually defines FCHL. RECENT FINDINGS Although initially regarded as an autosomal dominant disorder, quantitative trait linkage analyses have revealed multiple genes that are associated with the FCHL phenotype. With the advent of genome-wide association studies and next generation sequencing it has been confirmed that FCHL is a polygenic disorder and the associated gene variants, mostly with a triglyceride-raising effect, are not unique to FCHL. Furthermore, epidemiological studies have demonstrated that the multiple-type hyperlipidemia is also not specifically confined to FCHL. This review provides a historical overview of the metabolic and genetic abnormalities that characterize FCHL. Integration of these findings with recent population-based, genetic studies results in a new pathophysiological concept of FCHL. This model provides practical guidance on how to approach an individual patient with an 'FCHL phenotype'.
Collapse
Affiliation(s)
- M C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht UMC+, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - B Klop
- Department of Cardiology, Anna Hospital, Geldrop, the Netherlands
| | - J Ribalta
- Facultat de Medicina I Ciències de La Salut, Unitat de Recerca en Lípids I Arteriosclerosi, Universitat Rovira I Virgili, Reus, Spain
- Institut d'Investigació Sanitària Père Virgili, Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - M Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands.
- Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Julius Clinical, Zeist, the Netherlands.
| |
Collapse
|
2
|
Meng Y, Han P, Ma X, He Y, Chen H, Ren H. Research Progress on the Mechanism of Acute Hypertriglyceridemic Pancreatitis. Pancreas 2024; 53:e700-e709. [PMID: 38696438 DOI: 10.1097/mpa.0000000000002364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
ABSTRACT The incidence rate of hypertriglyceridemia pancreatitis (HTGP) has experienced a notable increase in recent years, with eclipsing alcohol as the second leading cause of acute pancreatitis (AP). HTGP is often associated with more severe local and systemic complications. Recognized as a metabolic disorder hypertriglyceridemia (HTG), it holds significant relevance in the pathogenesis of HTGP, yet its mechanisms are not fully understood. Both primary (genetic) and secondary (acquired) factors contribute to elevated triglyceride (TG) levels, which concurrently influence the progression of HTGP. This article presents a comprehensive review of the evolving research on HTGP pathogenesis, encompassing lipid synthesis and metabolism, calcium signal transduction, inflammatory mediators, endoplasmic reticulum stress, autophagy, mitochondrial injury by fatty acids, oxidative stress response, genetic factors, and gene mutations. By unraveling the intricate mechanisms underlying HTGP, this article aims to enhance physicians' understanding of the disease and facilitate the development of potential targeted pharmacological interventions for patients.
Collapse
Affiliation(s)
- Yiteng Meng
- From the Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, China
| | - Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaoyu Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yiting He
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hetian Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hongbo Ren
- Department of Gastroenterology, Qilu Hospital, Shandong University, Shandong Province, China
| |
Collapse
|
3
|
Butnariu LI, Gorduza EV, Țarcă E, Pânzaru MC, Popa S, Stoleriu S, Lupu VV, Lupu A, Cojocaru E, Trandafir LM, Moisă ȘM, Florea A, Stătescu L, Bădescu MC. Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome. Diagnostics (Basel) 2023; 13:2348. [PMID: 37510094 PMCID: PMC10378477 DOI: 10.3390/diagnostics13142348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atherogenic dyslipidemia plays a critical role in the development of metabolic syndrome (MetS), being one of its major components, along with central obesity, insulin resistance, and hypertension. In recent years, the development of molecular genetics techniques and extended analysis at the genome or exome level has led to important progress in the identification of genetic factors (heritability) involved in lipid metabolism disorders associated with MetS. In this review, we have proposed to present the current knowledge related to the genetic etiology of atherogenic dyslipidemia, but also possible challenges for future studies. Data from the literature provided by candidate gene-based association studies or extended studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES,) have revealed that atherogenic dyslipidemia presents a marked genetic heterogeneity (monogenic or complex, multifactorial). Despite sustained efforts, many of the genetic factors still remain unidentified (missing heritability). In the future, the identification of new genes and the molecular mechanisms by which they intervene in lipid disorders will allow the development of innovative therapies that act on specific targets. In addition, the use of polygenic risk scores (PRS) or specific biomarkers to identify individuals at increased risk of atherogenic dyslipidemia and/or other components of MetS will allow effective preventive measures and personalized therapy.
Collapse
Affiliation(s)
- Lăcramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Department of Surgery II-Pediatric Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Stoleriu
- Odontology-Periodontology, Fixed Prosthesis Department, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefana Maria Moisă
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Stătescu
- Medical III Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruța Bădescu
- III Internal Medicine Clinic, "St. Spiridon" County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Butnariu LI, Florea L, Badescu MC, Țarcă E, Costache II, Gorduza EV. Etiologic Puzzle of Coronary Artery Disease: How Important Is Genetic Component? LIFE (BASEL, SWITZERLAND) 2022; 12:life12060865. [PMID: 35743896 PMCID: PMC9225091 DOI: 10.3390/life12060865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
In the modern era, coronary artery disease (CAD) has become the most common form of heart disease and, due to the severity of its clinical manifestations and its acute complications, is a major cause of morbidity and mortality worldwide. The phenotypic variability of CAD is correlated with the complex etiology, multifactorial (caused by the interaction of genetic and environmental factors) but also monogenic. The purpose of this review is to present the genetic factors involved in the etiology of CAD and their relationship to the pathogenic mechanisms of the disease. Method: we analyzed data from the literature, starting with candidate gene-based association studies, then continuing with extensive association studies such as Genome-Wide Association Studies (GWAS) and Whole Exome Sequencing (WES). The results of these studies revealed that the number of genetic factors involved in CAD etiology is impressive. The identification of new genetic factors through GWASs offers new perspectives on understanding the complex pathophysiological mechanisms that determine CAD. In conclusion, deciphering the genetic architecture of CAD by extended genomic analysis (GWAS/WES) will establish new therapeutic targets and lead to the development of new treatments. The identification of individuals at high risk for CAD using polygenic risk scores (PRS) will allow early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| | - Laura Florea
- Department of Nefrology—Internal Medicine, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Minerva Codruta Badescu
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (M.C.B.); (E.Ț.)
| | - Irina-Iuliana Costache
- Department of Internal Medicine (Cardiology), “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iași, Romania;
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.I.B.); (E.V.G.)
| |
Collapse
|
5
|
Apolipoprotein A5, a unique modulator of fasting and postprandial triglycerides. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159185. [DOI: 10.1016/j.bbalip.2022.159185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
|
6
|
Basavaraju P, Balasubramani R, Kathiresan DS, Devaraj I, Babu K, Alagarsamy V, Puthamohan VM. Genetic Regulatory Networks of Apolipoproteins and Associated Medical Risks. Front Cardiovasc Med 2022; 8:788852. [PMID: 35071357 PMCID: PMC8770923 DOI: 10.3389/fcvm.2021.788852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Apolipoproteins (APO proteins) are the lipoprotein family proteins that play key roles in transporting lipoproteins all over the body. There are nearly more than twenty members reported in the APO protein family, among which the A, B, C, E, and L play major roles in contributing genetic risks to several disorders. Among these genetic risks, the single nucleotide polymorphisms (SNPs), involving the variation of single nucleotide base pairs, and their contributing polymorphisms play crucial roles in the apolipoprotein family and its concordant disease heterogeneity that have predominantly recurred through the years. In this review, we have contributed a handful of information on such genetic polymorphisms that include APOE, ApoA1/B ratio, and A1/C3/A4/A5 gene cluster-based population genetic studies carried throughout the world, to elaborately discuss the effects of various genetic polymorphisms in imparting various medical conditions, such as obesity, cardiovascular, stroke, Alzheimer's disease, diabetes, vascular complications, and other associated risks.
Collapse
Affiliation(s)
- Preethi Basavaraju
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Rubadevi Balasubramani
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Divya Sri Kathiresan
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Ilakkiyapavai Devaraj
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Kavipriya Babu
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vasanthakumar Alagarsamy
- Biomaterials and Nano-Medicine Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
- *Correspondence: Vinayaga Moorthi Puthamohan
| |
Collapse
|
7
|
Li X, Zhou T, Ma H, Heianza Y, Champagne CM, Williamson DA, Bray GA, Sacks FM, Qi L. Genetic variation in lean body mass, changes of appetite and weight loss in response to diet interventions: The POUNDS Lost trial. Diabetes Obes Metab 2020; 22:2305-2315. [PMID: 32734691 PMCID: PMC8197290 DOI: 10.1111/dom.14155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
AIM To investigate whether the genetic risk score (GRS) for lean body mass (LBM) modified the effects of weight-loss diets on changes in appetite and adiposity among overweight and obese individuals. PARTICIPANTS AND METHODS In the 2-year Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, we included 692 adults who were randomly assigned to one of four diets varying in macronutrient intake. A GRS was calculated using five single nucleotide polymorphisms associated with LBM. RESULTS The LBM-GRS was not associated with the baseline LBM measured by dual-energy x-ray absorptiometry in a subgroup (50%) of the study population. We found that the LBM-GRS had significantly different associations with changes in appetite from baseline to 6 months according to low- or high-fat diet group (P-interaction < 0.001, 0.021, 0.005 and 0.024 for total appetite score, hunger, fullness and prospective consumption, respectively). Lower LBM-GRS (indicating a greater genetic predisposition to LBM) was associated with greater decreases in the total appetite score (P < 0.001), hunger (P = 0.01), fullness (P = 0.001) and prospective consumption (P = 0.019) in participants in the low-fat diet group, whereas no significant associations with these appetite measures were observed in the high-fat diet group. In addition, lower LBM-GRS was associated with greater reduction in body weight (P = 0.003) and waist circumference (P = 0.011) among participants in the low-fat diet group, while no associations were observed in the high-fat diet group. The interactions attenuated, along with weight regain, from 6 months to 2 years. CONCLUSIONS Our findings suggest that genetic variation in LBM may be differentially associated with appetite changes, and may subsequently be related to changes in body weight and waist circumference, according to dietary fat intake.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Catherine M. Champagne
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Donald A. Williamson
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - George A. Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Abstract
Hypertriglyceridemia is one of the most common lipid abnormalities encountered in clinical practice. Many monogenic disorders causing severe hypertriglyceridemia have been identified, but in most patients triglyceride elevations result from a combination of multiple genetic variations with small effects and environmental factors. Common secondary causes include obesity, uncontrolled diabetes, alcohol misuse, and various commonly used drugs. Correcting these factors and optimizing lifestyle choices, including dietary modification, is important before starting drug treatment. The goal of drug treatment is to reduce the risk of pancreatitis in patients with severe hypertriglyceridemia and cardiovascular disease in those with moderate hypertriglyceridemia. This review discusses the various genetic and acquired causes of hypertriglyceridemia, as well as current management strategies. Evidence supporting the different drug and non-drug approaches to treating hypertriglyceridemia is examined, and an easy to adopt step-by-step management strategy is presented.
Collapse
Affiliation(s)
- Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
10
|
Pranavchand R, Reddy BM. Quantitative trait loci at the 11q23.3 chromosomal region related to dyslipidemia in the population of Andhra Pradesh, India. Lipids Health Dis 2017; 16:116. [PMID: 28610615 PMCID: PMC5470178 DOI: 10.1186/s12944-017-0507-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023] Open
Abstract
Background Given the characteristic atherogenic dyslipidemia of south Indian population and crucial role of APOA1, APOC3, APOA4 and APOA5 genes clustered in 11q23.3 chromosomal region in regulating lipoprotein metabolism and cholesterol homeostasis, a large number of recently identified variants are to be explored for their role in regulating the serum lipid parameters among south Indians. Methods Using fluidigm SNP genotyping platform, a prioritized set of 96 SNPs of the 11q23.3 chromosomal region were genotyped on 516 individuals from Hyderabad, India, and its vicinity and aged >45 years. Results The linear regression analysis of the individual lipid traits viz., TC, LDLC, HDLC, VLDL and TG with each of the 78 SNPs that confirm to HWE and with minor allele frequency > 1%, suggests 23 of those to be significantly associated (p ≤ 0.05) with at least one of these quantitative traits. Most importantly, the variant rs632153 is involved in elevating TC, LDLC, TG and VLDLs and probably playing a crucial role in the manifestation of dyslipidemia. Additionally, another three SNPs rs633389, rs2187126 and rs1263163 are found risk conferring to dyslipidemia by elevating LDLC and TC levels in the present population. Further, the ROC (receiver operating curve) analysis for the risk scores and dyslipidemia status yielded a significant area under curve (AUC) = 0.675, suggesting high discriminative power of the risk variants towards the condition. The interaction analysis suggests rs10488699-rs2187126 pair of the BUD13 gene to confer significant risk (Interaction odds ratio = 14.38, P = 7.17 × 105) towards dyslipidemia by elevating the TC levels (β = 37.13, p = 6.614 × 105). On the other hand, the interaction between variants of APOA1 gene and BUD13 and/or ZPR1 regulatory genes at this region are associated with elevated TG and VLDL. Conclusion The variants at 11q23.3 chromosomal region seem to determine the quantitative lipid traits and in turn dyslipidemia in the population of Hyderabad. Particularly, the variants rs632153, rs633389, rs2187126 and rs1263163 might be risk conferring to dyslipidemia by elevating LDLC and TC levels, while the variants of APOC3 and APOA1 genes might be the genetic determinants of elevated triglycerides in the present population. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0507-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rayabarapu Pranavchand
- Molecular Anthropology Group, Biological Anthropology Unit, Indian Statistical Institute, Hyderabad, Telangana, India
| | - Battini Mohan Reddy
- Molecular Anthropology Group, Biological Anthropology Unit, Indian Statistical Institute, Hyderabad, Telangana, India.
| |
Collapse
|
11
|
Silberberg Y, Kupiec M, Sharan R. GLADIATOR: a global approach for elucidating disease modules. Genome Med 2017; 9:48. [PMID: 28549478 PMCID: PMC5446740 DOI: 10.1186/s13073-017-0435-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/04/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Understanding the genetic basis of disease is an important challenge in biology and medicine. The observation that disease-related proteins often interact with one another has motivated numerous network-based approaches for deciphering disease mechanisms. In particular, protein-protein interaction networks were successfully used to illuminate disease modules, i.e., interacting proteins working in concert to drive a disease. The identification of these modules can further our understanding of disease mechanisms. METHODS We devised a global method for the prediction of multiple disease modules simultaneously named GLADIATOR (GLobal Approach for DIsease AssociaTed mOdule Reconstruction). GLADIATOR relies on a gold-standard disease phenotypic similarity to obtain a pan-disease view of the underlying modules. To traverse the search space of potential disease modules, we applied a simulated annealing algorithm aimed at maximizing the correlation between module similarity and the gold-standard phenotypic similarity. Importantly, this optimization is employed over hundreds of diseases simultaneously. RESULTS GLADIATOR's predicted modules highly agree with current knowledge about disease-related proteins. Furthermore, the modules exhibit high coherence with respect to functional annotations and are highly enriched with known curated pathways, outperforming previous methods. Examination of the predicted proteins shared by similar diseases demonstrates the diverse role of these proteins in mediating related processes across similar diseases. Last, we provide a detailed analysis of the suggested molecular mechanism predicted by GLADIATOR for hyperinsulinism, suggesting novel proteins involved in its pathology. CONCLUSIONS GLADIATOR predicts disease modules by integrating knowledge of disease-related proteins and phenotypes across multiple diseases. The predicted modules are functionally coherent and are more in line with current biological knowledge compared to modules obtained using previous disease-centric methods. The source code for GLADIATOR can be downloaded from http://www.cs.tau.ac.il/~roded/GLADIATOR.zip .
Collapse
Affiliation(s)
- Yael Silberberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Roded Sharan
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Pranavchand R, Kumar AS, Reddy BM. Genetic determinants of clinical heterogeneity of the coronary artery disease in the population of Hyderabad, India. Hum Genomics 2017; 11:3. [PMID: 28257648 PMCID: PMC5336666 DOI: 10.1186/s40246-017-0099-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/22/2017] [Indexed: 01/11/2023] Open
Abstract
Background Genetic predisposition to the clinical categories of coronary artery disease (anatomical viz., insignificant, single, double, and triple vessel diseases and phenotypic severity categories viz., angina, acute coronary syndrome, and myocardial infarction) is poorly understood. Particularly, the apolipoprotein genes clustered at 11q23.3 chromosomal region play a vital role in cholesterol homeostasis, and a large number of SNPs identified in this region need to be explored for their association with the clinical categories of CAD. Methods Using fluidigm SNP genotyping platform, a prioritized set of 96 SNPs of 11q23.3 chromosomal region were genotyped on 508 CAD cases and 516 ethnicity matched controls, enrolled from Hyderabad, India, and its vicinity. Results The association analysis suggests 19 and 15 SNPs to be significantly associated (p ≤ 0.05) with at least one of the anatomical and/or phenotypic severity categories, respectively. Overall, the six SNPs rs17440396:G>A, rs6589566:A>G, rs2849165:G>A, rs10488699:G>A, rs1263163:G>A, and rs1263171:G>A were significant even after correction for multiple testing. Three of these (rs17440396:G>A, rs6589566:A>G, and rs2849165:G>A) that belong to BUD13, ZPR1, and APOA5-APOA4 intergenic regions, respectively, were found to be associated across the anatomical categories of CAD. However, no particular trend in the genotypic odds ratios with the increasing severity was apparent. The association analysis of the variants with phenotypic severity categories suggests that a high degree of phenotypic severity could be a result of more number of risk alleles. While the risk score analysis suggests high discriminative power of the variants towards the individual clinical categories of CAD, the complex network of interactions seen between the intronic variants of BUD13 and ZPR1 regulatory genes and intergenic variants of APOA5-APOA4 suggests pleiotropic effects of regulatory genes in the manifestation of these CAD categories. Conclusion The complex network of interactions observed in the present study between the regulatory and protein-coding genes suggests their role in the manifestation of distinct clinical categories of CAD, which needs to be functionally validated. Electronic supplementary material The online version of this article (doi:10.1186/s40246-017-0099-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rayabarapu Pranavchand
- Molecular Anthropology Group, Biological Anthropology Unit, Indian Statistical Institute, Hyderabad, India
| | | | - Battini Mohan Reddy
- Molecular Anthropology Group, Biological Anthropology Unit, Indian Statistical Institute, Hyderabad, India.
| |
Collapse
|
13
|
Haslam DE, McKeown NM, Herman MA, Lichtenstein AH, Dashti HS. Interactions between Genetics and Sugar-Sweetened Beverage Consumption on Health Outcomes: A Review of Gene-Diet Interaction Studies. Front Endocrinol (Lausanne) 2017; 8:368. [PMID: 29375475 PMCID: PMC5767076 DOI: 10.3389/fendo.2017.00368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/15/2017] [Indexed: 01/23/2023] Open
Abstract
The consumption of sugar-sweetened beverages (SSB), which includes soft drinks, fruit drinks, and other energy drinks, is associated with excess energy intake and increased risk for chronic metabolic disease among children and adults. Thus, reducing SSB consumption is an important strategy to prevent the onset of chronic diseases, and achieve and maintain a healthy body weight. The mechanisms by which excessive SSB consumption may contribute to complex chronic diseases may partially depend on an individual's genetic predisposition. Gene-SSB interaction investigations, either limited to single genetic loci or including multiple genetic variants, aim to use genomic information to define mechanistic pathways linking added sugar consumption from SSBs to those complex diseases. The purpose of this review is to summarize the available gene-SSB interaction studies investigating the relationships between genetics, SSB consumption, and various health outcomes. Current evidence suggests there are genetic predispositions for an association between SSB intake and adiposity; evidence for a genetic predisposition between SSB and type 2 diabetes or cardiovascular disease is limited.
Collapse
Affiliation(s)
- Danielle E. Haslam
- Nutritional Epidemiology Program, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Nicola M. McKeown
- Nutritional Epidemiology Program, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Mark A. Herman
- Division Of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Hassan S. Dashti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, United States
- *Correspondence: Hassan S. Dashti,
| |
Collapse
|
14
|
Ellis KL, Pang J, Chan DC, Hooper AJ, Bell DA, Burnett JR, Watts GF. Familial combined hyperlipidemia and hyperlipoprotein(a) as phenotypic mimics of familial hypercholesterolemia: Frequencies, associations and predictions. J Clin Lipidol 2016; 10:1329-1337.e3. [DOI: 10.1016/j.jacl.2016.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
|
15
|
Li S, Hu B, Wang Y, Wu D, Jin L, Wang X. Influences of APOA5 variants on plasma triglyceride levels in Uyghur population. PLoS One 2014; 9:e110258. [PMID: 25313938 PMCID: PMC4196964 DOI: 10.1371/journal.pone.0110258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Single nucleotide polymorphisms (SNPs) in apolipoprotein A5 (APOA5) gene are associated with triglyceride (TG) levels. However, the minor allele frequencies and linkage disequilibriums (LDs) of the SNPs in addition to their effects on TG levels vary greatly between Caucasians and East Asians. The distributions of the SNPs/haplotypes and their associations with TG levels in Uyghur population, an admixture population of Caucasians and East Asians, have not been reported to date. Here, we performed a cross-sectional study to address these. METHODS Genotyping of four SNPs in APOA5 (rs662799, rs3135506, rs2075291, and rs2266788) was performed in 1174 unrelated Uyghur subjects. SNP/haplotype and TG association analyses were conducted. RESULTS The frequencies of the SNPs in Uyghurs were in between those in Caucasians and East Asians. The LD between rs662799 and rs2266788 in Uyghurs was stronger than that in East Asians but weaker than that in Caucasians, and the four SNPs resulted in four haplotypes (TGGT, CGGC, TCGT, and CGTT arranged in the order of rs662799, rs3135506, rs2075291, and rs2266788) representing 99.2% of the population. All the four SNPs were significantly associated with TG levels. Compared with non-carriers, carriers of rs662799-C, rs3135506-C, rs2075291-T, and rs2266788-C alleles had 16.0%, 15.1%, 17.1%, and 12.4% higher TG levels, respectively. When haplotype TGGT was defined as the reference, the haplotypes CGGC, TCGT, and CGTT resulted in 16.1%, 19.0%, and 19.8% higher TG levels, respectively. The proportions of variance in TG explained by APOA5 locus were 2.5%, 0.3%, 0.4%, and 1.9% for single SNP rs662799, rs3135506, rs2075291, and rs2266788, respectively, and 3.0% for the haplotypes constructed by them. CONCLUSIONS The association profiles between the SNPs and haplotypes at APOA5 locus and TG levels in this admixture population differed from those in Caucasians and East Asians. The functions of these SNPs and haplotypes need to be elucidated comprehensively.
Collapse
Affiliation(s)
- Shuyuan Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Bin Hu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yi Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Di Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Xiaofeng Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| |
Collapse
|
16
|
Di Taranto MD, Staiano A, D'Agostino MN, D'Angelo A, Bloise E, Morgante A, Marotta G, Gentile M, Rubba P, Fortunato G. Association of USF1 and APOA5 polymorphisms with familial combined hyperlipidemia in an Italian population. Mol Cell Probes 2014; 29:19-24. [PMID: 25308402 DOI: 10.1016/j.mcp.2014.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Familial combined hyperlipidemia (FCH) is a polygenic and multifactorial disease characterized by a variable phenotype showing increased levels of triglycerides and/or cholesterol. The aim of this study was to identify single nucleotides (SNPs) in lipid-related genes associated with FCH. METHODS AND RESULTS Twenty SNPs in lipid-related genes were studied in 142 control subjects and 165 FCH patients after excluding patients with mutations in the LDLR gene and patients with the E2/E2 genotype of APOE. In particular, we studied the 9996G > A (rs2073658) and 11235C > T (rs3737787) variants in the Upstream Stimulatory Factor 1 gene (USF1), and the -1131T > C (rs662799) and S19W (rs3135506) variants in the Apolipoprotein A-V gene (APOA5). We found that the frequencies of these variants differed between patients and controls and that are associated with different lipid profiles. At multivariate logistic regression SNP S19W in APOA5 remained significantly associated with FCH independently of age, sex, BMI, cholesterol and triglycerides. CONCLUSIONS Our results show that the USF1 and APOA5 polymorphisms are associated with FCH and that the S19W SNP in the APOA5 gene is associated to the disease independently of total cholesterol, triglycerides and BMI. However, more extensive studies including other SNPs such as rs2516839 in USF1, are required.
Collapse
Affiliation(s)
| | - Antonino Staiano
- Dipartimento di Scienze e Tecnologie, Università di Napoli Parthenope, Isola C4, Centro Direzionale, 80143 Napoli, Italy
| | - Maria Nicoletta D'Agostino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C. a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Antonietta D'Angelo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C. a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Elena Bloise
- CEINGE Biotecnologie Avanzate S.C. a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Alberto Morgante
- CEINGE Biotecnologie Avanzate S.C. a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Napoli, Italy; CEINGE Biotecnologie Avanzate S.C. a r.l., Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
17
|
Agrawal S, Mastana S. Genetics of coronary heart disease with reference to ApoAI-CIII-AIV gene region. World J Cardiol 2014; 6:755-763. [PMID: 25228954 PMCID: PMC4163704 DOI: 10.4330/wjc.v6.i8.755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/19/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are affected by multiple factors like genetic as well as environmental hence they reveal factorial nature. The evidences that genetic factors are susceptible for developing cardiovascular diseases come from twin studies and familial aggregation. Different ethnic populations reveal differences in the prevalence coronary artery disease (CAD) pointing towards the genetic susceptibility. With progression in molecular techniques different developments have been made to comprehend the disease physiology. Molecular markers have also assisted to recognize genes that may provide evidences to evaluate the role of genetic factors in causation of susceptibility towards CAD. Numerous studies suggest the contribution of specific “candidate genes”, which correlate with various roles/pathways that are involved in the coronary heart disease. Different studies have revealed that there are large numbers of genes which are involved towards the predisposition of CAD. However, these reports are not consistent. One of the reasons could be weak contribution of genetic susceptibility of these genes. Genome wide associations show different chromosomal locations which dock, earlier unknown, genes which may attribute to CAD. In the present review different ApoAI-CIII-AIV gene clusters have been discussed.
Collapse
|
18
|
Klop B, Verseyden C, Ribalta J, Salazar J, Masana L, Cabezas MC. MTP gene polymorphisms and postprandial lipemia in familial combined hyperlipidemia: Effects of treatment with atorvastatin. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 26:49-57. [DOI: 10.1016/j.arteri.2013.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
|
19
|
Horswell SD, Fryer LGD, Hutchison CE, Zindrou D, Speedy HE, Town MM, Duncan EJ, Sivapackianathan R, Patel HN, Jones EL, Braithwaite A, Salm MPA, Neuwirth CKY, Potter E, Anderson JR, Taylor KM, Seed M, Betteridge DJ, Crook MA, Wierzbicki AS, Scott J, Naoumova RP, Shoulders CC. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients. J Lipid Res 2013; 54:3491-505. [PMID: 24103848 DOI: 10.1194/jlr.m041814] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.
Collapse
Affiliation(s)
- Stuart D Horswell
- Medical Research Council, Clinical Sciences Centre, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
ZHOU JIANQING, XU LIMIN, HUANG RONGSTEPHANIE, HUANG YI, LE YANPING, JIANG DANJIE, YANG XI, XU WEIFENG, HUANG XIAOYAN, DONG CHANGZHENG, YE MENG, LIAN JIANGFANG, DUAN SHIWEI. Apolipoprotein A5 gene variants and the risk of coronary heart disease: a case‑control study and meta‑analysis. Mol Med Rep 2013; 8:1175-82. [PMID: 23970179 PMCID: PMC3981035 DOI: 10.3892/mmr.2013.1642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 08/12/2013] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that apolipoprotein A5 (APOA5) gene variants are genetic determinants of the concentration of triglycerides, which are a known risk factor for coronary heart disease (CHD). Using the standardized coronary angiography method, 290 CHD patients and 198 non‑CHD controls were recruited from Ningbo Lihuili Hospital. In addition, 331 unrelated healthy volunteers were recruited as healthy controls from Ningbo Ximen Community residents. Three variants of the APOA5 gene, S19W, ‑1131T>C and 553G>T, were analyzed for their association with CHD. Under a dominant inheritance model, ‑1131CT>C was shown to be a CHD risk factor (P=0.030; OR, 1.422; 95% CI, 1.036‑1.952). The single nucleotide polymorphism, 553G>T, was found to correlate with the severity of CHD in males (P=0.032). Meta‑analysis showed that ‑1131T>C was significantly associated with CHD (P<0.0001). By contrast, negative correlations with CHD were observed for S19W and 553G>T. In the present case‑control study, APOA5 gene variants were not found to correlate with the risk of CHD in the populations studied; however, ‑1131CT>C was shown to be a CHD risk factor under a dominant inheritance model. Meta‑analysis showed a significant contribution of ‑1131T>C to the risk of CHD, implying an ethnic difference in APOA5 gene variants.
Collapse
Affiliation(s)
- JIANQING ZHOU
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - LIMIN XU
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | | | - YI HUANG
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - YANPING LE
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - DANJIE JIANG
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - XI YANG
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - WEIFENG XU
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - XIAOYAN HUANG
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - CHANGZHENG DONG
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - MENG YE
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - JIANGFANG LIAN
- Ningbo Medical Center, Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China
| | - SHIWEI DUAN
- Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
21
|
Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, Abete P, Rengo F, Ferroni P, Sacco RL, Rundek T. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics 2012; 13:595-613. [PMID: 22462751 DOI: 10.2217/pgs.12.14] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke remains a leading cause of death worldwide and the first cause of disability in the western world. Ischemic stroke (IS) accounts for almost 80% of the total cases of strokes and is a complex and multifactorial disease caused by the combination of vascular risk factors, environment and genetic factors. Investigations of the genetics of atherosclerosis and IS has greatly enhanced our knowledge of this complex multifactorial disease. In this article we sought to review common single-gene disorders relevant to IS, summarize candidate gene and genome-wide studies aimed at discovering genetic stroke risk factors and subclinical phenotypes, and to briefly discuss pharmacogenetics related to stroke treatments. Genetics of IS is, in fact, one of the most promising research frontiers and genetic testing may be helpful for novel drug discoveries as well as for appropriate drug and dose selection for treatment of patients with cerebrovascular disease.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brouwers MCGJ, van Greevenbroek MMJ, Stehouwer CDA, de Graaf J, Stalenhoef AFH. The genetics of familial combined hyperlipidaemia. Nat Rev Endocrinol 2012; 8:352-62. [PMID: 22330738 DOI: 10.1038/nrendo.2012.15] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Almost 40 years after the first description of familial combined hyperlipidaemia (FCHL) as a discrete entity, the genetic and metabolic basis of this prevalent disease has yet to be fully unveiled. In general, two strategies have been applied to elucidate its complex genetic background, the candidate-gene and the linkage approach, which have yielded an extensive list of genes associated with FCHL or its related traits, with a variable degree of scientific evidence. Some genes influence the FCHL phenotype in many pedigrees, whereas others are responsible for the affected state in only one kindred, thereby adding to the genetic and phenotypic heterogeneity of FCHL. This Review outlines the individual genes that have been described in FCHL and how these genes can be incorporated into the current concept of metabolic pathways resulting in FCHL: adipose tissue dysfunction, hepatic fat accumulation and overproduction, disturbed metabolism and delayed clearance of apolipoprotein-B-containing particles. Genes that affect metabolism and clearance of plasma lipoprotein particles have been most thoroughly studied. The adoption of new traits, in addition to the classic plasma lipid traits, could aid in the identification of new genes implicated in other pathways in FCHL. Moreover, systems genetic analysis, which integrates genetic polymorphisms with data on gene expression levels, lipidomics or metabolomics, will attribute functions to genetic variants in addition to revealing new genes.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine and Endocrinology, Maastricht University Medical Centre, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Daneshpour MS, Faam B, Mansournia MA, Hedayati M, Halalkhor S, Mesbah-Namin SA, Shojaei S, Zarkesh M, Azizi F. Haplotype analysis of Apo AI-CIII-AIV gene cluster and lipids level: Tehran Lipid and Glucose Study. Endocrine 2012; 41:103-10. [PMID: 22105741 DOI: 10.1007/s12020-011-9526-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022]
Abstract
Iranian populations show an increased tendency for abnormal lipid levels and high risk of Coronary artery disease. Considering the important role played by the ApoAI-CIII-AIV gene cluster in the regulation of the level and metabolism of lipids, this study aimed at elucidating the association between five single nucleotide polymorphisms on the Apo11q cluster gene and lipid levels. A cross-sectional study of 823 subjects (340 males and 483 females) from the Tehran lipid and glucose study (TLGS) was conducted. Levels of TG, Chol, HDL-C, Apo AI, Apo AIV, Apo B, and Apo CIII were measured, and the selected segments of the APOAI-CIII-AIV gene cluster were amplified by PCR and the polymorphisms were revealed by RFLP using restriction enzymes. The allele frequencies for each SNP between males and females were not significantly different. The distribution of Genotypes and alleles was in Hardy-Weinberg equilibrium except for Apo AI (+83C>T). The results showed a significant association between TG, HDL-C, HDL(2), Apo AI, and Apo B levels and the presence of some alleles in the polymorphisms studied. After haplotype analysis not only did the association between these variables and SNPs remain but also levels of Chol and LDL-C were added. This study demonstrates that the level of lipids such as TG, HDL-C, HDL(2), Apo AI, and Apo B, maybe regulated partly by genetic factors and their haplotype within the Apo11q gene cluster.
Collapse
Affiliation(s)
- Maryam S Daneshpour
- Obesity Research Center, Research Institute for Endocrine Sciences, Shaheed Beheshti University of Medical Sciences, P.O. Box 19195-4763, Tehran, I.R. Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels. Lipids Health Dis 2011; 10:140. [PMID: 21854571 PMCID: PMC3170230 DOI: 10.1186/1476-511x-10-140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/19/2011] [Indexed: 01/08/2023] Open
Abstract
Background The association of single nucleotide polymorphisms (SNPs) in the apolipoprotein (Apo) A1/C3/A4/A5 gene cluster and serum lipid profiles is inconsistent. The present study was undertaken to detect the association between the ApoA1/C3/A5 gene polymorphisms and their haplotypes with serum lipid levels in the general Chinese population. Methods A total of 1030 unrelated subjects (492 males and 538 females) aged 15-89 were randomly selected from our previous stratified randomized cluster samples. Genotyping of the ApoA1 -75 bp G>A, ApoC3 3238C>G, ApoA5 -1131T>C, ApoA5 c.553G>T and ApoA5 c.457G>A was performed by polymerse chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Pair-wise linkage disequilibria and haplotype analysis among the five SNPs were estimated. Results The levels of high-density lipoprotein cholesterol (HDL-C) and ApoA1 were lower in males than in femailes (P < 0.05 for each). The allelic and genotypic frequencies of the SNPs were no significant difference between males and females except ApoC3 3238C>G. There were 11 haplotypes with a frequency >1% identified in the cluster in our population. At the global level, the haplotypes comprised of all five SNPs were significantly associated with all seven lipid traits. In particular, haplotype G-G-C-C-A (6%; in the order of ApoA5 c.553G>T, ApoA5 c.457G>A, ApoA5 -1131T>C, ApoC3 3238C>G, and ApoA1 -75bp G>A) and G-A-T-C-G (4%) showed consistent association with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), ApoA1, ApoB, and the ApoA1/ApoB ratio. In addition, carriers of haplotype G-G-T-C-G (26%) had increased serum concentration of HDL-C and ApoA1, whereas carriers of G-G-C-G-G (15%) had high concentrations of TC, triglyceride (TG) and ApoB. We also found that haplotypes with five SNPs explain much more serum lipid variation than any single SNP alone, especially for TG (4.4% for haplotype vs. 2.4% for -1131T>C max based on R-square) and HDL-C (5.1% for haplotype vs. 0.9% for c.553G>T based on R-square). Serum lipid parameters were also correlated with genotypes and several environment factors. Conclusions Several common SNPs and their haplotypes in the ApoA1/C3/A5 gene cluster are closely associated with modifications of serum lipid parameters in the general Chinese population.
Collapse
|
25
|
Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 2011; 123:2292-333. [PMID: 21502576 DOI: 10.1161/cir.0b013e3182160726] [Citation(s) in RCA: 1317] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Bhaskar S, Ganesan M, Chandak GR, Mani R, Idris MM, Khaja N, Gulla S, Kumar U, Movva S, Vattam KK, Eppa K, Hasan Q, Pulakurthy UR. Association of PON1 and APOA5 gene polymorphisms in a cohort of Indian patients having coronary artery disease with and without type 2 diabetes. Genet Test Mol Biomarkers 2011; 15:507-12. [PMID: 21438666 DOI: 10.1089/gtmb.2010.0207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of coronary artery disease (CAD) and is responsible for a great deal of morbidity and mortality in Asian Indians. Several gene polymorphisms have been associated with CAD and T2DM in different ethnic groups. This study will give an insight about the association of two selected candidate gene polymorphisms; paraoxonase1 (PON1) Q192R and apolipoprotein A5 (APOA5) -1131T>C were assessed in a cohort of South Indian patients having CAD with and without T2DM. Polymerase chain reaction-based genotyping of PON1 Q192R (rs662) and APOA5-1131T>C (rs662799) polymorphism was carried out in 520 individuals, including 250 CAD patients (160 with T2DM and 90 without T2DM), 150 T2DM patients with no identified CAD, and 120 normal healthy sex- and age-matched individuals as controls. The PON1 192RR genotype and R allele frequency were elevated in both CAD and T2DM patients when compared with controls; however, only CAD patients with T2DM showed a statistical significance (p=0.023; OR=1.49; 95% CI: 1.04-2.12) when compared with controls. The APOA5-1131CC genotype and C allele also showed a significant association between the CAD+T2DM patients when compared with CAD without T2DM and healthy controls (p=0.012; OR=1.71; 95% CI: 1.0-2.67). An additive interaction between the PON1 RR and APOA5 TC genotypes was identified between the T2DM and CAD patients (p=0.028 and 0.0382, respectively). PON1 and APOA5 polymorphisms may serve as biomarkers in the South Indian population to identify T2DM patients who are at risk of developing CAD.
Collapse
Affiliation(s)
- Seema Bhaskar
- Genome Research Group, Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cabré A, Lázaro I, Cofán M, Jarauta E, Plana N, Garcia-Otín AL, Ascaso JF, Ferré R, Civeira F, Ros E, Masana L. FABP4 plasma levels are increased in familial combined hyperlipidemia. J Lipid Res 2010; 51:1173-8. [PMID: 20388924 DOI: 10.1194/jlr.m900066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lipid profile of familial combined hyperlipidemia (FCHL) shares some characteristics with atherogenic dyslipidemia seen in diabetes, metabolic syndrome, and obesity. Adipocyte fatty acid-binding protein 4 (FABP4) appears to be a determinant of atherogenic dyslipidemia. We examined relationships between FABP4 plasma concentrations, dyslipidemia, and metabolic variables in patients with FCHL. We studied 273 unrelated FCHL patients and 118 control subjects. FABP4 was higher in FCHL than controls, with mean levels of 21.8 (10.1) microg/l and 19.2 (9.2) microg/l, respectively (adjusted P= 0.012). In FCHL, FABP4 correlated to body mass index (BMI), waist circumference, insulin levels, and homeostasis model assessment (HOMA) index (all P< 0.05), but not to lipid levels, whereas in obese patients, FABP4 correlated to triglyceride levels (r = 0.303, P= 0.014) and very low density lipoprotein size (r = 0.502, P = 0.001), as determined by nuclear magnetic resonance. Associations of FABP4 with BMI and waist circumference, but not with insulin levels, persisted in this subgroup. Plasma FABP4 does not influence the lipid phenotype of FCHL. In a small subgroup of obese FCHL, FABP4 levels were associated with triglyceride-rich lipoproteins independent of insulin resistance. These results support a hyperlipidemic mechanism of FCHL different from similar metabolic conditions where fat mass is strongly related to FABP4 and hypertriglyceridemia.
Collapse
Affiliation(s)
- Anna Cabré
- Unitat de Recerca de Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Servei de Medicina Interna, Hospital Universitari Sant Joan de Reus Reus, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010. [PMID: 20498921 DOI: 10.2119/molmed.2010-00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Ken-Dror G, Talmud PJ, Humphries SE, Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol Med 2010; 16:389-99. [PMID: 20498921 DOI: 10.2119/molmed.2010.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/18/2010] [Indexed: 11/06/2022] Open
Abstract
The role of common APOE variants on plasma lipids, particularly low density lipoprotein (LDL) levels, and coronary heart disease (CHD) risk is well known; the influence of variation in the other nearby apolipoprotein genes APOC1, APOC4 and APOC2 is unclear. This study examines the association between APOE/C1/C4/C2 gene cluster variation using tagging SNPs and plasma lipid concentration along with risk of CHD in a prospective cohort. Genotypes for 11 common APOE/C1/C4/C2 SNPs were determined in 2,767 middle-aged (49 to 64 years) men from the Second Northwick Park Heart Study, with 275 CHD events over a 15-year follow-up period. Seven SNPs showed significant associations with one or more lipid trait in univariate analysis. Multivariate and haplotype analysis showed that the APOE genotypes are most strongly associated with effects on LDL-C and apoB concentration (explaining 3.4% of the LDL-C variance) while the other SNPs in this gene cluster explained an additional 1.2%. Haplotypes in APOC2 and APOC4 were associated with modest effects on HDL-C and apoAI (explaining respectively 1.4% and 1.2%). Carriers of the APOE ɛ2 SNP had a significantly lower risk of CHD hazard ratio (HR) of 0.63 (95% confidence interval [CI]: 0.42-0.95), as did carriers of the APOC2 SNP rs5127 (HR = 0.72, 95% CI: 0.56-0.93), while carriers of APOC1 SNP rs4803770 had higher risk of CHD (HR = 1.36, 95% CI: 1.04-1.78) compared with noncarriers. While the common APOE polymorphism explains the majority of the locus genetic determinants of plasma lipid levels, additional SNPs in the APOC1/C2 region may contribute to CHD risk, but these effects require confirmation.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Centre for Cardiovascular Genetics, BHF Laboratories, The Rayne Building, Department of Medicine, Royal Free and University College Medical School, 5 University Street, London, United Kingdom
| | | | | | | |
Collapse
|
30
|
Stepwise positive association between APOA5 minor allele frequencies and increasing plasma triglyceride quartiles in random patients with hypertriglyceridemia of unclarified origin. Pathol Oncol Res 2010; 17:39-44. [PMID: 20490738 DOI: 10.1007/s12253-010-9273-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.
Collapse
|
31
|
Cabré A, Lázaro I, Cofán M, Jarauta E, Plana N, Garcia-Otín AL, Ascaso JF, Ferré R, Civeira F, Ros E, Masana L. FABP4 plasma levels are increased in familial combined hyperlipidemia. J Lipid Res 2010. [DOI: 10.1194/jlr.m900066-jlr200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Ken-Dror G, Goldbourt U, Dankner R. Different effects of apolipoprotein A5 SNPs and haplotypes on triglyceride concentration in three ethnic origins. J Hum Genet 2010; 55:300-7. [PMID: 20395964 DOI: 10.1038/jhg.2010.27] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several polymorphisms in the ApoA5 gene emerged as important candidate genes in triglyceride metabolism. The aim of this study was to determine the associations between ApoA5 polymorphisms, plasma triglyceride concentrations and the presence of cardiovascular disease (CVD) in three ethnic origins. Genotypes for 15 single nucleotide polymorphisms (SNPs) were determined in 659 older adults (mean age 71+/-7 years) who immigrated to Israel or whose ancestors originated from East Europe (Ashkenazi), North Africa, Asia (Sephardic) or Yemen (Yemenite). The minor alleles of the four common SNPs (rs662799, rs651821, rs2072560 and rs2266788) are associated with an increase of 27-38% in triglyceride concentration among Ashkenazi and Yemenite Jews compared with the major alleles, but not among those of Sephardic origin. Conversely, among the Sephardic group, the presence of the minor allele in SNP rs3135506 compared with the major allele was associated with an increase of 34% in triglyceride concentration. The four SNPs were in significant linkage disequilibrium (D'=0.96-0.99), resulting in three haplotypes H1, H2 and H3, representing 98-99% of the population. Haplotype H2 was significantly associated with triglyceride concentration among Ashkenazi and Yemenite but not among Sephardic Jews. Conversely, haplotype H3 was associated with triglyceride concentration in Sephardic but not in Ashkenazi and Yemenite Jews. Ashkenazi carriers of H2 haplotype had a CVD odds ratio of 2.19 (95% CI: 1.05-4.58) compared with H1 (the most frequent), after adjustment for all other risk factors. These results suggest that different SNPs in ApoA5 polymorphisms may be associated with triglyceride concentration and CVD in each of these ethnic origins.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Division of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
33
|
Charrière S, Cugnet C, Guitard M, Bernard S, Groisne L, Charcosset M, Pruneta-Deloche V, Merlin M, Billon S, Delay M, Sassolas A, Moulin P, Marçais C. Modulation of phenotypic expression of APOA5 Q97X and L242P mutations. Atherosclerosis 2009; 207:150-6. [DOI: 10.1016/j.atherosclerosis.2009.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 12/26/2022]
|
34
|
Liu ZK, Hu M, Baum L, Thomas GN, Tomlinson B. Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyperlipidaemia in Hong Kong Chinese. Atherosclerosis 2009; 208:427-32. [PMID: 19732897 DOI: 10.1016/j.atherosclerosis.2009.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/30/2009] [Accepted: 08/09/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Familial combined hyperlipidaemia (FCH) is the most common genetic dyslipidaemia associated with coronary artery disease. Single nucleotide polymorphisms (SNPs) and haplotypes in the APOA1/C3/A4/A5 gene cluster are associated with FCH in Caucasians and with elevated triglycerides (TG) in various ethnic groups. We examined these associations with FCH in Hong Kong Chinese. METHODS Fifty-six Chinese FCH patients and 176 unrelated controls were studied. Thirteen SNPs in the APOA1/C3/A4/A5 cluster were genotyped. RESULTS Four alleles in APOA5 were associated with FCH (P<0.001). The -1131T>C (rs662799) and -3A>G (rs651821) SNPs in APOA5 were in almost complete linkage disequilibrium (LD, r(2)=0.99), and their minor alleles were more frequent (P<0.001) in FCH than controls (0.60 vs. 0.24). The odds ratio (OR) for FCH was 6.2 (95% CI, 2.6-14.8) and 6.1 (2.6-14.6) per copy of -1131C and -3G, respectively, and 24.6 (8.4-72.0) and 24.4 (8.4-70.9) in -1131C and -3G homozygotes, respectively, as compared to wild-type homozygotes. The 1891T>C (rs2266788) SNP was in LD (r(2)=0.68) with -1131T>C and -3A>G, and the minor allele was more frequent in FCH than controls (0.42 vs. 0.19, P<0.001). The 553G>T (rs2075291) nonsynonymous variant was also associated with FCH (0.15 vs. 0.04, P=0.001) and, along with -3A>G (or -1131T>C) and 1891T>C, contributed to haplotypes predicting FCH. The two tightly linked SNPs, -1131T>C and -3A>G polymorphism were significantly associated with lipid traits in all subjects combined, with variant homozygous subjects having higher TG and LDL-C and lower HDL-C levels. CONCLUSIONS Some common polymorphisms and haplotypes in APOA5 are closely associated with FCH in Hong Kong Chinese, and these differ from those found in Caucasians.
Collapse
Affiliation(s)
- Zhi-Kai Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
35
|
Chen ES, Mazzotti DR, Furuya TK, Cendoroglo MS, Ramos LR, Araujo LQ, Burbano RR, de Arruda Cardoso Smith M. Apolipoprotein A1 gene polymorphisms as risk factors for hypertension and obesity. Clin Exp Med 2009; 9:319-25. [DOI: 10.1007/s10238-009-0051-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/05/2009] [Indexed: 11/28/2022]
|
36
|
Pharmacogenetic association of the APOA1/C3/A4/A5 gene cluster and lipid responses to fenofibrate: the genetics of lipid-lowering drugs and diet network study. Pharmacogenet Genomics 2009; 19:161-9. [PMID: 19057464 DOI: 10.1097/fpc.0b013e32831e030e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The apolipoproteins (APOA1/C3/A4/A5) are key components in modulating lipoprotein metabolism. It is unknown whether variants at the APOA1/C3/A4/A5 gene cluster are associated with lipid response to pharmacologic intervention. METHODS AND RESULTS Plasma triglycerides (TGs) and high-density lipoprotein (HDL) levels were measured in 861 Genetics of Lipid-Lowering Drugs and Diet Network study participants who underwent a 3-week fenofibrate trial. We examined 18 common single nucleotide polymorphisms (SNPs) spanning the APOA1/C3/A4/A5 genes to investigate the effects of variants at the gene cluster on lipid response to fenofibrate treatment. We found that the minor alleles of the SNPs rs3135506 (APOA5_S19W), rs5104 (APOA4_N147S), rs4520 (APOC3_G34G), and rs5128 (APOC3_3U386) were associated with enhanced TG response to fenofibrate treatment (P= 0.0004-0.018). The minor allele of SNP rs2854117 (APOC3_M482) was associated with reduced rather than enhanced TG response (P= 0.026). The SNP rs3135506 (APOA5_S19W) was associated with HDL response, with minor allele related to reduced HDL response to fenofibrate (P= 0.002). Association analyses on haplotype provided corroborative evidence to single SNP association analyses. The common haplotypes H2, H3, and H5 were significantly associated with reduced TG response to fenofibrate. CONCLUSION The genetic variants at APOA1/C3/A4/A5 gene cluster may be useful markers to predict response of lipid-lowering therapy with fenofibrate. Further studies to replicate/confirm our findings are warranted.
Collapse
|
37
|
Hegele RA, Pollex RL. Hypertriglyceridemia: phenomics and genomics. Mol Cell Biochem 2009; 326:35-43. [PMID: 19130180 DOI: 10.1007/s11010-008-0005-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
Hypertriglyceridemia is a common complex metabolic trait that is associated with increased atherosclerosis risk, presence of the metabolic syndrome and, with extreme elevation, increased risk of pancreatitis. Hierarchical cluster analysis using clinical and biochemical features of the Frederickson hyperlipoproteinemia types can generate hypotheses for molecular genetic studies. High throughput resequencing of individuals at the extremes of plasma triglyceride concentration has shown that both rare genetic variants with large effects and common genetic variants with moderate effects explain a relatively large proportion of variation. Very recent progress using high-density sets of genome-wide markers have identified additional genetic determinants of plasma triglyceride concentrations, albeit within largely normolipidemic subjects and with small effect sizes. Phenomic evaluation of patients with hypertriglyceridemia might help to clarify genotype-phenotype correlations and responses to interventions.
Collapse
Affiliation(s)
- Robert A Hegele
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5K8, Canada.
| | | |
Collapse
|
38
|
Zhang Y, Smith E, Olivier M. Putting the Invader assay to work: laboratory application and data management. Methods Mol Biol 2009; 578:363-77. [PMID: 19768605 DOI: 10.1007/978-1-60327-411-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Choosing a single nucleotide polymorphism genotyping method that suits specific research needs is not much less of a challenge than determining the genetic components underlying the disease and/or trait being investigated. This is especially true with a long list of tempting methodologies available, as summarized in this book. Here, from an end-user point of view, we discuss how a commercially available genotyping platform, the Invader assay, can be utilized to meet the needs and demands of human genomic research in a laboratory.
Collapse
Affiliation(s)
- Yi Zhang
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
39
|
Singmann P, Baumert J, Herder C, Meisinger C, Holzapfel C, Klopp N, Wichmann HE, Klingenspor M, Rathmann W, Illig T, Grallert H. Gene-gene interaction between APOA5 and USF1: two candidate genes for the metabolic syndrome. Obes Facts 2009; 2:235-42. [PMID: 20054229 PMCID: PMC2919429 DOI: 10.1159/000227288] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The metabolic syndrome, a major cluster of risk factors for cardiovascular diseases, shows increasing prevalence worldwide. Several studies have established associations of both apolipoprotein A5 (APOA5) gene variants and upstream stimulatory factor 1 (USF1) gene variants with blood lipid levels and metabolic syndrome. USF1 is a transcription factor for APOA5. METHODS We investigated a possible interaction between these two genes on the risk for the metabolic syndrome, using data from the German population-based KORA survey 4 (1,622 men and women aged 55-74 years). Seven APOA5 single nucleotide polymorphisms (SNPs) were analyzed in combination with six USF1 SNPs, applying logistic regression in an additive model adjusting for age and sex and the definition for metabolic syndrome from the National Cholesterol Education Program's Adult Treatment Panel III (NCEP (AIII)) including medication. RESULTS The overall prevalence for metabolic syndrome was 41%. Two SNP combinations showed a nominal gene-gene interaction (p values 0.024 and 0.047). The effect of one SNP was modified by the other SNP, with a lower risk for the metabolic syndrome with odds ratios (ORs) between 0.33 (95% CI = 0.13-0.83) and 0.40 (95% CI = 0.15-1.12) when the other SNP was homozygous for the minor allele. Nevertheless, none of the associations remained significant after correction for multiple testing. CONCLUSION Thus, there is an indication of an interaction between APOA5 and USF1 on the risk for metabolic syndrome.
Collapse
Affiliation(s)
- Paula Singmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jens Baumert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Christian Herder
- Insitute for Clinical Diabetes Research, German Diabetes Center, Leipniz Institute at Heinrich-Heine-University, Düsseldorf, Germany
| | - Christa Meisinger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Christina Holzapfel
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technical University of Munich, Germany
| | - Norman Klopp
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Epidemiology, IBE, Ludwig-Maximilians-University Munich, Germany
| | - Martin Klingenspor
- Molecular Nutrional Medicine, Else Kröner-Fresenius Center at Technical University of Munich, Germany
| | - Wolfgang Rathmann
- Institute of Biometrics and Epidemiology, German Diabetes Center, Leipniz Institute at Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Thomas Illig
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- *Dr. Thomas Illig, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental, Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany,
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
40
|
Jarvik GP, Brunzell JD, Motulsky AG. Frequent detection of familial hypercholesterolemia mutations in familial combined hyperlipidemia. J Am Coll Cardiol 2008; 52:1554-6. [PMID: 19007591 DOI: 10.1016/j.jacc.2008.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/31/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
41
|
Horswell SD, Ringham HE, Shoulders CC. New technologies for delineating and characterizing the lipid exome: prospects for understanding familial combined hyperlipidemia. J Lipid Res 2008; 50 Suppl:S370-5. [PMID: 19023136 DOI: 10.1194/jlr.r800081-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes the progress made in cutting through the biological and genetic complexity of the Gordian knot that is familial combined hyperlipidemia. We particularly focus on how the application of new genomic technologies, especially massively parallel sequencing and high-throughput genotyping platforms, promise to accelerate the gene discovery process in this common, highly atherogenic disorder, with important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Stuart D Horswell
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Rd., London, W12 0NN United Kingdom
| | | | | |
Collapse
|
42
|
Hahne P, Krempler F, Schaap FG, Soyal SM, Höffinger H, Miller K, Oberkofler H, Strobl W, Patsch W. Determinants of plasma apolipoprotein A-V and APOA5 gene transcripts in humans. J Intern Med 2008; 264:452-62. [PMID: 18537870 PMCID: PMC3533125 DOI: 10.1111/j.1365-2796.2008.01987.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Apolipoprotein A-V (apoAV) contributes to the regulation of triglyceride metabolism, which plays a role in the pathogenesis of atherosclerotic diseases. We therefore ascertained determinants of hepatic APOA5 transcript and apoAV plasma levels in humans. DESIGN We determined influences of anthropometric variables, biochemical factors related to lipid and glucose metabolism, hepatic mRNA levels transcribed from the APOA1/C3/A4/A5 cluster and transcription factor genes implicated in the regulation of APOA5 as well as common single nucleotide polymorphisms (SNPs) at the APOA5 locus on APOA5 expression in 89 obese patients and 22 non-obese controls. RESULTS Mean, age and sex adjusted, hepatic APOA5 mRNA or apoAV plasma levels did not differ by obesity status, homoeostasis model assessment insulin resistance or inflammatory markers. In multivariate regression models, the c56C > G SNP, plasma apoCIII, plasma nonesterified fatty acids, hepatic APOA5 transcripts, sex and a weak association with obesity status explained 61% of the variance in apoAV plasma levels. Hepatic transcript levels of carnitine palmitoyltransferase 1 (CPT1A1) and peroxisome proliferator-activated receptor alpha (PPARA), plasma nonesterified fatty acids and the c56C > G SNP explained 48% of the variance in hepatic APOA5 transcript levels. CONCLUSION Apolipoprotein A-V plasma levels are independently associated with plasma free fatty acid and hepatic APOA5 mRNA levels. Associations of APOA5 transcripts with PPARA and CPT1A1 transcripts suggest that APOA5 expression is intimately linked to hepatic lipid metabolism.
Collapse
Affiliation(s)
- P Hahne
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shanker J, Perumal G, Rao VS, Khadrinarasimhiah NB, John S, Hebbagodi S, Mukherjee M, Kakkar VV. Genetic studies on the APOA1-C3-A5 gene cluster in Asian Indians with premature coronary artery disease. Lipids Health Dis 2008; 7:33. [PMID: 18801202 PMCID: PMC2556320 DOI: 10.1186/1476-511x-7-33] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 09/19/2008] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The APOA1-C3-A5 gene cluster plays an important role in the regulation of lipids. Asian Indians have an increased tendency for abnormal lipid levels and high risk of Coronary Artery Disease (CAD). Therefore, the present study aimed to elucidate the relationship of four single nucleotide polymorphisms (SNPs) in the Apo11q cluster, namely the -75G>A, +83C>T SNPs in the APOA1 gene, the Sac1 SNP in the APOC3 gene and the S19W variant in the APOA5 gene to plasma lipids and CAD in 190 affected sibling pairs (ASPs) belonging to Asian Indian families with a strong CAD history. METHODS & RESULTS Genotyping and lipid assays were carried out using standard protocols. Plasma lipids showed a strong heritability (h2 48% - 70%; P < 0.0001). A subset of 77 ASPs with positive sign of Logarithm of Odds (LOD) score showed significant linkage to CAD trait by multi-point analysis (LOD score 7.42, P < 0.001) and to Sac1 (LOD score 4.49) and -75G>A (LOD score 2.77) SNPs by single-point analysis (P < 0.001). There was significant proportion of mean allele sharing (pi) for the Sac1 (pi 0.59), -75G>A (pi 0.56) and +83C>T (pi 0.52) (P < 0.001) SNPs, respectively. QTL analysis showed suggestive evidence of linkage of the Sac1 SNP to Total Cholesterol (TC), High Density Lipoprotein-cholesterol (HDL-C) and Apolipoprotein B (ApoB) with LOD scores of 1.42, 1.72 and 1.19, respectively (P < 0.01). The Sac1 and -75G>A SNPs along with hypertension showed maximized correlations with TC, TG and Apo B by association analysis. CONCLUSION The APOC3-Sac1 SNP is an important genetic variant that is associated with CAD through its interaction with plasma lipids and other standard risk factors among Asian Indians.
Collapse
Affiliation(s)
- Jayashree Shanker
- Mary and Garry Weston Functional Genomics Unit, Thrombosis Research Institute, Bangalore, India.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia. ACTA ACUST UNITED AC 2008; 5:730-7. [PMID: 18779834 DOI: 10.1038/ncpcardio1326] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 07/21/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND Several known candidate gene variants are useful markers for diagnosing hyperlipoproteinemia. In an attempt to identify other useful variants, we evaluated the association of two common APOA5 single-nucleotide polymorphisms across the range of classic hyperlipoproteinemia phenotypes. METHODS We assessed plasma lipoprotein profiles and APOA5 S19W and -1131T>C genotypes in 678 adults from a single tertiary referral lipid clinic and in 373 normolipidemic controls matched for age and sex, all of European ancestry. RESULTS We observed significant stepwise relationships between APOA5 minor allele carrier frequencies and plasma triglyceride quartiles. The odds ratios for hyperlipoproteinemia types 2B, 3, 4 and 5 in APOA5 S19W carriers were 3.11 (95% CI 1.63-5.95), 4.76 (2.25-10.1), 2.89 (1.17-7.18) and 6.16 (3.66-10.3), respectively. For APOA5 -1131T>C carriers, the odds ratios for these hyperlipoproteinemia subtypes were 2.23 (95% CI 1.21-4.08), 3.18 (1.55-6.52), 3.95 (1.85-8.45) and 4.24 (2.64-6.81), respectively. The overall odds ratio for the presence of either allele in lipid clinic patients was 2.58 (95% CI 1.89-3.52). CONCLUSIONS A high proportion of patients with four classic hyperlipoproteinemia phenotypes are carriers of either the APOA5 S19W or -1131T>C variant or both. These two variants are robust genetic biomarkers of a range of clinical hyperlipoproteinemia phenotypes linked by hypertriglyceridemia.
Collapse
|
45
|
Sousa MO, Alía P, Pintó X, Corbella E, Navarro MÁ. Interaction between APOA5 –1131T>C and APOE polymorphisms and their association with severe hypertriglyceridemia. Clin Chim Acta 2008; 395:68-71. [DOI: 10.1016/j.cca.2008.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/15/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
|
46
|
Shen J, Arnett DK, Pérez-Martínez P, Parnell LD, Lai CQ, Peacock JM, Hixson JE, Tsai MY, Straka RJ, Hopkins PN, Ordovás JM. The effect of IL6-174C/G polymorphism on postprandial triglyceride metabolism in the GOLDN studyboxs. J Lipid Res 2008; 49:1839-45. [PMID: 18420533 PMCID: PMC2444004 DOI: 10.1194/jlr.p700033-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/19/2008] [Indexed: 12/17/2022] Open
Abstract
Chronically elevated interleukin-6 (IL-6) affects lipid and lipoprotein metabolism. Individuals genetically predisposed to higher IL-6 secretion may be at risk of dyslipidemia, especially during the postprandial phase. We investigated the effect of genetic variants at the IL6 locus on postprandial lipemia in US Whites participating in the Genetics of Lipid Lowering Drugs and Diet Network study. Subjects were given a single fat load composed of 3% of calories as protein, 14% as carbohydrate, and 83% as fat. Blood was drawn at 0 h, 3.5 h, and 6 h to determine plasma triglyceride (TG), TG-rich lipoprotein (TRL) and lipoprotein particle size. Homozygotes (GG) and heterozygotes (CG) of the -174C/G variant displayed higher plasma IL-6 concentrations compared with major allele homozygotes (CC) (P = 0.029). GG and CG subjects showed higher fasting plasma TG (P = 0.025), VLDL (P = 0.04), and large VLDL (P = 0.02) concentrations than did CC subjects. Moreover, GG and CG subjects experienced greater postprandial response of TG (P = 0.006) and TRL, including chylomicrons (P = 0.005), total VLDL (P = 0.029), and large VLDL (P = 0.017) than did CC subjects. These results suggest that the functional polymorphism -174C>G at the IL6 locus determines the difference in both fasting and postprandial TG metabolism. This phenomenon could be responsible for the observed association of this genetic variant with cardiovascular disease risk.
Collapse
Affiliation(s)
- Jian Shen
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Pablo Pérez-Martínez
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
- Reina Sofia University Hospital, Lipids and Atherosclerosis Research Unit, University of Cordoba, CIBER Fisiopatologia de la Obesidad y Nutricion, Cordoba, Spain
| | - Laurence D. Parnell
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - James M. Peacock
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | | | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN
| | - Paul N. Hopkins
- Cardiovascular Genetics, University of Utah, Salt Lake City, UT
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
47
|
Oliveira Sousa M, Alía P, Pintó X. Gen de la apolipoproteína A5: asociación con el metabolismo de los triglicéridos y las enfermedades cardiovasculares. Med Clin (Barc) 2008; 130:787-93. [DOI: 10.1157/13121105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Olano-Martin E, Abraham EC, Gill-Garrison R, Valdes AM, Grimaldi K, Tang F, Jackson KG, Williams CM, Minihane AM. Influence of apoA-V gene variants on postprandial triglyceride metabolism: impact of gender. J Lipid Res 2008; 49:945-53. [DOI: 10.1194/jlr.m700112-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Abstract
The majority of apolipoproteins known to play a major role in lipid metabolism were identified over 20 years ago, and nine of them (APOA1, -A2, -A4, -B48, -B100, -C1, -C2, -C3 and -E) have long been known to be most relevant to the regulation of lipoproteins. Polymorphisms of genes encoding apolipoproteins influence plasma levels of high-density lipoproteins (HDL), very-low-density lipoprotein (VLDL), low-density lipoprotein (LDL) chylomicrons or triglycerides. Familial hypercholesterolemia (FH), an autosomal dominant disorder, is caused by mutations mainly located in the low-density lipoprotein receptor (LDLR) gene, or more rarely within the apolipoprotein B-100 gene or the gene encoding a secreted proteinase PSCK9. FH is characterized by elevated concentrations of LDL, deposition of LDL-derived cholesterol in tendons, skin xanthomas, and premature coronary artery disease. The frequency of heterozygotes is approximately one in 500 persons, placing FH among the most common inborn errors of metabolism. The risk of cardiovascular disease in these patients is influenced not only by the type of the mutations they carry, but also by the haplotype of lipid modifier genes, as is the case of apolipoproteins. In this review, we present current information that demonstrates the impact of apolipoprotein polymorphisms on the FH phenotype.
Collapse
Affiliation(s)
- George V Z Dedoussis
- University of Athens, Laboratory of Molecular Genetics, Department of Nutrition and Dietetics, Harokopio, 70 El. Venizelou Str, 17671 Kallithea-Athens, Greece.
| |
Collapse
|
50
|
Kluger M, Heeren J, Merkel M. Apoprotein A-V: an important regulator of triglyceride metabolism. J Inherit Metab Dis 2008; 31:281-8. [PMID: 18415697 DOI: 10.1007/s10545-008-0863-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/17/2008] [Accepted: 02/20/2008] [Indexed: 11/25/2022]
Abstract
Apolipoprotein A-V (apoA-V) was discovered in 2001 both by comparative sequencing and as a liver regeneration protein. The gene is a located at the APOA1/C3/A4/A5 gene cluster on chromosome 11q23, a locus well known for playing a major role in regulating plasma cholesterol and triglyceride (TG) levels. ApoA-V is produced in the liver and has very low plasma concentrations (0.1-0.4 mug/ml). Mice lacking apoA-V have 4-fold increased TG levels, whereas apoA-V overexpression leads to 40% plasma TG reduction. Based on metabolic studies in vivo, apoA-V enhances the catabolism of TG rich lipoproteins rather than affecting their intestinal or hepatic production. By activating proteoglycans-bound lipoprotein lipase (LPL), apoA-V can accelerate TG hydrolysis from VLDL and chylomicrons independent from other apoproteins. Several variants at the APOA5 gene locus have been detected in humans. Some single nucleotide polymorphisms (SNPs) are associated with significantly higher plasma TG levels in patients (e.g., -1131T > C, S19W, G185C). In addition, these SNPs may affect fibrate response and obesity. However, data for a possible association of APOA5 variants with coronary heart disease are not consistent. Severe structural mutations (Q139X, Q148X, IVS3 + 3G > C) predispose to familial hypertriglyceridaemia and late-onset chylomicronaemia. Thus, despite its low plasma concentration, apoA-V is a major regulator of plasma TG metabolism in humans. However, the precise mechanism of its function is not yet clear.
Collapse
Affiliation(s)
- M Kluger
- III Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|