1
|
Latt KZ, Yoshida T, Shrivastav S, Abedini A, Reece JM, Sun Z, Lee H, Okamoto K, Dagur P, Heymann J, Zhao Y, Chung JY, Hewitt S, Jose PA, Lee K, He JC, Winkler CA, Knepper MA, Kino T, Rosenberg AZ, Susztak K, Kopp JB. HIV viral protein R induces loss of DCT1-type renal tubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526686. [PMID: 36945458 PMCID: PMC10028744 DOI: 10.1101/2023.02.02.526686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
| | - Shashi Shrivastav
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
| | - Amin Abedini
- Department of Medicine, Renal Electrolyte and Hypertension Division; Institute for Diabetes, Obesity, and Metabolism; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jeff M. Reece
- Advanced Light Microscopy & Image Analysis Core (ALMIAC), NIDDK, NIH, Bethesda, MD
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hewang Lee
- Departments of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Koji Okamoto
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Aoba-ku, Sendai, Miyagi, Japan
| | - Pradeep Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
| | - Yongmei Zhao
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., NCI, Frederick, MD
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Stephen Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Pedro A. Jose
- Departments of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC
- Departments of Physiology and Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cheryl A. Winkler
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute and Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, Division of Intramural Research, NHLBI, NIH, Bethesda, MD
| | - Tomoshige Kino
- Laboratory for Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division; Institute for Diabetes, Obesity, and Metabolism; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, NIH, Bethesda MD
| |
Collapse
|
2
|
Fu J, Yu MG, Li Q, Park K, King GL. Insulin's actions on vascular tissues: Physiological effects and pathophysiological contributions to vascular complications of diabetes. Mol Metab 2021; 52:101236. [PMID: 33878400 PMCID: PMC8513152 DOI: 10.1016/j.molmet.2021.101236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background Insulin has been demonstrated to exert direct and indirect effects on vascular tissues. Its actions in vascular cells are mediated by two major pathways: the insulin receptor substrate 1/2-phosphoinositide-3 kinase/Akt (IRS1/2/PI3K/Akt) pathway and the Src/mitogen-activated protein kinase (MAPK) pathway, both of which contribute to the expression and distribution of metabolites, hormones, and cytokines. Scope of review In this review, we summarize the current understanding of insulin's physiological and pathophysiological actions and associated signaling pathways in vascular cells, mainly in endothelial cells (EC) and vascular smooth muscle cells (VSMC), and how these processes lead to selective insulin resistance. We also describe insulin's potential new signaling and biological effects derived from animal studies and cultured capillary and arterial EC, VSMC, and pericytes. We will not provide a detailed discussion of insulin's effects on the myocardium, insulin's structure, or its signaling pathways' various steps, since other articles in this issue discuss these areas in depth. Major conclusions Insulin mediates many important functions on vascular cells via its receptors and signaling cascades. Its direct actions on EC and VSMC are important for transporting and communicating nutrients, cytokines, hormones, and other signaling molecules. These vascular actions are also important for regulating systemic fuel metabolism and energetics. Inhibiting or enhancing these pathways leads to selective insulin resistance, exacerbating the development of endothelial dysfunction, atherosclerosis, restenosis, poor wound healing, and even myocardial dysfunction. Targeted therapies to improve selective insulin resistance in EC and VSMC are thus needed to specifically mitigate these pathological processes. Insulin's actions in vascular cells have a significant influence on systemic metabolism. Insulin exerts its vascular effects through its receptors and signaling cascades. Inhibition or enhancement of different insulin signaling leads to selective insulin resistance. Loss of insulin's actions causes endothelial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Jialin Fu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Marc Gregory Yu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qian Li
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kyoungmin Park
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Duan H, Feng X, Huang X. Effects of insulin on the proliferation and global gene expression profile of A7r5 cells. Mol Biol Rep 2021; 48:1205-1215. [PMID: 33555531 DOI: 10.1007/s11033-021-06200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 11/28/2022]
Abstract
Insulin contributes to atherosclerosis, but the potential mechanisms are kept unclear. In this study, insulin promoted proliferation of A7r5 cells. Microarray analysis indicated that insulin significantly changed 812 probe sets of genes, including 405 upregulated and 407 downregulated ones (fold change ≥ 1.5 or ≤ - 1.5; p < 0.05). Gene ontology analysis showed that the differentially expressed genes were involved in a number of processes, including the regulation of cell proliferation/migration/cycle, apoptotic process, oxidative stress, inflammatory response, mitogen-activated protein kinase (MAPK) activity, lipid metabolic process and extracellular matrix organization. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the genes were involved in biosynthesis of amino acids, fatty acid metabolism, glycolysis/gluconeogenesis, metabolic pathways, regulation of autophagy, cell cycle and apoptosis, as well as the PI3K-Akt, MAPK, mTOR and NF-κB signaling pathways. Additionally, insulin enhanced phosphorylation of MAPK kinase 1/2 and Akt, suggesting activation of the MAPK and PI3K-Akt signaling pathways. Inhibition of ERK1/2 reduced insulin-induced proliferation. This study revealed the proliferative effects of insulin and displayed global gene expression profile of A7r5 cells stimulated by insulin, suggesting new insight into the molecular pathogenesis of insulin promoting atherosclerosis.
Collapse
Affiliation(s)
- Huiming Duan
- Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, 530200, China.,Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaotao Feng
- Guangxi Key Laboratory of Chinese Medicine Foundation Research, Guangxi University of Chinese Medicine, Nanning, 530200, China. .,Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xiaoqi Huang
- Laboratory of Medical Molecular Biology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| |
Collapse
|
4
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
5
|
|
6
|
Watanabe S, Matsumoto T, Oda M, Yamada K, Takagi J, Taguchi K, Kobayashi T. Insulin augments serotonin-induced contraction via activation of the IR/PI3K/PDK1 pathway in the rat carotid artery. Pflugers Arch 2015; 468:667-77. [PMID: 26577585 DOI: 10.1007/s00424-015-1759-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 10/24/2022]
Abstract
Hyperinsulinemia associated with type 2 diabetes may contribute to the development of vascular diseases. Although we recently reported that enhanced contractile responses to serotonin (5-hydroxytryptamine, 5-HT) are observed in the arteries of type 2 diabetes models, the causative factors and detailed signaling pathways involved remain unclear. The purpose of this study was to investigate whether high insulin would be an amplifier of 5-HT-induced contraction in rat carotid arteries and whether the contraction involves phosphoinositide 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase 1 (PDK1) signaling, an insulin-mediated signaling pathway. In rat carotid arteries organ-cultured with insulin (for 24 h), (1) the contractile responses to 5-HT were significantly greater (vs. vehicle), (2) the insulin-induced enhancement of 5-HT-induced contractions was largely suppressed by inhibitors of the insulin receptor (IR) (GSK1838705A), PI3K (LY294002), and PDK1 (GSK2334470), and (3) the levels of phosphorylated forms of both PDK1 and myosin phosphatase target subunit 1 (MYPT1) were greater upon 5-HT stimulation. In addition, in rat carotid arteries organ-cultured with an activator of PDK1 (PS48), the 5-HT-induced contraction was greater, and this was suppressed by PDK1 inhibition but not PI3K inhibition. In addition, MYPT1 and PDK1 phosphorylation upon 5-HT stimulation was enhanced (vs. vehicle). These results suggest that high insulin levels amplify 5-HT-induced contraction. Moreover, the present results indicated the direct linkage between IR/PI3K/PDK1 activation and 5-HT-induced contraction in rat carotid arteries for the first time.
Collapse
Affiliation(s)
- Shun Watanabe
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mirai Oda
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kosuke Yamada
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Junya Takagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
7
|
Cüce G, Sözen ME, Çetinkaya S, Canbaz HT, Seflek H, Kalkan S. Effects of Nigella sativa L. seed oil on intima-media thickness and Bax and Caspase 3 expression in diabetic rat aorta. Anatol J Cardiol 2015; 16:460-466. [PMID: 26680543 PMCID: PMC5331391 DOI: 10.5152/anatoljcardiol.2015.6326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Hyperglycaemia is an important risk factor for the development and progression of the macrovascular and microvascular complications that occur in diabetes. The expression of apoptotic markers in the aortic medial layer of diabetic rats and the effects of N. sativa L. seed oil on the expression of these markers were investigated in this study. METHODS Four-month-old adult female Wistar rats (n=21) were divided into 3 groups: Group 1, control; Group 2, diabetes and Group 3, diabetes+N. sativa L. seed oil. Group 3 received 0.2 mg/kg/day N. sativa L. seed (black cumin) oil intraperitoneally 6 days per week for 30 days. At the end of the experiment, abdominal and thoracic aortas of all animals were collected and fixed in 10% formalin solution. Then, 5-μm-thick sections were stained with Verhoeff-Van Gieson stain to evaluate Bax and Caspase 3 expression. Tunica intima-media thickness was measured using the stained sections. RESULTS There were no significant differences in abdominal or thoracic aortic intima-media thickness among the 3 groups. However, there were significant differences in Bax and Caspase 3 expression in the tunica media of the thoracic and abdominal aortas between Group 1 and Group 2 (p<0.05) and between Group 2 and Group 3 (p<0.05) evaluated with the Kruskal-Wallis and Mann-Whitney U tests. CONCLUSION It is understood that N. sativa L. seed oil is effective against diabetes. N. sativa L. seed oil is a plant material and has value for further investigation to develop diabetes treatment strategies for preventing apoptosis in vascular structures.
Collapse
Affiliation(s)
- Gökhan Cüce
- Department of Histology and Embryology, Faculty of Meram Medicine, Necmettin Erbakan University; Konya-Turkey.
| | | | | | | | | | | |
Collapse
|
8
|
Martínez-Hervás S, Vinué Á, Núñez L, Andrés-Blasco I, Piqueras L, Real JT, Ascaso JF, Burks DJ, Sanz MJ, González-Navarro H. Insulin resistance aggravates atherosclerosis by reducing vascular smooth muscle cell survival and increasing CX3CL1/CX3CR1 axis. Cardiovasc Res 2014; 103:324-336. [DOI: 10.1093/cvr/cvu115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
9
|
Roy S, Trudeau K, Roy S, Behl Y, Dhar S, Chronopoulos A. New Insights into Hyperglycemia-induced Molecular Changes in Microvascular Cells. J Dent Res 2009; 89:116-27. [DOI: 10.1177/0022034509355765] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia is the most prevalent characteristic of diabetes and plays a central role in mediating adverse effects on vascular cells during the progression of diabetic vascular complications. In diabetic microangiopathy, hyperglycemia induces biochemical and molecular changes in microvascular cells that ultimately progress to retinal, renal, and neural complications and extends to other complications, including advanced periodontal disease. In this review, we describe changes involving basement membrane thickening, tissue remodeling, gap junctions, inflammation, cytokines, and transcription factors, and their effects on the pathogenesis of diabetic microvascular complications. The majority of the changes described relate to retinal microangiopathy, since ultrastructural, structural, and biochemical alterations have been well-characterized in this tissue.
Collapse
Affiliation(s)
- S. Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| | - K. Trudeau
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| | - S. Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| | - Y. Behl
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| | - S. Dhar
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| | - A. Chronopoulos
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston University, 650 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
10
|
Hirata H, Kawamoto K, Kikuno N, Kawakami T, Kawakami K, Saini S, Yamamura S, Dahiya R. Restoring Erectile Function by Antioxidant Therapy in Diabetic Rats. J Urol 2009; 182:2518-25. [DOI: 10.1016/j.juro.2009.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Indexed: 02/07/2023]
Affiliation(s)
- Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Ken Kawamoto
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Nobuyuki Kikuno
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Toshifumi Kawakami
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Kazumori Kawakami
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| |
Collapse
|
11
|
Derosa G, D'Angelo A, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S, Montagna L, Gravina A, Ferrari I, Galli S, Paniga S, Tinelli C, Cicero AFG. Matrix Metalloproteinase-2, -9, and Tissue Inhibitor of Metalloproteinase-1 in Patients with Hypertension. ACTA ACUST UNITED AC 2009; 13:227-31. [PMID: 16840178 DOI: 10.1080/10623320600780942] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
There are conflicting data in the literature regarding the expression pattern of the vascular matrix metalloproteinase (MMP) system and their inhibitors (TIMPs) in human hypertension. The authors hypothesized that MMP-2, MMP-9, and TIMP-1 would be abnormal in hypertension, reflecting alterations in extracellular matrix (ECM) turnover. The authors measured plasma levels and activities of MMP-2, MMP-9, and TIMP-1 in 44 hypertensive patients and 44 controls. MMP-2 levels and activity were significantly higher in hypertensive group (p < .0001). Significant increase was also observed for MMP-9 level and activity (p < .0001) and for TIMP-1 (p < .0001) in hypertensive patients. Plasma levels and activities of MMP-2, MMP-9, and TIMP-1 are increased in hypertensive patients, which may reflect abnormal ECM metabolism.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Derosa G, Cicero AFG, Scalise F, Avanzini MA, Tinelli C, Peros E, Fogari E, D'Angelo A. Metalloproteinases in Diabetics and Nondiabetics during Acute Coronary Syndromes and after 3 Months. ACTA ACUST UNITED AC 2009; 14:175-83. [DOI: 10.1080/10623320701606475] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Popov D, Constantinescu E. Arterial smooth muscle cells dysfunction in hyperglycaemia and hyperglycaemia associated with hyperlipidaemia: from causes to effects. Arch Physiol Biochem 2008; 114:150-60. [PMID: 18484281 DOI: 10.1080/13813450802033990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the important role of smooth muscle cells in arterial wall dysfunction in diabetes, as well as in diabetes associated with accelerated atherosclerosis, we provide a brief review of the recent achievements in identification of signalling molecules underlying their altered cellular responses, and examine the consequences of these pathological insults on smooth muscle cells properties. The original results emerging from the Golden Syrian hamster model (rendered diabetic or simultaneously hyperlipidaemic-diabetic) and from human aortic smooth muscle cells cultured in 25 mM glucose (to mimic diabetic condition) or sera of obese type 2 diabetic patients (to mimic the metabolic syndrome condition) are presented in this context. We conclude this review with several open issues disclosed by the most recent literature that deserve essential attention for targeting the translational medicine.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology N. Simionescu, 8 B.P. Hasdeu Street, Bucharest, Romania.
| | | |
Collapse
|
14
|
Derosa G, D'Angelo A, Scalise F, Avanzini MA, Tinelli C, Peros E, Fogari E, Cicero AF. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome. Heart Vessels 2007; 22:361-70. [DOI: 10.1007/s00380-007-0989-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 04/13/2007] [Indexed: 11/29/2022]
|
15
|
Abstract
The macrophage has emerged as an important player in the pathogenesis of both atherosclerosis and insulin resistance. Cross-talk between inflammatory macrophages and adipocytes may be involved in insulin resistance in peripheral tissues. Defective insulin signaling in cells of the arterial wall including macrophages may promote the development of atherosclerosis. Insulin resistant macrophages are more susceptible to endoplasmic reticulum stress and apoptosis in response to various stimuli such as nutrient deprivation, free cholesterol loading, and oxidized LDL. Increased apoptosis of insulin resistant macrophages and impaired phagocytic clearance of apoptotic cells by insulin resistant macrophages in atherosclerotic lesions may lead to enhanced postapoptotic necrosis, larger lipid-rich cores, increased inflammation, and more complex vulnerable plaques.
Collapse
Affiliation(s)
- Chien-Ping Liang
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
16
|
Derosa G, Cicero AFG, Scalise F, Avanzini MA, Tinelli C, Piccinni MN, Peros E, Geroldi D, Fogari E, D'Angelo A. Metalloproteinase-2 and -9 in diabetic and nondiabetic subjects during acute coronary syndromes. ACTA ACUST UNITED AC 2007; 14:45-51. [PMID: 17364896 DOI: 10.1080/10623320601177064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The authors hypothesized that matrix metalloproteinase (MMP)-2, -9, and tissue inhibitor metalloproteinase (TIMP)-1, -2 would be abnormal in acute coronary syndromes (ACSs). MMP-2, -9, and TIMP-1, -2 plasma levels were measured in diabetic patients with ACSs compared to nondiabetic patients with ACSs. A total of 46 diabetic and 78 nondiabetic patients with ACSs were enrolled. The following parameters were measured: body mass index (BMI), glycosylated hemoglobin (HbA1c), fasting plasma glucose (FPG), fasting plasma insulin (FPI), homeostasis model assessment index (HOMA index), systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (Tg), lipoprotein(a) [Lp(a)], plasminogen activator inhibitor-1 (PAI-1), homocysteine (Hct), fibrinogen (Fg), high-sensitivity C-reactive protein (hs-CRP), and plasma levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Significant HbA1c, FPG, FPI, HOMA index, DBP, Tg, Hct, and Fg increases were present in the diabetic group with ACSs, whereas hs-CRP was lower in these patients compared to nondiabetic patients with ACSs. MMP-9, TIMP-1, and TIMP-2 plasma levels were higher in diabetic patients with ACSs compared to nondiabetic patients with ACSs. MMP-9, TIMP-1, and TIMP-2 plasma levels were increased in diabetic patients with ACSs, which may reflect abnormal extracellular matrix metabolism in diabetes during acute event.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li C, Xu Q. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 2007; 19:881-91. [PMID: 17289345 DOI: 10.1016/j.cellsig.2007.01.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 01/08/2007] [Indexed: 12/29/2022]
Abstract
Increasing evidence has been demonstrated that hypertension-initiated abnormal biomechanical stress is strongly associated with cardio-/cerebrovascular diseases e.g. atherosclerosis, stroke, and heart failure, which is main cause of morbidity and mortality. How the cells in the cardiovascular system sense and transduce the extracellular physical stimuli into intracellular biochemical signals is a crucial issue for understanding the mechanisms of the disease development. Recently, collecting data derived from our and other laboratories showed that many kinds of molecules in the cells such as receptors, ion channels, caveolin, G proteins, cell cytoskeleton, kinases and transcriptional factors could serve as mechanoceptors directly or indirectly in response to mechanical stimulation implying that the activation of mechanoceptors represents a non-specific manner. The sensed signals can be further sorted and/or modulated by processing of the molecules both on the cell surface and by the network of intracellular signaling pathways resulting in a sophisticated and dynamic set of cues that enable cardiovascular cell responses. The present review will summarise the data on mechanotransduction in vascular smooth muscle cells and formulate a new hypothesis, i.e. a non-specific activation of mechanoceptors followed by a variety of signal cascade activation. The hypothesis could provide us some clues for exploring new therapeutic targets for the disturbed mechanical stress-initiated diseases such as hypertension and atherosclerosis.
Collapse
Affiliation(s)
- Chaohong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | | |
Collapse
|
18
|
Muller D, Jones PM, Persaud SJ. Autocrine anti-apoptotic and proliferative effects of insulin in pancreatic beta-cells. FEBS Lett 2006; 580:6977-80. [PMID: 17161395 DOI: 10.1016/j.febslet.2006.11.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/08/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Insulin and glucose inhibited apoptosis in the MIN6 insulin-secreting cell line. The protective effect of 25 mM glucose was prevented by an anti-insulin antibody and this antibody-induced increase in apoptosis was reversed by the presence of excess insulin. Glucose stimulated MIN6 cell proliferation and this was inhibited by blockade of insulin secretion, by an anti-insulin antibody and by phosphatidylinositol-3 kinase (PI-3K) inhibition. Furthermore, MIN6 cell proliferation was stimulated by depolarising concentrations of KCl and by insulin itself. These data indicate that insulin secreted by beta-cells in response to elevated glucose exerts autocrine effects to protect against apoptosis and stimulate proliferation, and suggest that the insulin signalling cascade, through the PI-3K pathway, may be an effective means of maintaining beta-cell mass in diabetes.
Collapse
Affiliation(s)
- Dany Muller
- Beta Cell Development and Function Group, School of Biomedical and Health Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|