1
|
Tong KL, Mahmood Zuhdi AS, Wong PF. The role of miR-134-5p in 7-ketocholesterol-induced human aortic endothelial dysfunction. EXCLI JOURNAL 2024; 23:1073-1090. [PMID: 39391056 PMCID: PMC11464864 DOI: 10.17179/excli2024-7342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024]
Abstract
Atherosclerotic cardiovascular diseases are the leading causes of morbidity and mortality worldwide. In our previous study, a panel of miRNA including miR-134-5p was deregulated in young acute coronary syndrome (ACS) patients. However, the roles of these ACS-associated miRNAs in endothelial dysfunction, an early event preceding atherosclerosis, remain to be investigated. In the present study, human aortic endothelial cells (HAECs) were treated with 7-ketocholesterol (7-KC) to induce endothelial dysfunction. Following treatment with 20 μg/ml 7-KC, miR-134-5p was significantly up-regulated and endothelial nitric oxide synthase (eNOS) expression was suppressed. Endothelial barrier disruption was evidenced by the deregulation of adhesion molecules including the activation of focal adhesion kinase (FAK), down-regulation of VE-cadherin, up-regulation of adhesion molecules (E-selectin and ICAM-1), increased expression of inflammatory genes (IL1B, IL6 and COX2) and AKT activation. Knockdown of miR-134-5p in 7-KC-treated HAECs attenuated the suppression of eNOS, the activation of AKT, the down-regulation of VE-cadherin and the up-regulation of E-selectin. In addition, the interaction between miR-134-5p and FOXM1 mRNA was confirmed by the enrichment of FOXM1 transcripts in the pull-down miRNA-mRNA complex. Knockdown of miR-134-5p increased FOXM1 expression whereas transfection with mimic miR-134-5p decreased FOXM1 protein expression. In summary, the involvement of an ACS-associated miRNA, miR-134-5p in endothelial dysfunction was demonstrated. Findings from this study could pave future investigations into utilizing miRNAs as a supplementary tool in ACS diagnosis or as targets for the development of therapeutics.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Andrographolide in Atherosclerosis: Integrating Network Pharmacology and In Vitro Pharmacological Evaluation. Biosci Rep 2022; 42:231291. [PMID: 35543243 PMCID: PMC9251584 DOI: 10.1042/bsr20212812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: Andrographis paniculata (Burm.f.) Nees is a medicinal plant that has been traditionally used as an anti-inflammatory and antibacterial remedy for several conditions. Andrographolide (AG), the active constituent of A. paniculata (Burm.f.) Nees, has anti-lipidic and anti-inflammatory properties as well as cardiovascular protective effects. The present study aimed to explore the effects of AG on the progression of atherosclerosis and to investigate related mechanisms via network pharmacology. Materials and methods: Compound-related information was obtained from the PubChem database. Potential target genes were identified using STITCH, SwissTargetPrediction, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine, and Comparative Toxicogenomics Database. Genes involved in atherosclerosis were obtained from DisGeNet and compared with AG target genes to obtain an overlapping set. Protein–protein interactions were determined by STRING. Gene ontology (GO) analysis was performed at WebGestalt, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was analyzed using Metascape. The final network showing the relationship between compounds, targets, and pathways was constructed using Cytoscape. After that, oxLDL-induced RAW264.7 cells were used to further validate a part of the network pharmacology results. Result: Eighty-one potential AG target genes were identified. PPI, GO, and KEGG enrichment revealed genes closely related to tumor progression, lipid transport, inflammation, and related pathways. AG improves the reverse cholesterol transport (RCT) through NF-κB/CEBPB/PPARG signaling in oxLDL-induced RAW264.7 cells. Conclusion: We successfully predict AG’s potential targets and pathways in atherosclerosis and illustrate the mechanism of action. AG may regulate NF-κB/CEBPB/PPARG signaling to alleviate atherosclerosis.
Collapse
|
3
|
Cheng L, Meng Z, Wang Q, Jian Z, Fan P, Feng X, Qiao X, Yang J, Yuan Z, Li B, Wu Y. The Usefulness of C-Reactive Protein to Albumin Ratio in the Prediction of Adverse Cardiovascular Events in Coronary Chronic Total Occlusion Undergoing Percutaneous Coronary Intervention. Front Cardiovasc Med 2021; 8:731261. [PMID: 34869630 PMCID: PMC8636141 DOI: 10.3389/fcvm.2021.731261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation and nutrition as main factors can affect the prognosis of patients with chronic total coronary occlusion (CTO) undergoing percutaneous coronary intervention (PCI). The C-reactive protein to albumin ratio (CAR) can clarify the inflammation and nutrition status, which are highly related to clinical outcomes. This study aims to investigate the association between CAR and adverse cardiovascular events in patients with CTO undergoing PCI. For this study, 664 patients were divided into three groups based on the tertiles of CAR. The primary endpoint was all-cause mortality and the secondary endpoint was major adverse cardiovascular events (MACE). Over a median follow-up of 33.7 months, the primary endpoint occurred in 64 patients (9.6%) and the secondary endpoint occurred in 170 patients (25.6%). The patients with higher CAR represented a worse prognosis with all-cause death and cardiovascular death after the adjustment for the baseline risk factors. Adding the CAR values raised the predictive value for the incidence of the all-cause death and cardiovascular death but not MACE. The capacity of prognosis prediction was improved after the addition of the CAR value to the traditional prediction model.
Collapse
Affiliation(s)
- Lele Cheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Zixuan Meng
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qi Wang
- First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Zhijie Jian
- Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Pengcheng Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Feng
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiangrui Qiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jian Yang
- Department of Medical Imaging, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Bolin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Ghzaiel I, Zarrouk A, Nury T, Libergoli M, Florio F, Hammouda S, Ménétrier F, Avoscan L, Yammine A, Samadi M, Latruffe N, Biressi S, Levy D, Bydlowski SP, Hammami S, Vejux A, Hammami M, Lizard G. Antioxidant Properties and Cytoprotective Effect of Pistacia lentiscus L. Seed Oil against 7β-Hydroxycholesterol-Induced Toxicity in C2C12 Myoblasts: Reduction in Oxidative Stress, Mitochondrial and Peroxisomal Dysfunctions and Attenuation of Cell Death. Antioxidants (Basel) 2021; 10:antiox10111772. [PMID: 34829643 PMCID: PMC8615043 DOI: 10.3390/antiox10111772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7β-hydroxycholesterol (7β-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7β-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7β-OHC in murine C2C12 myoblasts. The effects of 7β-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7β-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7β-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
Collapse
Affiliation(s)
- Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Sciences of Tunis, University Tunis-El Manar, Tunis 2092, Tunisia
| | - Amira Zarrouk
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
- Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Souha Hammouda
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21065 Dijon, France;
| | - Laure Avoscan
- Agroécologie, AgroSup Dijon, CNRS, INRAE, University Bourgogne Franche-Comté, Plateforme DimaCell, 21000 Dijon, France;
| | - Aline Yammine
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Department of Chemistry, University Lorraine, Metz Technopôle, 57070 Metz, France;
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBio) and Dulbecco Telethon Institute, University of Trento, 38123 Trento, Italy; (M.L.); (F.F.); (S.B.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-900, Brazil; (D.L.); (S.P.B.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), CNPq, Rio de Janeiro 21941-902, Brazil
| | - Sonia Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutrition—Functional Food & Vascular Health’, Faculty of Medicine, University of Monastir, LR12ES05, Monastir 5000, Tunisia; (S.H.); (S.H.); (M.H.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University Bourgogne Franche-Comté, 21000 Dijon, France; (I.G.); (T.N.); (A.Y.); (N.L.); (A.V.)
- Correspondence: (A.Z.); (G.L.); Tel.: +216-94-837-999 or +1-212-241 9304 (A.Z.); +33-380-396-256 (G.L.)
| |
Collapse
|
5
|
Zhu M, Xu Y, Wang H, Shen Z, Xie Z, Chen F, Gao Y, Chen X, Zhang Y, Wu Q, Li X, Yu J, Luo H, Wang K. Heroin Abuse Results in Shifted RNA Expression to Neurodegenerative Diseases and Attenuation of TNFα Signaling Pathway. Sci Rep 2018; 8:9231. [PMID: 29915338 PMCID: PMC6006288 DOI: 10.1038/s41598-018-27419-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/31/2018] [Indexed: 12/18/2022] Open
Abstract
Repeated administration of heroin results in the induction of physical dependence, which is characterized as a behavioral state of compulsive drug seeking and a high rate of relapse even after periods of abstinence. However, few studies have been dedicated to characterization of the long-term alterations in heroin-dependent patients (HDPs). Herein, we examined the peripheral blood from 810 HDPs versus 500 healthy controls (HCs) according to the inclusion criteria. Compared with the control group, significant decreases of albumin, triglyceride, and total cholesterol levels were identified in HDPs (P < 0.001) versus HCs coupled with an insignificant decrease in BMI. Meanwhile, RNA-sequencing analyses were performed on blood of 16 long-term HDPs and 25 HCs. The results showed that the TNFα signaling pathway and hematopoiesis related genes were inhibited in HDPs. We further compared the transcriptome data to those of SCA2 and posttraumatic stress disorder patients, identified neurodegenerative diseases related genes were commonly up-regulated in coupled with biological processes "vesicle transport", "mitochondria" and "splicing". Genes in the categories of "protein ubiquitination" were down-regulated indicating potential biochemical alterations shared by all three comparative to their controls. In summary, this is a leading study performing a series of through investigations and using delicate approaches. Results from this study would benefit the study of drug addiction overall and link long-term heroin abuse to neurodegenerative diseases.
Collapse
Affiliation(s)
- Mei Zhu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yu Xu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Huawei Wang
- Department of Gastrointestinal surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Zongwen Shen
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Kunming Engineering Technology Center of Diagnosis and Treatment of Digestive Diseases, Kunming, 650032, Yunnan, China
| | - Zhenrong Xie
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of reproduction and genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Fengrong Chen
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of reproduction and genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yunhong Gao
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Xin Chen
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Ying Zhang
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Qiang Wu
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Xuejun Li
- Yunnan Drug Enforcement Commission Office, Kunming, 650032, Yunnan, China
- Yunnan Drug Enforcement Administration, Kunming, 650032, Yunnan, China
| | - Juehua Yu
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Huayou Luo
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| | - Kunhua Wang
- Yunnan Institute of Digestive Disease, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Chang MC, Chen YJ, Liou EJW, Tseng WY, Chan CP, Lin HJ, Liao WC, Chang YC, Jeng PY, Jeng JH. 7-Ketocholesterol induces ATM/ATR, Chk1/Chk2, PI3K/Akt signalings, cytotoxicity and IL-8 production in endothelial cells. Oncotarget 2016; 7:74473-74483. [PMID: 27740938 PMCID: PMC5342680 DOI: 10.18632/oncotarget.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (atherosclerosis, stroke, myocardiac infarction etc.) are the major systemic diseases of elder peoples in the world. This is possibly due to increased levels of oxidized low-density lipoproteins (oxLDLs) such as 7-ketocholesterol (7-KC) and lysophosphatidylcholine (LPC) that damage vascular endothelial cells, induce inflammatory responses, to elevate the risk of cardiovascular diseases, Alzheimer's disease, and age-related macular degeneration. However the toxic effects of 7-KC on endothelial cells are not known. In this study, 7-KC showed cytotoxicity to endothelial cells at concentrations higher than 10 µg/ml. 7-KC stimulated ATM/Chk2, ATR-Chk1 and p53 signaling pathways in endothelial cells. 7-KC also induced G0/G1 cell cycle arrest and apoptosis with an inhibition of Cyclin dependent kinase 1 (Cdk1) and cyclin B1 expression. Secretion and expression of IL-8 in endothelial cells were stimulated by 7-KC. 7-KC further induced intracellular ROS production as shown by increase in DCF fluorescence and Akt phosphorylation. LY294002 attenuated the 7-KC-induced apoptosis and IL-8 mRNA expression of endothelial cells. These results indicate that oxLDLs such as 7-KC may contribute to the pathogenesis of atherosclerosis, thrombosis and cardiovascular diseases by induction of endothelial damage, apoptosis and inflammatory responses. These events are associated with ROS production, activation of ATM/Chk2, ATR/Chk1, p53 and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Mei-Chi Chang
- Biomedical Science Team, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | | | - Wan-Yu Tseng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Hseuh-Jen Lin
- Department of Dentistry, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Wan-Chuen Liao
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Ya-Ching Chang
- Department of Dentistry, Mackey Memorial Hospital, Taipei, Taiwan
| | - Po-Yuan Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital
| |
Collapse
|
7
|
Guerin-Dubourg A, Catan A, Bourdon E, Rondeau P. Structural modifications of human albumin in diabetes. DIABETES & METABOLISM 2012; 38:171-8. [PMID: 22349032 DOI: 10.1016/j.diabet.2011.11.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/09/2011] [Indexed: 01/18/2023]
Abstract
AIM Albumin, a major protein in the blood circulation, can undergo increased glycation in diabetes. From recent studies, it has become evident that glycation has important implications for albumin actions and impact on cell functioning. This study compares the structural and functional properties of albumin glycated by glucose and methylglyoxal (MGO) with those of albumin purified from diabetic patients. METHODS Human serum albumin (HSA) was purified from diabetic patients and control subjects using affinity chromatography, and oxidation parameters in various albumin preparations were determined. Tryptophan and 1-anilino-8-naphthalene sulphonic acid (ANSA) probe fluorescence, redox state, antioxidant and copper-binding capacities of the different preparations of albumin were also determined and compared. RESULTS Occurrence of oxidative modifications was enhanced in albumin whether purified from diabetic patients, or glycated by glucose or MGO, after determination of their fructosamine and free thiol and amino group contents, carbonyl content and antioxidant activities. Whereas more quantitative changes in oxidative and structural parameters were observed in the glucose- and MGO-modified albumins, significant impairment of albumin function (free-radical-scavenging and copper-binding capacities) were demonstrated in the HSA purified from diabetics. These findings reveal different structural and functional features of diabetic HSA compared with in vitro models. CONCLUSION This study provides new information supporting albumin as an important biomarker for monitoring diabetic pathophysiology. In addition, it reconfirms the influence of experimental conditions in which advanced glycation end-products (AGEs) are generated in tests designed to mimic the pathological conditions of diabetes.
Collapse
Affiliation(s)
- A Guerin-Dubourg
- Laboratoire de biochimie et génétique moléculaire, groupe d'étude sur l'inflammation chronique et l'obésité, université de La Réunion, 15 avenue René-Cassin, Saint-Denis Messag cedex 09, Réunion, Réunion
| | | | | | | |
Collapse
|
8
|
Ha CE, Ha JS, Theriault AG, Bhagavan NV. Effects of statins on the secretion of human serum albumin in cultured HepG2 cells. J Biomed Sci 2009; 16:32. [PMID: 19291315 PMCID: PMC2669472 DOI: 10.1186/1423-0127-16-32] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 03/16/2009] [Indexed: 11/30/2022] Open
Abstract
Statins reduce cholesterol biosynthesis by inhibiting HMG-CoA reductase and thereby lower total cholesterol and LDL cholesterol levels in serum, which in turn lower the incidence of cardiovascular disease (CVD). Statins are also known to modulate various cellular functions such as gene expression, cell proliferation, and programmed cell death through inhibition of downstream intermediates in cholesterol synthesis. In this study, we have investigated the possible effects of statins on the secretion of serum albumin from cultured HepG2 cells since high levels of serum albumin are associated with reduced risks for CVD and statins are effective in lowering the risk of CVD through other effects in addition to their effects on serum total cholesterol and LDL cholesterol levels, known as pleiotropic effects. Our results showed that simvastatin increased HSA secretion up to 32.3% compared to the control group. Among 3 statin analogs we tested, simvastatin exhibited the highest stimulatory effects on HSA secretion compared to the control group. Our study also showed that the increased HSA secretions from HepG2 cells by simvastatin treatments were due to the increased rate of HSA synthesis, not due to the reduced posttranslational degradation rate of HSA. Our finding suggests another added benefit of statins' treatments in preventing CVD through stimulation of HSA biosynthesis.
Collapse
Affiliation(s)
- Chung-Eun Ha
- Department of Native Hawaiian Health, John A, Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813, USA.
| | | | | | | |
Collapse
|
9
|
Chesne S, Rondeau P, Armenta S, Bourdon E. Effects of oxidative modifications induced by the glycation of bovine serum albumin on its structure and on cultured adipose cells. Biochimie 2006; 88:1467-77. [PMID: 16814919 DOI: 10.1016/j.biochi.2006.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 05/19/2006] [Indexed: 11/29/2022]
Abstract
Non-enzymatic glycosylation (glycation) and oxidative damages represent major research areas insofar as such modifications of proteins are frequently observed in numerous states of disease. Albumin undergoes structural and functional alterations, caused by increased glycosylation during non insulin-dependent diabetes mellitus, which is closely linked with the early occurrence of vascular complications. In this work, we first characterized structural modifications induced by the glycation of bovine serum albumin (BSA). A pathophysiological effect of glycated BSA was identified in primary cultures of human adipocytes as it induces an accumulation of oxidatively modified proteins in these cells. BSA was incubated in the presence or absence of physiological, pathological or supra-physiological concentrations of glucose at 37 degrees C for 7 weeks. Enhanced BSA glycation percentages were determined using boronate affinity columns. The occurrence of oxidative modifications was found to be enhanced in glycated BSA, after determination of the free thiol groups content, electrophoretic migration and infrared spectrometry spectra. An accumulation of carbonyl-modified proteins and an increased release of isoprostane were observed in cell media following the exposure of adipocytes to glycated albumin. These results provide a new possible mechanism for enhanced oxidative damages in diabetes.
Collapse
Affiliation(s)
- Serge Chesne
- Laboratoire de Biochimie et Génétique Moléculaire (LBGM), Université de La Réunion, 15, Avenue René Cassin, BP 7151, 97715 Saint-Denis-Messag cedex 09, La Réunion, France
| | | | | | | |
Collapse
|
10
|
Bourdon E, Loreau N, Lagrost L, Davignon J, Bernier L, Blache D. Differential effects of oxidized LDL on apolipoprotein AI and B synthesis in HepG2 cells. Free Radic Biol Med 2006; 41:786-96. [PMID: 16895799 DOI: 10.1016/j.freeradbiomed.2006.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/05/2006] [Accepted: 05/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidized low-density lipoproteins (Ox-LDL) are key elements in atherogenesis. Apolipoprotein AI (apoAI) is an active component of the antiatherogenic high-density lipoproteins (HDL). In contrast, plasma apolipoprotein B (apoB), the main component of LDL, is highly correlated with coronary risk. Our results, obtained in HepG2 cells, show that Ox-LDL, unlike native LDL, leads to opposite effects on apoB and apoAI, namely a decrease in apoAI and an increase in apoB secretion as evaluated by [(3)H]leucine incorporation and specific immunoprecipitation. Parallel pulse-chase studies show that Ox-LDL impaired apoB degradation, whereas apoAI degradation was increased and mRNA levels were decreased. We also found that enhanced lipid biosynthesis of both triglycerides and cholesterol esters was involved in the Ox-LDL-induced increase in apoB secretion. Our data suggest that the increase in apoB and decrease in apoAI secretion may in part contribute to the known atherogenicity of Ox-LDL through an elevated LDL/HDL ratio, a strong predictor of coronary risk in patients.
Collapse
Affiliation(s)
- Emmanuel Bourdon
- INSERM U498, Dijon, France;-Faculté de Médecine, Université de Bourgogne, 21079 Dijon, France
| | | | | | | | | | | |
Collapse
|
11
|
Blache D, Devaux S, Joubert O, Loreau N, Schneider M, Durand P, Prost M, Gaume V, Adrian M, Laurant P, Berthelot A. Long-term moderate magnesium-deficient diet shows relationships between blood pressure, inflammation and oxidant stress defense in aging rats. Free Radic Biol Med 2006; 41:277-84. [PMID: 16814108 DOI: 10.1016/j.freeradbiomed.2006.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/23/2006] [Accepted: 04/06/2006] [Indexed: 02/05/2023]
Abstract
Epidemiological and experimental studies have indicated a relationship among aging, dietary Mg, inflammatory stress, and cardiovascular disease. Our aim in the present study was to investigate possible links between dietary Mg, oxidant stress parameters, and inflammatory status with aging in rats. We designed a long-term study in which rats were fed for 22 months with moderately deficient (150 mg/kg), standard (800 mg/kg), or supplemented (3200 mg/kg) Mg diets. Comparisons were made with young rats fed with the same diets for 1 month. Compared to the standard and supplemented diets, the Mg-deficient diet significantly increased blood pressure, plasma interleukin-6, fibrinogen, and erythrocyte lysophosphatidylcholine, particularly in aging rats, it decreased plasma albumin. The impairment of redox status was indicated by increases in plasma thiobarbituric acid reactive substances and oxysterols and an increased blood susceptibility to in vitro free-radical-induced hemolysis. We concluded that Mg deficiency induced a chronic impairment of redox status associated with inflammation which could significantly contribute to increased oxidized lipids and promote hypertension and vascular disorders with aging. Extrapolating to the human situation and given that Mg deficiency has been reported to be surprisingly common, particularly in the elderly, Mg supplementation might be useful as an adjuvant therapy in preventing cardiovascular disease.
Collapse
Affiliation(s)
- Denis Blache
- INSERM U 498, Biochimie des Lipoprotéines, Dijon, F-21079, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Adachi J, Kudo R, Asano M, Ueno Y, Hunter R, Rajendram R, Martin C, Preedy VR. Skeletal muscle and liver oxysterols during fasting and alcohol exposure. Metabolism 2006; 55:119-27. [PMID: 16324930 DOI: 10.1016/j.metabol.2005.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Accepted: 08/02/2005] [Indexed: 11/16/2022]
Abstract
Oxysterols are cytotoxic agents that have a range of cellular actions, including impairment of albumin synthesis, cell differentiation, and induction of apoptosis. Their regulations by nutritional factors are poorly described. Our objective was to test the hypothesis that the imposition of food withdrawal and alcohol exposure increases tissue oxysterol concentrations. We measured the concentrations of the oxysterols 7alpha-hydroxycholest-5-en-3beta-ol (7alpha-OH), 7beta-hydroxycholest-5-en-3beta-ol (7beta-OH), and 3beta-hydroxycholest-5-en-7-one (7-keto) in liver and skeletal muscle of fed and fasted (food withdrawal for 1 and 2 days) male Wistar rats. Both oxidative (type I; soleus) and glycolytic (type II; plantaris) muscles were analyzed. We also investigated the effects of a nutritional perturbant induced by a short-term bolus of ethanol (75 mmol/kg weight IP administered 2.5 hours before sacrifice). The results showed that in response to fasting there were significant increases in 7alpha-OH, 7beta-OH, and 7-keto in liver and both type I and II skeletal muscle (P < .001 in all instances). For skeletal muscle, the increases were blunted or ameliorated after 2 days when compared with data from rats starved for 1 day. In contrast, the increases in liver after 1 day's fasting were relatively sustained at 2 days. Short-term ethanol increased 7alpha-OH, 7beta-OH, and 7-keto in type I muscle of fed animals only (P < .001 in all instances) with a significant interaction between fasting and alcohol (P < .001 in all instances). For the first time, we have shown that oxysterols can increase in muscle and liver in response to food withdrawal and in response to an immediately imposed nutritional perturbant (ie, alcohol). Increased oxysterols represent elevated oxidative stress and/or disturbances in their formation or clearance. Because of the reported cytotoxic properties of oxysterols, these data are important in understanding cellular pathology because episodic anorexia and/or oxidative stress occur in a variety of disease conditions including sepsis, cancer cachexia, ischemia, and hormonal imbalance.
Collapse
Affiliation(s)
- Junko Adachi
- Department of Legal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Boaz M, Iuliano L, Himmelfarb J, Matas Z, Micheletta F, McMonagle E, Friedman V, Natoli S, Gvirtz G, Biro A, Smetana S, Sabo G, Gafter U, Weinstein T. Baseline Oxysterols and Other Markers of Oxidative Stress, Inflammation and Malnutrition in the Vitamin E and Intima Media Thickness Progression in End-Stage Renal Disease (VIPER) Cohort. ACTA ACUST UNITED AC 2005; 100:c111-9. [PMID: 15849477 DOI: 10.1159/000085290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Oxysterols are markers of oxidative stress, levels of which have not yet been reported in hemodialysis (HD) patients. This study was designed to compare levels of the oxysterols 7-ketocholesterol (7KC) and 7beta-hydroxycholesterol (7betaOH) between a cohort of HD patients and healthy controls. METHODS This nested cross-sectional study reflects baseline (pre-intervention) values for markers of oxidative stress, inflammation and nutrition status in the 160-member vitamin E and carotid intima media thickness progression in end-stage renal disease (VIPER) cohort (age 64.1 +/- 8.8, 33.5% female). Age- and sex-matched healthy volunteers served as controls. Plasma oxysterols 7KC and 7betaOH were determined by isotope dilution gas chromatography/mass spectrometry. RESULTS Despite higher plasma alpha-tocopherol levels in HD patients than controls (36.0 +/- 9.3 vs. 31.8 +/- 8.4 micromol/l, p = 0.007), 7KC levels (9.8 +/- 6.9 vs. 5.9 +/- 2.8 nmol/mmol cholesterol, p < 0.0001) and 7betaOH levels (8.7 +/- 4.3 vs. 2.7 +/- 1.6 nmol/mmol cholesterol, p < 0.0001) were higher in HD patients. The oxysterol 7betaOH was significantly, inversely associated with prealbumin (r = -0.18, p = 0.03), though neither oxysterol was significantly associated with any other marker of oxidative stress, inflammation or nutrition status and did not discriminate for CVD in HD patients. CONCLUSIONS Elevated levels of the oxysterols 7KC and 7betaOH indicate that HD patients are in a state of oxidative stress compared to healthy controls. However, oxysterols 7KC and 7betaOH did not appear to contribute additional information about oxidative stress among HD patients.
Collapse
Affiliation(s)
- Mona Boaz
- Epidemiology Unit, E. Wolfson Medical Center, Holon, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Suckling KE, Macphee CH. Lipoprotein-associated phospholipase A2: a target directed at the atherosclerotic plaque. Expert Opin Ther Targets 2002; 6:309-14. [PMID: 12223071 DOI: 10.1517/14728222.6.3.309] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is so named because it is found in human plasma largely associated with low-density lipoprotein (LDL). It is secreted by macrophages and able to hydrolyse oxidised fatty acids from oxidised phospholipids in LDL thereby releasing pro-atherogenic lysophosphatidylcholine and fatty acids. Inhibition of this enzyme activity was proposed to be antiatherogenic and this hypothesis has been confirmed both in vitro and in animal studies using specific inhibitors. In addition, the enzyme has been shown to be present in human atherosclerotic plaques and to be a potential risk factor for coronary heart disease in epidemiological studies. However, Lp-PLA(2) is identical to platelet-activating factor acetylhydrolase (PAF-AH), whose activity is regarded as antiatherogenic. The role of this enzyme in humans, represented as Lp-PLA(2) or PAF-AH, remains to be clarified. Specific and potent inhibitors of Lp-PLA(2) have been described and help address this question. This is a novel approach directed specifically towards processes in atherogenesis which take place in the artery wall. Innovative strategies for clinical development are required to progress novel molecular strategies such as this.
Collapse
Affiliation(s)
- Keith E Suckling
- Artherosclerosis Research, GlaxoSmithkline, Medicines Research Centre, Stevenage, Herts, UK.
| | | |
Collapse
|