1
|
Zhou H, Gong Y, Wu Q, Ye X, Yu B, Lu C, Jiang W, Ye J, Fu Z. Rare Diseases Related with Lipoprotein Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:171-188. [PMID: 32705600 DOI: 10.1007/978-981-15-6082-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rare diseases are gathering increasing attention in last few years, not only for its effects on innovation scientific research, but also for its propounding influence on common diseases. One of the most famous milestones made by Michael Brown and Joseph Goldstein in metabolism field is the discovery of the defective gene in familial hypercholesterolemia, a rare human genetic disease manifested with extreme high level of serum cholesterol (Goldstein JL, Brown MS, Proc Natl Acad Sci USA 70:2804-2808, 1973; Brown MS, Dana SE, Goldstein JL, J Biol Chem 249:789-796, 1974). Follow-up work including decoding the gene function, mapping-related pathways, and screening therapeutic targets are all based on the primary finding (Goldstein JL, Brown MS Arterioscler Thromb Vasc Biol 29:431-438, 2009). A series of succession win the two brilliant scientists the 1985 Nobel Prize, and bring about statins widely used for lipid management and decreasing cardiovascular disease risks. Translating the clinical extreme phenotypes into laboratory bench work has turned out to be the first important step in the paradigm conducting translational and precise medical research. Here we review the main categories of rare disorders related with lipoprotein metabolism, aiming to strengthen the notion that human rare inheritable genetic diseases would be the window to know ourselves better, to treat someone more efficiently, and to lead a healthy life longer. Few rare diseases related with lipoprotein metabolism were clustered into six sections based on changes in lipid profile, namely, hyper- or hypocholesterolemia, hypo- or hyperalphalipoproteinemia, abetalipoproteinemia, hypobetalipoproteinemia, and sphingolipid metabolism diseases. Each section consists of a brief introduction, followed by a summary of well-known disease-causing genes in one table, and supplemented with one or two diseases as example for detailed description. Here we aimed to raise more attention on rare lipoprotein metabolism diseases, calling for more work from basic research and clinical trials.
Collapse
Affiliation(s)
- Hongwen Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yingyun Gong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinyi Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Baowen Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyan Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanzi Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingya Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Fu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Okada T, Ohama T, Takafuji K, Kanno K, Matsuda H, Sairyo M, Zhu Y, Saga A, Kobayashi T, Masuda D, Koseki M, Nishida M, Sakata Y, Yamashita S. Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency. J Clin Lipidol 2019; 13:317-325. [PMID: 30745272 DOI: 10.1016/j.jacl.2019.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We previously reported that the patients with cholesteryl ester transfer protein (CETP) deficiency (CETP-D) show marked changes in the size and lipid compositions of high-density lipoprotein (HDL) and that they are not protected from atherosclerotic cardiovascular diseases, despite increased serum HDL-cholesterol (HDL-C) levels. HDL particles carry a variety of proteins, some of which are known to have antiatherogenic functions. OBJECTIVE This study aimed to investigate the protein composition of HDL particles in patients with CETP-D. METHODS Eight patients with complete deficiency of CETP and 8 normolipidemic healthy subjects were enrolled. We performed shotgun proteomic analysis to investigate the proteome of ultracentrifugally isolated HDL. RESULTS We identified 79 HDL-associated proteins involved in lipid metabolism, protease inhibition, complement regulation, and acute-phase response, including 5 potential newly identified HDL-associated proteins such as angiopoietin-like3 (ANGPTL3). Spectral counts of apolipoprotein (apo) E were increased in patients with CETP-D compared with controls (60.3 ± 6.9 vs 43.7 ± 2.5, P < .001), which is concordant with our previous report. Complement regulatory proteins such as C3, C4a, C4b, and C9 were also significantly enriched in HDL from patients with CETP-D. Furthermore, apoC-III and ANGPTL3, both of which are now known to associate with increased atherosclerotic cardiovascular diseases, were enriched in patients with CETP-D compared with normolipidemic subjects (35.9 ± 5.3 vs 27.1 ± 3.7, 2.3 ± 1.1 vs 0.4 ± 1.1, respectively; P < .01). CONCLUSION We have characterized HDL-associated proteins in patients with CETP-D. We identified a significant increase in the amount of apoE, apoC-III, ANGPTL3, and complement regulatory proteins. These proteomic changes might be partly responsible for the enhanced atherogenicity of patients with CETP-D.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kazuaki Takafuji
- Department of Bio-System Pharmacology, Osaka University Graduate School Graduate, School of Medicine, Osaka, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hibiki Matsuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Sairyo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayami Saga
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Kobayashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Health Care Division, Health and Counseling Center, Osaka University, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Cardiology, Rinku General Medical Center, Osaka, Japan.
| |
Collapse
|
3
|
Sun J, Cai R, Huang R, Wang P, Tian S, Sun H, Xia W, Wang S. Cholesteryl Ester Transfer Protein Intimately Involved in Dyslipidemia-Related Susceptibility to Cognitive Deficits in Type 2 Diabetic Patients. J Alzheimers Dis 2016; 54:175-84. [PMID: 27497473 DOI: 10.3233/jad-160053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) is involved in diabetic dyslipidemia. OBJECTIVE We aim to test the hypothesis that CETP might be of importance in mediating dyslipidemia-related susceptibility to cognitive deficits in diabetic patients. METHODS We recruited 190 type 2 diabetic patients and divided them into two groups according to the Montreal Cognitive Assessment (MoCA) score. The association between CETP and cognitive decline was analyzed with logistic regression and stratification. RESULTS There were 110 diabetic patients with mild cognition impairment (MCI) and 80 healthy cognition subjects as controls. Dyslipidemia is more common among diabetic patients with MCI; they had a significant increase of serum CETP concentrations, which was negatively correlated with MoCA (r = -0.638; p < 0.001). Negative correlations were also found between the serum CETP concentration with the Auditory Verbal Learning Test (r = -0.266; p = 0.008), indicating memory deficit. Logistic regression analysis revealed that CETP concentration was an independent factor of diabetic MCI (p < 0.001). Further stratification study showed that high serum levels of CETP was an independent risk factor of MCI in diabetic patients with a low density lipoproteins level ≥2.59 mmol/L, or high density lipoproteins level ≤1.0 mmol/L for men and ≤1.3 mmol/L for women, or TG level ≥1.7 mmol/L, after adjusting for age, sex, education, and glucose control (all ps < 0.05). CONCLUSIONS CETP was intimately involved in dyslipidemia-related susceptibility to cognitive decline, especially memory function in type 2 diabetic patients.
Collapse
Affiliation(s)
- Jie Sun
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China.,Medical School of Southeast University, Nanjing, PR China
| | - Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Pin Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Haixia Sun
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Wenqing Xia
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University, Nanjing, PR China
| |
Collapse
|
4
|
Quintão ECR. The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? Eur J Clin Invest 2016; 46:581-9. [PMID: 26992444 DOI: 10.1111/eci.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/16/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND According to epidemiological studies, there is no clear relationship between the plasma cholesteryl ester transfer protein (CETP) concentration and the development of atherosclerosis in human populations. Although some studies suggest that increased CETP activity relates to undesirable profiles of plasma lipoproteins, promoting an anti-atherogenic plasma lipoprotein profile by drugs that inhibit CETP has not succeeded in preventing atherosclerosis in humans. MATERIALS AND METHODS This review describes 28 investigations in human populations dealing with plasma CETP, 11 in mice that express human CETP and seven in animals (six in rabbits and one in mice) in which plasma CETP activity was inhibited by drugs. RESULTS Present review shows that models in mice expressing human CETP are not illuminating because they report increase as well reduction of atherosclerosis. However, investigations in rabbits and mice that develop severe hypercholesterolaemia clearly indicate that impairment of the plasma CETP activity elicits protection against the development of atherosclerosis; in all of these experiments are attained substantial reductions of the atherogenic lipoproteins, namely, plasma apoB containing lipoproteins. CONCLUSION These models are strong indicators that the benefit in preventing atherosclerosis should be earned in cases of hyperlipidemia by CETP inhibitors.
Collapse
Affiliation(s)
- Eder C R Quintão
- Internal Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
5
|
Satoh K, Nagano T, Seki N, Tomita Y, Aida Y, Sugita T, Itagaki M, Sutoh S, Abe H, Aizawa Y. High level of serum cholesteryl ester transfer protein in active hepatitis C virus infection. World J Hepatol 2016; 8:291-300. [PMID: 26925203 PMCID: PMC4757652 DOI: 10.4254/wjh.v8.i5.291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/30/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the significance of cholesteryl ester transfer protein (CETP) in lipoprotein abnormalities in chronic hepatitis C virus (HCV) infection. METHODS We evaluated the significance of the serum concentration of CETP in 110 Japanese patients with chronic HCV infection. Fifty-five patients had active HCV infection, and HCV eradication had been achieved in 55. The role of CETP in serum lipoprotein abnormalities, specifically, in triglyceride (TG) concentrations in the four major classes of lipoproteins, was investigated using Pearson correlations in conjunction with multiple regression analysis and compared them between those with active HCV infection and those in whom eradication had been achieved. RESULTS The serum CETP levels of patients with active HCV infection were significantly higher than those of patients in whom HCV eradication was achieved (mean ± SD, 2.84 ± 0.69 μg/mL vs 2.40 ± 1.00 μg/mL, P = 0.008). In multiple regression analysis, HCV infection status (active or eradicated) was an independent factor significantly associated with the serum CETP level. TG concentrations in low-density lipoprotein (mean ± SD, 36.25 ± 15.28 μg/mL vs 28.14 ± 9.94 μg/mL, P = 0.001) and high-density lipoprotein (HDL) (mean ± SD, 25.9 ± 7.34 μg/mL vs 17.17 ± 4.82 μg/mL, P < 0.001) were significantly higher in patients with active HCV infection than in those in whom HCV eradication was achieved. The CETP level was strongly correlated with HDL-TG in patients with active HCV infection (R = 0.557, P < 0.001), whereas CETP was not correlated with HDL-TG in patients in whom HCV eradication was achieved (R = -0.079, P = 0.56). CONCLUSION Our results indicate that CETP plays a role in abnormalities of lipoprotein metabolism in patients with chronic HCV infection.
Collapse
Affiliation(s)
- Kenichi Satoh
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Tomohisa Nagano
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Nobuyoshi Seki
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yoichi Tomita
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yuta Aida
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Tomonori Sugita
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Munenori Itagaki
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Satoshi Sutoh
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Hiroshi Abe
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| | - Yoshio Aizawa
- Kenichi Satoh, Tomohisa Nagano, Nobuyoshi Seki, Yoichi Tomita, Yuta Aida, Tomonori Sugita, Munenori Itagaki, Satoshi Sutoh, Hiroshi Abe, Yoshio Aizawa, Department of Gastroenterology and Hepatology, Internal Medicine of Jikei University Katsushika Medical Center, Katsushikaku, Tokyo 125-8506, Japan
| |
Collapse
|
6
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
7
|
Functional characterization of novel variants in the CETP promoter and the LIPC gene in subjects with hyperalphalipoproteinemia. Clin Chim Acta 2013; 416:92-5. [DOI: 10.1016/j.cca.2012.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
8
|
Blackett PR, Sanghera DK. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction. J Clin Lipidol 2013; 7:65-81. [PMID: 23351585 PMCID: PMC3559023 DOI: 10.1016/j.jacl.2012.04.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/16/2012] [Accepted: 04/16/2012] [Indexed: 12/15/2022]
Abstract
This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance.
Collapse
Affiliation(s)
- Piers R Blackett
- Department of Pediatrics, 940 NE 13St., University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Dharambir K Sanghera
- Department of Pediatrics, 940 NE 13St., University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
9
|
Homma K, Homma Y, Shiina Y, Wakino S, Suzuki M, Fujishima S, Hayashi K, Hori S, Itoh H. Skew of Plasma Low- and High-Density Lipoprotein Distributions to Less Dense Subfractions in Normotriglyceridemic Chronic Kidney Disease Patients on Maintenance Hemodialysis Treatment. ACTA ACUST UNITED AC 2013; 123:41-5. [DOI: 10.1159/000351506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/16/2013] [Indexed: 11/19/2022]
|
10
|
Khovidhunkit W, Chartyingcharoen P, Siriwong S, Limumpornpetch P, Plengpanich W. Resequencing CETP, LIPC and LIPG genes in Thai subjects with hyperalphalipoproteinemia. Am J Cardiol 2012; 110:62-6. [PMID: 22464213 DOI: 10.1016/j.amjcard.2012.02.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/21/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Genetic factors associated with hyperalphalipoproteinemia (HALP; or high levels of high-density lipoprotein cholesterol) are incompletely understood. The aim of this study was to resequence 3 candidate genes, CETP, LIPC, and LIPG, which encode cholesteryl ester transfer protein, hepatic lipase, and endothelial lipase, respectively, in Thai subjects with HALP and compare them to normolipidemic controls. Sequence variants of CETP, LIPC, and LIPG were identified by sequencing exons and exon-intron junctions in 64 subjects with high-density lipoprotein cholesterol levels ≥2.59 mmol/L (100 mg/dl) and compared to those of 113 normolipidemic subjects. Two heterozygous frameshift mutations in CETP (p.Leu262ProfsX31 and p.Val411ArgfsX6) and two heterozygous missense mutations in LIPC (p.Gly141Ser and p.Val173Met) were found. One deletion mutation and 3 point mutations in the CETP promoter were also identified. Collectively, these rare mutations were found only in the HALP group but not in the control group (8% vs 0%, p = 0.0056). One common variant of CETP (p.Asp459Gly) was found at a higher frequency in the HALP group (23% vs 4%, p = 0.000074). Altogether, rare variants of CETP or LIPC and/or the common CETP p.Asp459Gly variant were found in 30% of the HALP group and 4% of the controls (p = 0.0000014). No rare variant of LIPG was identified. In conclusion, common and rare genetic variants in CETP and LIPC, but not LIPG, were more commonly found in the Thai HALP group, which could potentially contribute to high high-density lipoprotein cholesterol phenotypes in this population.
Collapse
|
11
|
Ohtani R, Inazu A, Noji Y, Wakasugi T, Miwa K, Tada H, Kawashiri MA, Noguchi T, Nohara A, Kobayashi J, Koizumi J, Yamagishi M, Mabuchi H. Novel mutations of cholesteryl ester transfer protein (CETP) gene in Japanese hyperalphalipoproteinemic subjects. Clin Chim Acta 2012; 413:537-43. [DOI: 10.1016/j.cca.2011.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
12
|
Plengpanich W, Le Goff W, Poolsuk S, Julia Z, Guerin M, Khovidhunkit W. CETP deficiency due to a novel mutation in the CETP gene promoter and its effect on cholesterol efflux and selective uptake into hepatocytes. Atherosclerosis 2011; 216:370-3. [PMID: 21354572 DOI: 10.1016/j.atherosclerosis.2011.01.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/25/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To identify the genetic variant in the CETP gene of the proband with high HDL-C and low CETP activity and to investigate whether HDL from the CETP-deficient subject was dysfunctional in the reverse cholesterol transport (RCT) pathway. METHODS We sequenced the CETP gene and assessed its promoter activity. Cholesterol efflux and hepatic cholesteryl ester delivery studies were also performed using the proband's HDL. RESULTS A proband was a compound heterozygote for a known D459G variant and a novel 18-bp deletion mutation in the CETP promoter. This promoter mutation markedly reduced the transcriptional activity in HepG2 cells. HDL2 from this subject increased SR-BI-mediated cholesterol efflux, whereas cholesteryl ester delivery into hepatocytes was maintained. CONCLUSION A novel deletion mutation in the CETP promoter is associated with high HDL-C and decreased promoter activity. HDL from this CETP-deficient subject was not dysfunctional in mediating two main steps of RCT assessed in vitro.
Collapse
Affiliation(s)
- Wanee Plengpanich
- Endocrinology and Metabolism Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Patumwan, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
13
|
Ohmori R, Momiyama Y, Nagano M, Taniguchi H, Egashira T, Yonemura A, Nakamura H, Kondo K, Ohsuzu F. An oxidized low-density lipoprotein receptor gene variant is inversely associated with the severity of coronary artery disease. Clin Cardiol 2005; 27:641-4. [PMID: 15562935 PMCID: PMC6654660 DOI: 10.1002/clc.4960271112] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND A lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is the major receptor of oxidized LDL in endothelial cells. The expression of LOX-1 was shown to be upregulated in atherosclerotic lesions. Recently, LOX-1 gene polymorphism (G501C) was reported to be associated with myocardial infarction (MI). HYPOTHESIS Our study was undertaken to elucidate the association between this polymorphism and coronary artery disease (CAD). METHODS We evaluated LOX-1 gene polymorphism using Invader assay in 586 patients undergoing coronary angiography. RESULTS Study patients were categorized into three groups: normal/minimal stenosis (< or =25%) (n = 128); mild stenosis (26-50%) (n = 39); and significant stenosis (>50%) (n = 419). Of the 419 patients with significant stenosis, 163 had single-vessel, 165 had double-vessel, and 91 had triple-vessel disease. Myocardial infarction was present in 171 patients. The frequency of LOX- 1 gene variants (C/C or C/G) was lower in patients with significant than in those with normal/minimal stenosis (36 vs. 49%, p < 0.01). The frequency of LOX-1 gene variants did not differ between patients with and without MI (34 vs. 37%). However, a stepwise decrease in the frequency of such variants was found depending on the severity of CAD: 49% in normal/minimal stenosis, 41% in mild stenosis, 39% in single-vessel, 35% in double-vessel, and 32% in triple-vessel disease. Multivariate analysis demonstrated LOX-1 gene variants to be inversely associated with the presence of significant stenosis (odds ratio = 0.61; 95% confidence interval = 0.41-0.92). CONCLUSIONS The LOX-1 gene variants at 501 were found to be inversely associated with the severity of CAD. This polymorphism may be modifying the severity of CAD.
Collapse
Affiliation(s)
- Reiko Ohmori
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yukihiko Momiyama
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Makoto Nagano
- Department of Advanced Technology and Development, BML, Saitama, Japan
| | - Hiroaki Taniguchi
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Tohru Egashira
- Department of Advanced Technology and Development, BML, Saitama, Japan
| | - Atsushi Yonemura
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Haruo Nakamura
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuo Kondo
- Institute of Environmental Science for Human Life, Ochanomizu University, Tokyo, Japan
| | - Fumitaka Ohsuzu
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
14
|
Momiyama Y, Ohmori R, Nagano M, Kato R, Taniguchi H, Egashira T, Nakamura H, Ohsuzu F. Polymorphism of the 3'-Untranslated Region of Interleukin-12 p40 Gene is not Associated With the Presence or Severity of Coronary Artery Disease. Circ J 2005; 69:793-7. [PMID: 15988104 DOI: 10.1253/circj.69.793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Interleukin (IL)-12 is thought to play an important role in the development of atherosclerosis and recently, polymorphism of the 3'-untranslated region of the IL-12 p40 gene (A1188C) was reported to be associated with diabetes and multiple sclerosis. However, the association between this genetic polymorphism and coronary artery disease (CAD) has not been studied. METHODS AND RESULTS The frequency of this polymorphism was investigated in 555 patients undergoing coronary angiography: 395 had CAD, of whom 161 also had a myocardial infarction (MI). With regard to the IL-12 p40 polymorphism, 125 had the A/A, 268 had the A/C, and 162 had the C/C genotype. The prevalence of CAD did not differ among the groups (71%, 73%, and 69%, respectively; p= NS). The prevalence of MI was also similar among the groups (28%, 27%, and 33%, respectively; p= NS). Moreover, the number of >50% stenotic vessels, >50% stenotic segments, and < or =50% stenotic segments did not differ among the 3 groups. CONCLUSIONS Polymorphism of IL-12 p40 gene was not found to be associated with the presence or severity of CAD, suggesting that it does not play an important role in the development of this disease.
Collapse
Affiliation(s)
- Yukihiko Momiyama
- First Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Arai H, Yamamoto A, Matsuzawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, Teramoto T, Sasaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Egashira T, Hattori H, Shirahashi N, Kita T. Polymorphisms in Four Genes Related to Triglyceride and HDL-cholesterol Levels in the General Japanese Population in 2000. J Atheroscler Thromb 2005; 12:240-50. [PMID: 16205020 DOI: 10.5551/jat.12.240] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We studied the association of six common polymorphisms of four genes related to lipid metabolism with serum lipid levels. We selected single-nucleotide polymorphisms (SNPs) in the genes for cholesteryl ester transfer protein (CETP), lipoprotein lipase (LPL), hepatic lipase (LIPC), and apolipoprotein CIII (APOC3), and studied 2267 individuals randomly selected from the participants of Serum Lipid Survey 2000. There was a significant association of CETP polymorphism (D442G, Int14 +1 G --> A, and TaqIB), LPL polymorphism (S447X), and LIPC polymorphism (-514 --> CT) with HDL-cholesterol levels. We also found a significant association of LPL polymorphism (S447X) and APOC3 polymorphism (SstI) with triglyceride levels. This is the largest database showing the association of common genetic variants in lipid metabolism with serum lipid levels in the general Japanese population. Further study is necessary to elucidate the role of these gene polymorphisms in cardiovascular events.
Collapse
Affiliation(s)
- Hidenori Arai
- Department of Geriatric Medicine, Kyoto University School of Medicine, 54 Kawahara-cho, Shogoin, Sakuo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nagano M, Yamashita S, Hirano KI, Takano M, Maruyama T, Ishihara M, Sagehashi Y, Kujiraoka T, Tanaka K, Hattori H, Sakai N, Nakajima N, Egashira T, Matsuzawa Y. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb 2004; 11:110-21. [PMID: 15256762 DOI: 10.5551/jat.11.110] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport (RCT), a protective system against atherosclerosis. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with marked hyperalphalipoproteinemia (HALP). Genetic CETP deficiency is the most important and common cause of HALP in the Japanese. Ten mutations of the CETP gene have been demonstrated as causes of HALP, including two common mutations: an intron 14 splicing defect (Int14 + 1 G --> A) and an exon 15 missense mutation (D442G). The subjects with CETP deficiency show a variety of abnormalities in the concentration, composition, and function of both HDL and low density lipoprotein (LDL). CETP deficiency is considered a physiological state of impaired RCT, which may possibly lead to the development of atherosclerosis despite high HDL cholesterol levels. However, the pathophysiological significance of CETP in terms of atherosclerosis has been controversial. Epidemiological studies in Japanese-Americans living in Hawaii and Japanese in the Omagari area, where HALP subjects with an intron 14 splicing defect of the CETP gene are markedly frequent, have shown a relatively increased incidence of coronary atherosclerosis in CETP deficiency. On the other hand, the TaqIB polymorphism-B2 allele with low CETP mass and increased HDL cholesterol has been related to a decreased risk for coronary heart disease (CHD) in many studies, including the Framingham Offspring Study. The current review focused on the characterization of the Japanese subjects with CETP deficiency, including our recent findings.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Advanced Technology and Development, BML, Inc., Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boekholdt SM, Kuivenhoven JA, Hovingh GK, Jukema JW, Kastelein JJP, van Tol A. CETP gene variation: relation to lipid parameters and cardiovascular risk. Curr Opin Lipidol 2004; 15:393-8. [PMID: 15243211 DOI: 10.1097/01.mol.0000137226.54278.60] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Over the past decade lowering of low-density lipoprotein-cholesterol levels has been established as the foundation for preventing coronary artery disease, but substantial additional risk reduction remains to be gained by modifying risk factors other than low-density lipoprotein-cholesterol. Raising high-density lipoprotein-cholesterol levels by inhibiting activity of the cholesteryl ester transfer protein (CETP) is a prime target. Research on naturally occurring variants in the CETP gene has yielded numerous insights that have been relevant for understanding lipoprotein metabolism, and crucial to the development of pharmacological CETP inhibition. RECENT FINDINGS This review discusses a number of recently published studies, including a haplotype analysis of the CETP promoter region confirming that the -629 C-->A variant, not the TaqIB variant, is instrumental in determining CETP activity, as previously suggested. In addition, we discuss a recent meta-analysis which confirms that the I405V and TaqIB variants are indeed associated with lower CETP activity and higher high-density lipoprotein-cholesterol levels. Also, we review two subanalyses of large randomized controlled pravastatin trials which found no evidence for a proposed pharmacogenetic interaction between the CETP TaqIB variant and pravastatin treatment. SUMMARY The currently available evidence suggests that several genetic variants in the CETP gene are associated with altered CETP plasma levels and activity, high-density lipoprotein-cholesterol plasma levels, low-density lipoprotein and high-density lipoprotein particle size, and perhaps the risk of coronary artery disease. No evidence exists for a pharmacogenetic interaction between the CETP TaqIB variant and pravastatin efficacy.
Collapse
|
18
|
Le Goff W, Guerin M, Chapman MJ. Pharmacological modulation of cholesteryl ester transfer protein, a new therapeutic target in atherogenic dyslipidemia. Pharmacol Ther 2004; 101:17-38. [PMID: 14729390 DOI: 10.1016/j.pharmthera.2003.10.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mediating the transfer of cholesteryl esters (CE) from antiatherogenic high density lipoprotein (HDL) to proatherogenic apolipoprotein (apo)-B-containing lipoprotein particles (including very low density lipoprotein [VLDL], VLDL remnants, intermediate density lipoprotein [IDL], and low density lipoprotein [LDL]), the CE transfer protein (CETP) plays a critical role not only in the reverse cholesterol transport (RCT) pathway but also in the intravascular remodeling and recycling of HDL particles. Dyslipidemic states associated with premature atherosclerotic disease and high cardiovascular risk are characterized by a disequilibrium due to an excess of circulating concentrations of atherogenic lipoproteins relative to those of atheroprotective HDL, thereby favoring arterial cholesterol deposition and enhanced atherogenesis. In such states, CETP activity is elevated and contributes significantly to the cholesterol burden in atherogenic apoB-containing lipoproteins. In reducing the numbers of acceptor particles for HDL-derived CE, both statins (VLDL, VLDL remnants, IDL, and LDL) and fibrates (primarily VLDL and VLDL remnants) act to attenuate potentially proatherogenic CETP activity in dyslipidemic states; simultaneously, CE are preferentially retained in HDL and thereby contribute to elevation in HDL-cholesterol content. Mutations in the CETP gene associated with CETP deficiency are characterized by high HDL-cholesterol levels (>60 mg/dL) and reduced cardiovascular risk. Such findings are consistent with studies of pharmacologically mediated inhibition of CETP in the rabbit, which argue strongly in favor of CETP inhibition as a valid therapeutic approach to delay atherogenesis. Consequently, new organic inhibitors of CETP are under development and present a potent tool for elevation of HDL in dyslipidemias involving low HDL levels and premature coronary artery disease, such as the dyslipidemia of type II diabetes and the metabolic syndrome. The results of clinical trials to evaluate the impact of CETP inhibition on premature atherosclerosis are eagerly awaited.
Collapse
Affiliation(s)
- Wilfried Le Goff
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 551, "Dyslipoproteinemia and Atherosclerosis: Genetics, Metabolism and Therapy", Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Cedex 13, Paris, France
| | | | | |
Collapse
|
19
|
Ikewaki K, Mabuchi H, Teramoto T, Yamada N, Oikawa S, Sasaki J, Takata K, Saito Y. Association of cholesteryl ester transfer protein activity and TaqIB polymorphism with lipoprotein variations in Japanese subjects. Metabolism 2003; 52:1564-70. [PMID: 14669156 DOI: 10.1016/j.metabol.2003.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester from high-density lipoprotein (HDL) to apolipoprotein (apo)B-containing lipoproteins, whereby it potentially regulates steady-state concentrations of HDL-cholesterol (HDL-C), as well as low-density lipoprotein-cholesterol (LDL-C). We performed a multicenter trial to assess the association of CETP activity with plasma lipoprotein levels in 591 Japanese subjects. Women had significantly higher CETP activity (15%) and mass (24%) compared to men. For both genders CETP activity was negatively correlated with HDL-C and HDL(2)-C, but positively correlated with LDL-C. B2 allele frequency in TaqIB polymorphism was 40%, with no gender difference. TaqIB genotypes were significantly associated with CETP activity and HDL-C level (both P <.001). B1B1 had the highest CETP activity and the lowest HDL-C concentrations, whereas B2B2 had the lowest CETP activity and the highest HDL-C concentrations. However, no statistically significant differences in triglycerides (TG) or LDL-C were observed across TaqIB genotypes. Multivariate analysis revealed that determinants of HDL-C were age, gender, body mass index (BMI), smoking, alcohol intake, exercise, CETP activity, and TG, and for LDL-C were BMI, age, and CETP. These data demonstrate that CETP activity is a significant determinant of HDL-C and LDL-C levels and that TaqIB CETP gene polymorphism affects CETP activity and HDL-C level in Japanese population examined.
Collapse
Affiliation(s)
- Katsunori Ikewaki
- Department of Cardiology, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Boekholdt SM, Thompson JF. Natural genetic variation as a tool in understanding the role of CETP in lipid levels and disease. J Lipid Res 2003; 44:1080-93. [PMID: 12639975 DOI: 10.1194/jlr.r200018-jlr200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the identification of cholesteryl ester transfer protein (CETP), its role in the modulation of HDL levels and cardiovascular disease has been debated. With the early detection of genetic variants followed by the finding of families deficient in CETP, genetic studies have played a large role in the attempts to understand the association of CETP with lipids and disease; however, results of these studies have often led to disparate conclusions. With the availability of a greater variety of genetic polymorphisms and larger studies in which disease has been examined, it is now possible to compare the breadth of CETP genetic studies and draw better conclusions. The most broadly studied polymorphism is TaqIB for which over 10,000 individuals have been genotyped and had HDL levels determined. When these studies are subjected to a meta-analysis, the B2B2 homozygotes are found to have higher HDL levels than B1B1 homozygotes (0.12 mmol/l, 95% CI = 0.11-0.13, P < 0.0001). A similar analysis of the I405V polymorphism yields 0.05 mmol/l higher HDL levels in 405VV homozygotes than in 405II homozygotes (95% CI = 0.03-0.07, P < 0.0001). The implications of these studies for cardiovascular disease will be addressed.
Collapse
Affiliation(s)
- S Matthijs Boekholdt
- Academic Medical Center, Department of Cardiology, Room F3-241, 1100 DD Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
Thompson JF, Lira ME, Durham LK, Clark RW, Bamberger MJ, Milos PM. Polymorphisms in the CETP gene and association with CETP mass and HDL levels. Atherosclerosis 2003; 167:195-204. [PMID: 12818401 DOI: 10.1016/s0021-9150(03)00005-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cholesteryl ester transfer protein (CETP) gene has been implicated in the variation of HDL levels but most studies have focused on only one or a few genetic variations. In order to properly understand the role of CETP in determining phenotype, it is necessary to examine the entire gene and all its common polymorphisms. The coding regions, adjacent introns, and proximal 5' and 3' regions were resequenced from an ethnically diverse population. Novel and previously known polymorphisms were then characterized and associations with HDL and CETP mass levels determined. The polymorphism most highly associated with CETP was 629 bp upstream of the transcription start site while the polymorphism most highly associated with HDL was a VNTR 1946 bp upstream of the transcription start site. Genetic variation in the CETP gene is associated with protective HDL levels. The ethnic diversity of some SNPs and complex interplay among them dictate careful analysis of the whole gene prior to conclusions about the role of individual polymorphisms.
Collapse
Affiliation(s)
- John F Thompson
- Cardiovascular and Metabolic Diseases, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Maruyama T, Sakai N, Ishigami M, Hirano KI, Arai T, Okada S, Okuda E, Ohya A, Nakajima N, Kadowaki K, Fushimi E, Yamashita S, Matsuzawa Y. Prevalence and phenotypic spectrum of cholesteryl ester transfer protein gene mutations in Japanese hyperalphalipoproteinemia. Atherosclerosis 2003; 166:177-85. [PMID: 12482565 DOI: 10.1016/s0021-9150(02)00327-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A patient with cholesteryl ester transfer protein (CETP) deficiency presents with marked hyperalphalipoproteinemia (HALP). To investigate the contribution of CETP deficiency to the cause of HALP (HDL-C> or =1.94 mmol/l, 75 mg/dl), we investigated the CETP activities and the prevalence of genetic CETP mutations among 624 Japanese HALP subjects. The subjects were screened for four known genetic CETP mutations (intron 14 splicing defect (In14), exon 15 missense mutation (Ex15), intron 10 splicing defect (In10) and exon 6 nonsense mutation (Ex6)). We found the frequency of the patients with reduced CETP activity (<75% of normal controls) to be 55.5 and 64.1% in a high HDL group (1.94< or =HDL-C<2.59 mmol/l) and a marked HALP group (HDL-C> or =2.59 mmol/l, 100 mg/dl), respectively. At least one of the four mutations was identified in 65.7% of subjects with reduced CETP activities and 57.5% of subjects with marked HALP. The In14 and Ex15 mutations were very common in HALP subjects and the frequency of In10 mutation and Ex6 mutation was quite low. To investigate the impact of genetic CETP mutation on the phenotypes, we compared the plasma lipid levels and CETP activities between the subjects with two common mutations. All In14 homozygotes showed marked HALP, while marked HALP is less frequent (64.3%) in Ex15 homozygotes. HDL-C levels in Ex15 heterozygotes were significantly higher than those of In14 heterozygotes, suggesting the mutation has dominant negative effects on CETP activity in vivo. Some cases with In14 (5.7%) or Ex15 (7.2%) mutation showed low HDL-C levels. We conclude that CETP deficiency is a major cause of HALP; nevertheless CETP deficiency is not necessarily HALP.
Collapse
Affiliation(s)
- Takao Maruyama
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, B5, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oka T, Yamashita S, Kujiraoka T, Ito M, Nagano M, Sagehashi Y, Egashira T, Nanjee MN, Hirano KI, Miller NE, Matsuzawa Y, Hattori H. Distribution of human plasma PLTP mass and activity in hypo- and hyperalphalipoproteinemia. J Lipid Res 2002. [DOI: 10.1194/jlr.m100349-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Nagano M, Yamashita S, Hirano KI, Ito M, Maruyama T, Ishihara M, Sagehashi Y, Oka T, Kujiraoka T, Hattori H, Nakajima N, Egashira T, Kondo M, Sakai N, Matsuzawa Y. Two novel missense mutations in the CETP gene in Japanese hyperalphalipoproteinemic subjects: high-throughput assay by Invader assay. J Lipid Res 2002; 43:1011-8. [PMID: 12091484 DOI: 10.1194/jlr.m200024-jlr200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) deficiency is one of the most important and common causes of hyperalphalipoproteinemia (HALP) in the Japanese. CETP deficiency is thought to be a state of impaired reverse cholesterol transport, which may possibly lead to the development of atherosclerotic cardiovascular disease despite high HDL-cholesterol (HDL-C) levels. Thus, it is important to investigate whether HALP is caused by CETP deficiency. In the present study, we identified two novel missense mutations in the CETP gene among 196 subjects with a marked HALP (HDL-C > or = 2.59 mmol/l = 100 mg/dl). The two missense mutations, L151P (CTC-->CCC in exon 5) and R282C (CGC-->TGC in exon 9), were found in compound heterozygous subjects with D442G mutation, whose plasma CETP levels were significantly lower when compared with those in D442G heterozygous subjects. In COS-7 cells expressing the wild type and mutant CETP, these two mutant CETP showed a marked reduction in the secretion of CETP protein into media (0% and 39% of wild type for L151P and R282C, respectively). These results suggested that two novel missense mutations cause the decreased secretion of CETP protein into circulation leading to HALP. By using the Invader assay for seven mutations, including two novel mutations of the CETP gene, we investigated their frequency among 466 unrelated subjects with HALP (HDL-C > or = 2.07 mmol/l = 80 mg/dl). Two novel mutations were rare, but L151P mutation was found in unrelated subjects with a marked HALP. Furthermore, we demonstrated that CETP deficiency contributes to 61.7% and 31.4% of marked HALP and moderate HALP in the Japanese, respectively.
Collapse
Affiliation(s)
- Makoto Nagano
- Research Department, R&D Center, BML, 1361-1 Matoba, Kawagoe, Saitama 350-1101, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|