1
|
Iannetta D, Laginestra FG, Wray DW, Amann M. Dissecting the exercise pressor reflex in heart failure: A multi-step failure. Auton Neurosci 2025; 259:103269. [PMID: 40117701 DOI: 10.1016/j.autneu.2025.103269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
The contribution of neural feedback originating from exercising limb muscles to the cardiovascular response to exercise was first recognized nearly 100 years ago. Today, it is well established that this influence is initiated by the activation of group III and IV sensory neurons with terminal endings located within contracting skeletal muscle. During exercise, these sensory neurons project feedback related to intramuscular mechanical and metabolic perturbations to medullary neural circuits which reflexively evoke decreases in parasympathetic and increases in sympathetic nervous system activity with the purpose of optimizing central and peripheral hemodynamics. Considerable evidence from animal and human studies suggests that the function of this regulatory control system, known as the exercise pressor reflex (EPR), is abnormal in heart failure and exaggerates sympatho-excitation which impairs the hemodynamic response to exercise and contributes to the functional limitations characterizing these patients. This review briefly introduces the key determinants of EPR control in health and covers the impact of heart failure on the integrity of each of its components and overall function. These include the sensitivity of group III/IV muscle afferents, afferent signal transmission in the spinal cord, and the central integration and processing of sensory feedback within the brainstem. Importantly, although most data relevant for this review come from studies in HFrEF, the limited HFpEF-specific insights are included when available. While arguably not part of the EPR, we also discuss the impact of heart failure on the exercise-induced increase of intramuscular stimuli of group III/IV muscle afferents and end-organ responsiveness to sympathetic/neurochemical stimulation.
Collapse
Affiliation(s)
- Danilo Iannetta
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States of America; Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | | | - D Walter Wray
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America; Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, United States of America
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States of America; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America; Geriatric Research, Education, and Clinical Center, VA Medical Center, Salt Lake City, UT, United States of America
| |
Collapse
|
2
|
O'Leary DS, Mannozzi J. Mechanisms mediating muscle metaboreflex control of cardiac output during exercise: Impaired regulation in heart failure. Exp Physiol 2024. [PMID: 38460125 DOI: 10.1113/ep091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
The ability to increase cardiac output during dynamic exercise is paramount for the ability to maintain workload performance. Reflex control of the cardiovascular system during exercise is complex and multifaceted involving multiple feedforward and feedback systems. One major reflex thought to mediate the autonomic adjustments to exercise is termed the muscle metaboreflex and is activated via afferent neurons within active skeletal muscle which respond to the accumulation of interstitial metabolites during exercise when blood flow and O2 delivery are insufficient to meet metabolic demands. This is one of the most powerful cardiovascular reflexes capable of eliciting profound increases in sympathetic nerve activity, arterial blood pressure, central blood volume mobilization, heart rate and cardiac output. This review summarizes the mechanisms meditating muscle metaboreflex-induced increases in cardiac output. Although much has been learned from studies using anaesthetized and/or decerebrate animals, we focus on studies in conscious animals and humans performing volitional exercise. We discuss the separate and interrelated roles of heart rate, ventricular contractility, ventricular preload and ventricular-vascular coupling as well as the interaction with other cardiovascular reflexes which modify muscle metaboreflex control of cardiac output. We discuss how these mechanisms may be altered in subjects with heart failure with reduced ejection fraction and offer suggestions for future studies.
Collapse
Affiliation(s)
- Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Hori A, Fukazawa A, Katanosaka K, Mizuno M, Hotta N. Mechanosensitive channels in the mechanical component of the exercise pressor reflex. Auton Neurosci 2023; 250:103128. [PMID: 37925831 DOI: 10.1016/j.autneu.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The cardiovascular response is appropriately regulated during exercise to meet the metabolic demands of the active muscles. The exercise pressor reflex is a neural feedback mechanism through thin-fiber muscle afferents activated by mechanical and metabolic stimuli in the active skeletal muscles. The mechanical component of this reflex is referred to as skeletal muscle mechanoreflex. Its initial step requires mechanotransduction mediated by mechanosensors, which convert mechanical stimuli into biological signals. Recently, various mechanosensors have been identified, and their contributions to muscle mechanoreflex have been actively investigated. Nevertheless, the mechanosensitive channels responsible for this muscular reflex remain largely unknown. This review discusses progress in our understanding of muscle mechanoreflex under healthy conditions, focusing on mechanosensitive channels.
Collapse
Affiliation(s)
- Amane Hori
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Ayumi Fukazawa
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Kimiaki Katanosaka
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
4
|
Bunsawat K, Skow RJ, Kaur J, Wray DW. Neural control of the circulation during exercise in heart failure with reduced and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H998-H1011. [PMID: 37682236 PMCID: PMC10907034 DOI: 10.1152/ajpheart.00214.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/09/2023]
Abstract
Patients with heart failure with reduced (HFrEF) and preserved ejection fraction (HFpEF) exhibit severe exercise intolerance that may be due, in part, to inappropriate cardiovascular and hemodynamic adjustments to exercise. Several neural mechanisms and locally released vasoactive substances work in concert through complex interactions to ensure proper adjustments to meet the metabolic demands of the contracting skeletal muscle. Specifically, accumulating evidence suggests that disease-related alterations in neural mechanisms (e.g., central command, exercise pressor reflex, arterial baroreflex, and cardiopulmonary baroreflex) contribute to heightened sympathetic activation and impaired ability to attenuate sympathetic vasoconstrictor responsiveness that may contribute to reduced skeletal muscle blood flow and severe exercise intolerance in patients with HFrEF. In contrast, little is known regarding these important aspects of physiology in patients with HFpEF, though emerging data reveal heightened sympathetic activation and attenuated skeletal muscle blood flow during exercise in this patient population that may be attributable to dysregulated neural control of the circulation. The overall goal of this review is to provide a brief overview of the current understanding of disease-related alterations in the integrative neural cardiovascular responses to exercise in both HFrEF and HFpEF phenotypes, with a focus on sympathetic nervous system regulation during exercise.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Rachel J Skow
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Stavres J, Aultman RA, Brandner CF, Newsome TA, Vallecillo-Bustos A, Wise HL, Henderson A, Stanfield D, Mannozzi J, Graybeal AJ. Hemodynamic responses to handgrip and metaboreflex activation are exaggerated in individuals with metabolic syndrome independent of resting blood pressure, waist circumference, and fasting blood glucose. Front Physiol 2023; 14:1212775. [PMID: 37608839 PMCID: PMC10441127 DOI: 10.3389/fphys.2023.1212775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Prior studies report conflicting evidence regarding exercise pressor and metaboreflex responses in individuals with metabolic syndrome (MetS). Purpose: To test the hypotheses that 1) exercise pressor and metaboreflex responses are exaggerated in MetS and 2) these differences may be explained by elevated resting blood pressure. Methods: Blood pressure and heart rate (HR) were evaluated in 26 participants (13 MetS) during 2 min of handgrip exercise followed by 3 min of post-exercise circulatory occlusion (PECO). Systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), along with HR and a cumulative blood pressure index (BPI), were compared between groups using independent samples t-tests, and analyses of covariance were used to adjust for differences in resting blood pressure, fasting blood glucose (FBG), and waist circumference (WC). Results: ΔSBP (∼78% and ∼54%), ΔMAP (∼67% and ∼55%), and BPI (∼16% and ∼20%) responses were significantly exaggerated in individuals with MetS during handgrip and PECO, respectively (all p ≤ 0.04). ΔDBP, ΔMAP, and BPI responses during handgrip remained significantly different between groups after independently covarying for resting blood pressure (p < 0.01), and after simultaneously covarying for resting blood pressure, FBG, and WC (p ≤ 0.03). Likewise, peak SBP, DBP, MAP, and BPI responses during PECO remained significantly different between groups after adjusting for resting blood pressure (p ≤ 0.03), with peak SBP, MAP, and BPI response remaining different between groups after adjusting for all three covariates simultaneously (p ≤ 0.04). Conclusion: These data suggest that exercise pressor and metaboreflex responses are significantly exaggerated in MetS independent of differences in resting blood pressure, FBG, or WC.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ryan A. Aultman
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Caleb F. Brandner
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ta’Quoris A. Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | | | - Havens L. Wise
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Alex Henderson
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Diavion Stanfield
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Austin J. Graybeal
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
6
|
Butenas ALE, Ishizawa R, Rollins KS, Mizuno M, Copp SW. Sex-dependent attenuating effects of capsaicin administration on the mechanoreflex in healthy rats. Am J Physiol Heart Circ Physiol 2023; 325:H372-H384. [PMID: 37389947 PMCID: PMC10396229 DOI: 10.1152/ajpheart.00237.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Stimulation of mechanically sensitive channels on the sensory endings of group III and IV thin fiber muscle afferents activates the mechanoreflex, which contributes to reflex increases in sympathetic nerve activity (SNA) and blood pressure during exercise. Accumulating evidence suggests that activation of the nonselective cation channel transient receptor potential vanilloid-1 (TRPV1) on the sensory endings of thin fiber afferents with capsaicin may attenuate mechanosensation. However, no study has investigated the effect of capsaicin on the mechanoreflex. We tested the hypothesis that in male and female decerebrate, unanesthetized rats, the injection of capsaicin (0.05 µg) into the arterial supply of the hindlimb reduces the pressor and renal SNA (RSNA) response to 30 s of 1 Hz rhythmic hindlimb muscle stretch (a model of isolated mechanoreflex activation). In male rats (n = 8), capsaicin injection significantly reduced the integrated blood pressure (blood pressure index or BPI: pre, 363 ± 78; post, 211 ± 88 mmHg·s; P = 0.023) and RSNA [∫ΔRSNA; pre, 687 ± 206; post, 216 ± 80 arbitrary units (au), P = 0.049] response to hindlimb muscle stretch. In female rats (n = 8), capsaicin injection had no significant effect on the pressor (BPI; pre: 277 ± 67; post: 207 ± 77 mmHg·s; P = 0.343) or RSNA (∫ΔRSNA: pre, 697 ± 123; post, 440 ± 183 au; P = 0.307) response to hindlimb muscle stretch. The data suggest that the injection of capsaicin into the hindlimb arterial supply to stimulate TRPV1 on the sensory endings of thin fiber muscle afferents attenuates the mechanoreflex in healthy male, but not female, rats. The findings may carry important implications for chronic conditions in which an exaggerated mechanoreflex contributes to aberrant sympathoexcitation during exercise.NEW & NOTEWORTHY Recent evidence in isolated sensory neurons indicates that capsaicin-induced stimulation of TRPV1 attenuates mechanosensitivity. Here we demonstrate for the first time that capsaicin exposure/administration reduces the reflex pressor and renal sympathetic nerve response to mechanoreflex activation in male rats, but not female rats, in vivo. Our data may carry important clinical implications for chronic diseases which have been linked to an exaggerated mechanoreflex, at least in males.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
7
|
Bunsawat K, Clifton HL, Ratchford SM, Vranish JR, Alpenglow JK, Haykowsky MJ, Trinity JD, Ryan JJ, Fadel PJ, Wray DW. Cardiovascular responses to static handgrip exercise and postexercise ischemia in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2023; 134:1508-1519. [PMID: 37167264 PMCID: PMC10259865 DOI: 10.1152/japplphysiol.00045.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by reduced ability to sustain physical activity that may be due partly to disease-related changes in autonomic function that contribute to dysregulated cardiovascular control during muscular contraction. Thus, we used a combination of static handgrip exercise (HG) and postexercise ischemia (PEI) to examine the pressor response to exercise and isolate the skeletal muscle metaboreflex, respectively. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) were assessed during 2-min of static HG at 30 and 40% of maximum voluntary contraction (MVC) and subsequent PEI in 16 patients with HFpEF and 17 healthy, similarly aged controls. Changes in MAP were lower in patients with HFpEF compared with controls during both 30%MVC (Δ11 ± 7 vs. Δ15 ± 8 mmHg) and 40%MVC (Δ19 ± 14 vs. Δ30 ± 8 mmHg), and a similar pattern of response was evident during PEI (30%MVC: Δ8 ± 5 vs. Δ12 ± 8 mmHg; 40%MVC: Δ13 ± 10 vs. Δ18 ± 9 mmHg) (group effect: P = 0.078 and P = 0.017 at 30% and 40% MVC, respectively). Changes in HR, CO, and TPR did not differ between groups during HG or PEI (P > 0.05). Taken together, these data suggest a reduced pressor response to static muscle contractions in patients with HFpEF compared with similarly aged controls that may be mediated partly by a blunted muscle metaboreflex. These findings support a disease-related dysregulation in neural cardiovascular control that may reduce an ability to sustain physical activity in HFpEF.NEW & NOTEWORTHY The current investigation has identified a diminution in the exercise-induced rise in arterial blood pressure (BP) that persisted during postexercise ischemia (PEI) in an intensity-dependent manner in patients with heart failure with preserved ejection fraction (HFpEF) compared with older, healthy controls. These findings suggest that the pressor response to exercise is reduced in patients with HFpEF, and this deficit may be mediated, in part, by a blunted muscle metaboreflex, highlighting the consequences of impaired neural cardiovascular control during exercise in this patient group.
Collapse
Affiliation(s)
- Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Heather L Clifton
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Stephen M Ratchford
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
| | - Jennifer R Vranish
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Mark J Haykowsky
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel D Trinity
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, United States
| | - D Walter Wray
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
8
|
Sex differences in estimates of cardiac autonomic function using heart rate variability: effects of dietary capsaicin. Eur J Appl Physiol 2023; 123:1041-1050. [PMID: 36633663 DOI: 10.1007/s00421-023-05136-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE Heart rate variability (HRV) estimates the autonomic nervous system (ANS) influence on the heart and appears sex-specific. Sensory afferents exhibit sex-specificity; although, it is unknown if Capsaicin, an agonist for transient receptor potential vanilloid channel-1 (TRPV1), alters cardiac ANS activity in a sex-dependent manner, which could be important given the predictive nature of HRV on risk of developing hypertension. Thus, we explored if there was sex-specificity in the effect of capsaicin on estimated cardiac ANS activity. METHODS HRV was measured in 38 young males (M: n = 25) and females (F: n = 13), in a blinded-crossover design, after acute ingestion of placebo or capsaicin. Resting HR, RR-interval, root-mean-square of successive differences (RMSSD), natural log-transformed RMSSD (LnRMSSD), standard deviation of n-n intervals (SDNN), number of pairs of successive n-n intervals differing by > 50 ms (NN50), and percent NN50 (PNN50) were obtained using standard techniques. RESULTS Significant sex differences were observed in mean HR (M: 59 ± 9.3 vs. F: 65 ± 12 beats/min, p = 0.036, η2 = 0.098), minimum HR (M: 47 ± 8.3 vs. F: 56 ± 12 beats/min, p = 0.014, η2 = 0.124), and NN50 (M: 177 ± 143 vs. F: 29 ± 17, p < 0.001, η2 = 0.249). There was a significant interaction of sex*treatment (p = 0.02, η2 = 0.027) for RMSSD, where males increased (78 ± 55 vs. 91 ± 64 ms), and females decreased (105 ± 83 vs. 76 ± 43 ms), placebo vs. capsaicin. CONCLUSION This controlled study recapitulates sex differences in HR and HRV, but revealed a sexual dimorphism in the parasympathetic response to capsaicin, perhaps due to differing TRPV1-afferent sensitivity, highlighting a potential mechanism for differential regulation of hemodynamics, and CVD risk, and should be considered in future studies.
Collapse
|
9
|
Butenas ALE, Rollins KS, Parr SK, Hammond ST, Ade CJ, Hageman KS, Musch TI, Copp SW. Novel mechanosensory role for acid sensing ion channel subtype 1a in evoking the exercise pressor reflex in rats with heart failure. J Physiol 2022; 600:2105-2125. [PMID: 35343594 PMCID: PMC9893514 DOI: 10.1113/jp282923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fibre muscle afferents, which, in turn, generates reflex increases in sympathetic nerve activity (SNA) and blood pressure (the exercise pressor reflex; EPR). EPR activation in patients and animals with heart failure with reduced ejection fraction (HF-rEF) results in exaggerated increases in SNA and promotes exercise intolerance. In the healthy decerebrate rat, a subtype of acid sensing ion channel (ASIC) on the sensory endings of thin fibre muscle afferents, namely ASIC1a, has been shown to contribute to the metabolically sensitive portion of the EPR (i.e. metaboreflex), but not the mechanically sensitive portion of the EPR (i.e. the mechanoreflex). However, the role played by ASIC1a in evoking the EPR in HF-rEF is unknown. We hypothesized that, in decerebrate, unanaesthetized HF-rEF rats, injection of the ASIC1a antagonist psalmotoxin-1 (PcTx-1; 100 ng) into the hindlimb arterial supply would reduce the reflex increase in renal SNA (RSNA) evoked via 30 s of electrically induced static hindlimb muscle contraction, but not static hindlimb muscle stretch (model of mechanoreflex activation isolated from contraction-induced metabolite-production). We found that PcTx-1 reduced the reflex increase in RSNA evoked in response to muscle contraction (n = 8; mean (SD) ∫ΔRSNA pre: 1343 (588) a.u.; post: 816 (573) a.u.; P = 0.026) and muscle stretch (n = 6; ∫ΔRSNA pre: 688 (583) a.u.; post: 304 (370) a.u.; P = 0.025). Our data suggest that, in HF-rEF rats, ASIC1a contributes to activation of the exercise pressor reflex and that contribution includes a novel role for ASIC1a in mechanosensation that is not present in healthy rats. KEY POINTS: Skeletal muscle contraction results in exaggerated reflex increases in sympathetic nerve activity in heart failure patients compared to healthy counterparts, which likely contributes to increased cardiovascular risk and impaired tolerance for even mild exercise (i.e. activities of daily living) for patients suffering with this condition. Activation of acid sensing ion channel subtype 1a (ASIC1a) on the sensory endings of thin fibre muscle afferents during skeletal muscle contraction contributes to reflex increases in sympathetic nerve activity and blood pressure, at least in healthy subjects. In this study, we demonstrate that ASIC1a on the sensory endings of thin fibre muscle afferents plays a role in both the mechanical and metabolic components of the exercise pressor reflex in male rats with heart failure. The present data identify a novel role for ASIC1a in evoking the exercise pressor reflex in heart failure and may have important clinical implications for heart failure patients.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Stephen T Hammond
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Stone AJ, Kaufman MP. Thin-fiber muscle afferents possessing TRPV1 receptors evoke the muscle metaboreflex. Am J Physiol Regul Integr Comp Physiol 2021; 321:R523-R524. [PMID: 34469207 DOI: 10.1152/ajpregu.00203.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Marc P Kaufman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
11
|
Mannozzi J, Al-Hassan MH, Lessanework B, Alvarez A, Senador D, O'Leary DS. Chronic ablation of TRPV1-sensitive skeletal muscle afferents attenuates the muscle metaboreflex. Am J Physiol Regul Integr Comp Physiol 2021; 321:R385-R395. [PMID: 34259041 DOI: 10.1152/ajpregu.00129.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Danielle Senador
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
12
|
Hong J, Fu S, Gao L, Cai Y, Lazartigues E, Wang HJ. Voltage-gated potassium channel dysfunction in dorsal root ganglia contributes to the exaggerated exercise pressor reflex in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 2021; 321:H461-H474. [PMID: 34270374 DOI: 10.1152/ajpheart.00256.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.
Collapse
Affiliation(s)
- Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shubin Fu
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska.,College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yanhui Cai
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Han-Jun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
13
|
Gama G, Farinatti P, Rangel MVDS, Mira PADC, Laterza MC, Crisafulli A, Borges JP. Muscle metaboreflex adaptations to exercise training in health and disease. Eur J Appl Physiol 2021; 121:2943-2955. [PMID: 34189604 DOI: 10.1007/s00421-021-04756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Abnormalities in the muscle metaboreflex concur to exercise intolerance and greater cardiovascular risk. Exercise training benefits neurocardiovascular function at rest and during exercise, but its role in favoring muscle metaboreflex in health and disease remains controversial. While some authors demonstrated that exercise training enhanced the sensitization of muscle metabolically afferents and improved neurocardiovascular responses to muscle metaboreflex activation, others reported unaltered responses. This narrative review aimed to: (a) highlight the current evidence on the effects of exercise training upon cardiovascular and autonomic responses to muscle metaboreflex activation; (b) analyze the role of training components and indicate potential mechanisms of metaboreflex adaptations; and (c) address key methodological features for future research. Though limited, accumulated evidence suggests that muscle metaboreflex adaptations depend on the individual clinical status, exercise modality, and training duration. In healthy populations, most trials negated the hypothesis of metaboreflex improvement due to chronic exercise, irrespective of the training duration. Favorable changes in patients with impaired metaboreflex, particularly chronic heart failure, mostly resulted from long-term interventions (> 16 weeks) including aerobic exercise of moderate to high intensity, performed in isolation or within multimodal training. Potential mechanisms of metaboreflex improvements include enhanced sensitivity of channels and receptors, greater antioxidant capacity, lower metabolite accumulation, increased functional sympatholysis, and muscle perfusion. Future research should investigate: (1) the dose-response relationship of training components within different exercise modalities to elicit improvements in individuals showing intact or impaired muscle metaboreflex; and (2) potential and specific underlying mechanisms of metaboreflex improvements in individuals with different medical conditions.
Collapse
Affiliation(s)
- Gabriel Gama
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
- Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niteroi, RJ, Brazil
| | - Marcus Vinicius Dos Santos Rangel
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil
| | - Pedro Augusto de Carvalho Mira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niteroi, RJ, Brazil
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology - InCFEx, University Hospital and Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Antonio Crisafulli
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Juliana Pereira Borges
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State, Rua São Francisco Xavier, 524, sala 8133F, Maracanã, Rio de Janeiro, RJ, CEP, 20550-013, Brazil.
- Graduate Program in Exercise and Sports Sciences, University of Rio de Janeiro State, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Ishizawa R, Kim HK, Hotta N, Iwamoto GA, Mitchell JH, Smith SA, Vongpatanasin W, Mizuno M. TRPV1 (Transient Receptor Potential Vanilloid 1) Sensitization of Skeletal Muscle Afferents in Type 2 Diabetic Rats With Hyperglycemia. Hypertension 2021; 77:1360-1371. [PMID: 33641357 DOI: 10.1161/hypertensionaha.120.15672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rie Ishizawa
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Han-Kyul Kim
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Japan (N.H.)
| | - Gary A Iwamoto
- Cell Biology (G.A.I.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Masaki Mizuno
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
15
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
16
|
Hotta N, Hori A, Okamura Y, Baba R, Watanabe H, Sugawara J, Vongpatanasin W, Wang J, Kim HK, Ishizawa R, Iwamoto GA, Mitchell JH, Smith SA, Mizuno M. Insulin resistance is associated with an exaggerated blood pressure response to ischemic rhythmic handgrip exercise in nondiabetic older adults. J Appl Physiol (1985) 2020; 129:144-151. [PMID: 32584663 DOI: 10.1152/japplphysiol.00247.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with type 2 diabetes display an exaggerated pressor response to exercise. However, evidence supporting the association between the magnitude of the pressor response to exercise and insulin resistance-related factors including hemoglobin A1c (HbA1c) or homeostatic model assessment of insulin resistance (HOMA-IR) in nondiabetic subjects has remained sparse and inconclusive. Thus we investigated the relationship between cardiovascular responses to exercise and insulin resistance-related factors in nondiabetic healthy men (n = 23) and women (n = 22) above 60 yr old. We measured heart rate (HR) and blood pressure (BP) responses during: isometric handgrip (IHG) exercise of 30% maximal voluntary contraction, a period of skeletal muscle ischemia (SMI) induced by tourniqueting the arm after IHG, and rhythmic dynamic handgrip (DHG) exercise during SMI. Greater diastolic BP (DBP) responses to DHG with SMI was associated with male sex (r = 0.44, P = 0.02) and higher HbA1c (r = 0.33, P = 0.03), heart-ankle pulse wave velocity (haPWV) (r = 0.45, P < 0.01), and resting systolic BP (SBP) (r = 0.36, P = 0.02). HbA1c persisted as a significant determinant explaining the variance in the DBP response to DHG with SMI in multivariate models despite adjustment for sex, haPWV, and resting SBP. It was also determined that the DBP response to DHG with SMI in a group in which HOMA-IR was abnormal (Δ33 ± 3 mmHg) was significantly higher than that of groups in which HOMA-IR was at intermediate (Δ20 ± 4 mmHg) and normal (Δ23 ± 2 mmHg) levels. These data suggest that even in nondiabetic older adults, insulin resistance is related to an exaggerated pressor response to exercise especially when performed under ischemic conditions.NEW & NOTEWORTHY The diastolic blood pressure response to rhythmic dynamic handgrip exercise under ischemic conditions was demonstrated to be correlated with insulin resistance-related factors in nondiabetic older adults. This finding provides important insight to the prescription of exercise in this particular patient population as the blood pressure response to exercise, especially under ischemic conditions, could be exaggerated to nonsafe levels.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Yukiko Okamura
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Reizo Baba
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Hidehiro Watanabe
- Department of Rehabilitation, Tokai Memorial Hospital, Kasugai, Japan
| | - Jun Sugawara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jijia Wang
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary A Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jere H Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Masaki Mizuno
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
17
|
Capsaicin-Sensitive Sensory Nerves and the TRPV1 Ion Channel in Cardiac Physiology and Pathologies. Int J Mol Sci 2020; 21:ijms21124472. [PMID: 32586044 PMCID: PMC7352834 DOI: 10.3390/ijms21124472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases, including coronary artery disease, ischemic heart diseases such as acute myocardial infarction and postischemic heart failure, heart failure of other etiologies, and cardiac arrhythmias, belong to the leading causes of death. Activation of capsaicin-sensitive sensory nerves by the transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor and other receptors, as well as neuropeptide mediators released from them upon stimulation, play important physiological regulatory roles. Capsaicin-sensitive sensory nerves also contribute to the development and progression of some cardiac diseases, as well as to mechanisms of endogenous stress adaptation leading to cardioprotection. In this review, we summarize the role of capsaicin-sensitive afferents and the TRPV1 ion channel in physiological and pathophysiological functions of the heart based mainly on experimental results and show their diagnostic or therapeutic potentials. Although the actions of several other channels or receptors expressed on cardiac sensory afferents and the effects of TRPV1 channel activation on different non-neural cell types in the heart are not precisely known, most data suggest that stimulation of the TRPV1-expressing sensory nerves or stimulation/overexpression of TRPV1 channels have beneficial effects in cardiac diseases.
Collapse
|
18
|
Li Q, Garry MG. A murine model of the exercise pressor reflex. J Physiol 2020; 598:3155-3171. [PMID: 32406099 DOI: 10.1113/jp277602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS The decerebrate mouse provides a novel working model of the exercise pressor reflex (EPR). The decerebrate mouse model of the EPR is similar to the previously described decerebrate rat model. Studying the EPR in transgenic mouse models can define exact mechanisms of the EPR in health and disease. ABSTRACT The exercise pressor reflex (EPR) is defined by a rise in mean arterial pressure (MAP) and heart rate (HR) in response to exercise and is necessary to match metabolic demand and prevent premature fatigue. While this reflex is readily tested in humans, mechanistic studies are largely infeasible. Here, we have developed a novel murine model of the EPR to allow for mechanistic studies in various mouse models. We observed that ventral root stimulation (VRS) in an anaesthetized mouse causes a depressor response and a reduction in HR. In contrast, the same stimulation in a decerebrate mouse causes a rise in MAP and HR which is abolished by dorsal rhizotomy or by neuromuscular blockade. Moreover, we demonstrate a reduced MAP response to VRS using TRPV1 antagonism or in Trpv1 null mice while the response to passive stretch remains intact. Additionally, we demonstrate that intra-arterial infusion of capsaicin results in a dose-related rise in MAP and HR that is significantly reduced by a selective and potent TRPV1 antagonist or is completely abolished in Trpv1 null mice. These data serve to validate the development of a decerebrate mouse model for the study of cardiovascular responses to exercise and further define the role of the TRPV1 receptor in mediating the EPR. This novel model will allow for extensive study of the EPR in unlimited transgenic and mutant mouse lines, and for an unprecedented exploration of the molecular mechanisms that control cardiovascular responses to exercise in health and disease.
Collapse
Affiliation(s)
- Qinglu Li
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
19
|
Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, Curry TB, Olson TP. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Exp Physiol 2020; 105:809-818. [PMID: 32105387 DOI: 10.1113/ep088353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey R Hart
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Paola A Ramos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Ian R Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Ishizawa R, Kim HK, Hotta N, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Skeletal Muscle Reflex-Induced Sympathetic Dysregulation and Sensitization of Muscle Afferents in Type 1 Diabetic Rats. Hypertension 2020; 75:1072-1081. [PMID: 32063060 DOI: 10.1161/hypertensionaha.119.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood pressure response to exercise is exaggerated in the type 1 diabetes mellitus (T1DM). An overactive exercise pressor reflex (EPR) contributes to the potentiated pressor response. However, the mechanism(s) underlying this abnormal EPR activity remains unclear. This study tested the hypothesis that the heightened blood pressure response to exercise in T1DM is mediated by EPR-induced sympathetic overactivity. Additionally, the study examined whether the single muscle afferents are sensitized by PKC (protein kinase C) activation in this disease. Sprague-Dawley rats were intraperitoneally administered either 50 mg/kg streptozotocin (T1DM) or saline (control). At 1 to 3 weeks after administration, renal sympathetic nerve activity and mean arterial pressure responses to activation of the EPR, mechanoreflex, and metaboreflex were measured in decerebrate animals. Action potential responses to mechanical and chemical stimulation were determined in group IV afferents with pPKCα (phosphorylated-PKCα) levels assessed in dorsal root ganglia. Compared with control, EPR (58±18 versus 96±33%; P<0.05), mechanoreflex (21±13 versus 51±20%; P<0.05), and metaboreflex (40±20 versus 88±39%; P<0.01) activation in T1DM rats evoked significant increases in renal sympathetic nerve activity as well as mean arterial pressure. The response of group IV afferents to mechanical (18±24 versus 61±45 spikes; P<0.01) and chemical (0.3±0.4 versus 1.6±0.8 Hz; P<0.01) stimuli were significantly greater in T1DM than control. T1DM rats showed markedly increased pPKCα levels in dorsal root ganglia compared with control. These data suggest that in T1DM, abnormally muscle reflex-evoked increases in sympathetic activity mediate exaggerations in blood pressure. Further, sensitization of muscle afferents, potentially via PKC activation, may contribute to this abnormal circulatory responsiveness.
Collapse
Affiliation(s)
- Rie Ishizawa
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Han-Kyul Kim
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Norio Hotta
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,College of Life and Health Sciences, Chubu University, Kasugai, Japan (N.H.)
| | - Gary A Iwamoto
- Department of Cell Biology (G.A.I.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Masaki Mizuno
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
21
|
Machado AC, Vianna LC, Gomes EAC, Teixeira JAC, Ribeiro ML, Villacorta H, Nobrega ACL, Silva BM. Carotid chemoreflex and muscle metaboreflex interact to the regulation of ventilation in patients with heart failure with reduced ejection fraction. Physiol Rep 2020; 8:e14361. [PMID: 32026605 PMCID: PMC7002537 DOI: 10.14814/phy2.14361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
Synergism among reflexes probably contributes to exercise hyperventilation in patients with heart failure with reduced ejection fraction (HFrEF). Thus, we investigated whether the carotid chemoreflex and the muscle metaboreflex interact to the regulation of ventilation ( V ˙ E ) in HFrEF. Ten patients accomplished 4-min cycling at 60% peak workload and then recovered for 2 min under either: (a) 21% O2 inhalation (tonic carotid chemoreflex activity) with legs' circulation free (inactive muscle metaboreflex); (b) 100% O2 inhalation (suppressed carotid chemoreflex activity) with legs' circulation occluded (muscle metaboreflex activation); (c) 21% O2 inhalation (tonic carotid chemoreflex activity) with legs' circulation occluded (muscle metaboreflex activation); or (d) 100% O2 inhalation (suppressed carotid chemoreflex activity) with legs' circulation free (inactive muscle metaboreflex) as control. V ˙ E , tidal volume (VT ) and respiratory frequency (fR ) were similar between each separated reflex (protocols a and b) and control (protocol d). Calculated sum of separated reflexes effects was similar to control. Oppositely, V ˙ E (mean ± SEM: Δ vs. control = 2.46 ± 1.07 L/min, p = .05) and fR (Δ = 2.47 ± 0.77 cycles/min, p = .02) increased versus control when both reflexes were simultaneously active (protocol c). Therefore, the carotid chemoreflex and the muscle metaboreflex interacted to V ˙ E regulation in a fR -dependent manner in patients with HFrEF. If this interaction operates during exercise, it can have some contribution to the HFrEF exercise hyperventilation.
Collapse
Affiliation(s)
- Alessandro C. Machado
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
- Latin American Institute of Life and Nature SciencesFederal University of Latin American IntegrationFoz do IguaçuPRBrazil
| | - Lauro C. Vianna
- Faculty of Physical EducationUniversity of BrasíliaBrasiliaDFBrazil
| | - Erika A. C. Gomes
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
| | - Jose A. C. Teixeira
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Mario L. Ribeiro
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Humberto Villacorta
- Antonio Pedro University HospitalFaculty of MedicineFluminense Federal UniversityNiteróiRJBrazil
| | - Antonio C. L. Nobrega
- Laboratory of Exercise SciencesDepartment of Physiology and PharmacologyFluminense Federal UniversityNiteróiRJBrazil
| | - Bruno M. Silva
- Department of PhysiologyFederal University of São PauloSão PauloSPBrazil
| |
Collapse
|
22
|
Wu H, Dai Z, Liu X, Lin M, Gao Z, Tian F, Zhao X, Sun Y, Pu X. Pharmacodynamic Evaluation of Shenfu Injection in Rats With Ischemic Heart Failure and Its Effect on Small Molecules Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Front Pharmacol 2019; 10:1424. [PMID: 31849672 PMCID: PMC6889858 DOI: 10.3389/fphar.2019.01424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives: We aimed to evaluate the effect of Shenfu injection in a rat model of ischemic heart failure and explore its mechanism. Methods: A rat model of ischemic heart failure after myocardial infarction was established by ligating the left anterior descending coronary artery. Forty-eight hours after surgery, the rats were intraperitoneally administered Shenfu injection for 7 weeks. Then, left ventricular fractional shortening and left ventricular ejection fraction were measured using transthoracic echocardiography, whereas heart rate and left ventricular end-diastolic pressure were measured using a MD3000 biosignal acquisition and processing system. The hearts and lungs of the rats were excised and weighed to measure the heart and lung weight indexes. In addition, cardiac histopathological changes were observed via hematoxylin–eosin and Masson’s trichrome staining, and serum cardiac troponin content was detected using a cardiac troponin ELISA kit. Furthermore, matrix-assisted laser desorption/ionization–mass spectrometry imaging was used to detect the levels and distribution of small molecules in the hearts of rats with ischemic heart failure. Results: We found that Shenfu injection can significantly increase left ventricular fractional shortening and left ventricular ejection fraction in rats with ischemic heart failure and significantly reduce the left ventricular end-diastolic pressure, heart and lung weight indexes, and cardiac troponin content; improve cardiac tissue morphology; and reduce infarct size. In addition, the matrix-assisted laser desorption/ionization–mass spectrometry imaging results demonstrated that 22:6 phospholipids were predominately distributed in the non-infarct zone, whereas 20:4 phospholipids tended to concentrate in the infarct zone. Shenfu injection significantly reduced taurine, glutathione, and phospholipids levels in the hearts of rats with ischemic heart failure and primarily changed the distribution of these molecules in the non-infarct zone. Conclusion: Shenfu injection induced obvious myocardial protective effects in rats with ischemic heart failure by stimulating antioxidation and changing the phospholipid levels and distribution.
Collapse
Affiliation(s)
- Hao Wu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenfeng Dai
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xi Liu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ming Lin
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zeyu Gao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Anti-Myocardial Infarction Effects of Radix Aconiti Lateralis Preparata Extracts and Their Influence on Small Molecules in the Heart Using Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Int J Mol Sci 2019; 20:ijms20194837. [PMID: 31569464 PMCID: PMC6801437 DOI: 10.3390/ijms20194837] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022] Open
Abstract
Radix Aconiti Lateralis Preparata (fuzi) is the processed product of Aconitum carmichaelii Debeaux tuber, and has great potential anti-myocardial infarction effects, including improving myocardial damage and energy metabolism in rats. However, the effects of Radix Aconiti Lateralis Preparata extracts in a rat model of myocardial infarction have not yet been fully illustrated. Herein, Radix Aconiti Lateral Preparata was used to prepare Radix Aconiti Lateralis Preparata extract (RAE), fuzi polysaccharides (FPS), and fuzi total alkaloid (FTA). Then, we aimed to compare the effects of RAE, FPS, and FTA in MI rats and further explore their influence on small molecules in the heart. We reported that Radix Aconiti Lateralis Preparata extract (RAE) and fuzi total alkaloid (FTA) significantly improved left ventricular function and structure, and reduced myocardial damage and infarct size in rats with myocardial infarction by the left anterior descending artery ligation. In contrast, fuzi polysaccharides (FPS) was less effective than RAE and FTA, indicating that alkaloids might play a major role in the treatment of myocardial infarction. Moreover, via matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI), we further showed that RAE and FTA containing alkaloids as the main common components regulated myocardial energy metabolism-related molecules and phospholipids levels and distribution patterns against myocardial infarction. In particular, it was FTA, not RAE, that could also regulate potassium ions and glutamine to play a cardioprotective role in myocardial infarction, which revealed that an appropriate dose of alkaloids generated more obvious cardiotonic effects. These findings together suggested that Radix Aconiti Lateralis Preparata extracts containing an appropriate dose of alkaloids as its main pharmacological active components exerted protective effects against myocardial infarction by improving myocardial energy metabolism abnormalities and changing phospholipids levels and distribution patterns to stabilize the cardiomyocyte membrane structure. Thus, RAE and FTA extracted from Radix Aconiti Lateralis Preparata are potential candidates for the treatment of myocardial infarction.
Collapse
|
24
|
Increased Brain-Derived Neurotrophic Factor in Lumbar Dorsal Root Ganglia Contributes to the Enhanced Exercise Pressor Reflex in Heart Failure. Int J Mol Sci 2019; 20:ijms20061480. [PMID: 30909643 PMCID: PMC6471760 DOI: 10.3390/ijms20061480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022] Open
Abstract
An exaggerated exercise pressor reflex (EPR) is associated with excessive sympatho-excitation and exercise intolerance in the chronic heart failure (CHF) state. We hypothesized that brain-derived neurotrophic factor (BDNF) causes the exaggerated EPR via sensitizing muscle mechanosensitive afferents in CHF. Increased BDNF expression was observed in lumbar dorsal root ganglia (DRGs) from CHF rats compared to sham rats. Immunofluorescence data showed a greater increase in the number of BDNF-positive neurons in medium and large-sized DRG subpopulations from CHF rats. Patch clamp data showed that incubation with BDNF for 4–6 h, significantly decreased the current threshold-inducing action potential (AP), threshold potential and the number of APs during current injection in Dil-labeled isolectin B4 (IB4)-negative medium-sized DRG neurons (mainly mechano-sensitive) from sham rats. Compared to sham rats, CHF rats exhibited an increased number of APs during current injection in the same DRG subpopulation, which was significantly attenuated by 4-h incubation with anti-BDNF. Finally, chronic epidural delivery of anti-BDNF attenuated the exaggerated pressor response to either static contraction or passive stretch in CHF rats whereas this intervention had no effect on the pressor response to hindlimb arterial injection of capsaicin. These data suggest that increased BDNF in lumbar DRGs contributes to the exaggerated EPR in CHF.
Collapse
|
25
|
GUERRA RENANS, GOYA THIAGOT, SILVA ROSYVALDOF, LIMA MARTAF, BARBOSA ELINERF, ALVES MARIAJANIEIREDENN, RODRIGUES AMANDAG, LORENZI-FILHO GERALDO, NEGRÃO CARLOSEDUARDO, UENO-PARDI LINDAM. Exercise Training Increases Metaboreflex Control in Patients with Obstructive Sleep Apnea. Med Sci Sports Exerc 2019; 51:426-435. [DOI: 10.1249/mss.0000000000001805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Hotta N, Kubo A, Mizumura K. Chondroitin sulfate attenuates acid-induced augmentation of the mechanical response in rat thin-fiber muscle afferents in vitro. J Appl Physiol (1985) 2019; 126:1160-1170. [PMID: 30763166 DOI: 10.1152/japplphysiol.00633.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.
Collapse
Affiliation(s)
- Norio Hotta
- College of Life and Health Sciences, Chubu University , Aichi , Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| | - Kazue Mizumura
- College of Life and Health Sciences, Chubu University , Aichi , Japan.,Department of Physiology, Nihon University School of Dentistry , Tokyo , Japan
| |
Collapse
|
27
|
Marler TL, Wright AB, Elmslie KL, Heier AK, Remily E, Kim-Han JS, Ramachandra R, Elmslie KS. Na V1.9 channels in muscle afferent neurons and axons. J Neurophysiol 2018; 120:1032-1044. [PMID: 29847236 DOI: 10.1152/jn.00573.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The exercise pressor reflex (EPR) is activated by muscle contractions to increase heart rate and blood pressure during exercise. While this reflex is beneficial in healthy individuals, the reflex activity is exaggerated in patients with cardiovascular disease, which is associated with increased mortality. Group III and IV afferents mediate the EPR and have been shown to express both tetrodotoxin-sensitive (TTX-S, NaV1.6, and NaV1.7) and -resistant (TTX-R, NaV1.8, and NaV1.9) voltage-gated sodium (NaV) channels, but NaV1.9 current has not yet been demonstrated. Using a F--containing internal solution, we found a NaV current in muscle afferent neurons that activates at around -70 mV with slow activation and inactivation kinetics, as expected from NaV1.9 current. However, this current ran down with time, which resulted, at least in part, from increased steady-state inactivation since it was slowed by both holding potential hyperpolarization and a depolarized shift of the gating properties. We further show that, following NaV1.9 current rundown (internal F-), application of the NaV1.8 channel blocker A803467 inhibited significantly more TTX-R current than we had previously observed (internal Cl-), which suggests that NaV1.9 current did not rundown with that internal solution. Using immunohistochemistry, we found that the majority of group IV somata and axons were NaV1.9 positive. The majority of small diameter myelinated afferent somata (putative group III) were also NaV1.9 positive, but myelinated muscle afferent axons were rarely labeled. The presence of NaV1.9 channels in muscle afferents supports a role for these channels in activation and maintenance of the EPR. NEW & NOTEWORTHY Small diameter muscle afferents signal pain and muscle activity levels. The muscle activity signals drive the cardiovascular system to increase muscle blood flow, but these signals can become exaggerated in cardiovascular disease to exacerbate cardiac damage. The voltage-dependent sodium channel NaV1.9 plays a unique role in controlling afferent excitability. We show that NaV1.9 channels are expressed in muscle afferents, which supports these channels as a target for drug development to control hyperactivity of these neurons.
Collapse
Affiliation(s)
- Tyler L Marler
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Andrew B Wright
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Kristina L Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Ankeeta K Heier
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Ethan Remily
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Jeong Sook Kim-Han
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
28
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Xing J, Li J. The Role Played by Adenosine in Modulating Reflex Sympathetic and Pressor Responses Evoked by Stimulation of TRPV1 in Muscle Afferents. Cell Physiol Biochem 2016; 40:39-48. [PMID: 27842306 DOI: 10.1159/000452523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Activation of metabolite-sensitive transient receptor potential vanilloid type 1 (TRPV1) receptors (capsaicin receptors) in afferent nerves of the hindlimb muscles of rats increases renal sympathetic nerve activity (RSNA) and blood pressure (BP) via a reflex mechanism. The purpose of this study was to examine the role of adenosine in modulating the reflex RSNA and BP responses to stimulation of TRPV1. METHODS RSNA and BP responses were recorded in rats. Immunofluorescence and patch-clamp methods were employed to examine the receptor mechanisms responsible for the effects of adenosine. RESULTS Adenosine, in the concentration of 100 µM, injected into the femoral artery had an inhibitory effect on the reflex RSNA and BP responses induced by capsaicin. Likewise, arterial injection of adenosine analogue CGS21680 (A2A subtype receptor agonist, 10 µM and100 µM) also attenuated the reflex responses. In addition, co-existence of A2A and TRPV1 was observed in the dorsal root ganglion neurons. The prior application of adenosine or CGS21680 inhibited the magnitude of capsaicin-induced currents in muscle sensory neurons. CONCLUSION Adenosine contributes to muscle afferent TRPV1-engaged reflex sympathetic and pressor responses. It is likely that TRPV1 response is impaired as the levels of adenosine are increased in the hindlimb muscles under diseased conditions.
Collapse
Affiliation(s)
- Jihong Xing
- Jilin University First Hospital, Norman Bethune College of Medicine Changchun, Jilin, China
| | | |
Collapse
|
30
|
Calegari L, Mozzaquattro BB, Rossato DD, Quagliotto E, Ferreira JB, Rasia-Filho A, Dal Lago P. Exercise training attenuates the pressor response evoked by peripheral chemoreflex in rats with heart failure. Can J Physiol Pharmacol 2016; 94:979-86. [PMID: 27295522 DOI: 10.1139/cjpp-2015-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of exercise training (ExT) on the pressor response elicited by potassium cyanide (KCN) in the rat model of ischemia-induced heart failure (HF) are unknown. We evaluated the effects of ExT on chemoreflex sensitivity and its interaction with baroreflex in rats with HF. Wistar rats were divided into four groups: trained HF (Tr-HF), sedentary HF (Sed-HF), trained sham (Tr-Sham), and sedentary sham (Sed-Sham). Trained animals underwent to a treadmill running protocol for 8 weeks (60 m/day, 5 days/week, 16 m/min). After ExT, arterial pressure (AP), baroreflex sensitivity (BRS), peripheral chemoreflex (KCN: 100 μg/kg body mass), and cardiac function were evaluated. The results demonstrate that ExT induces an improvement in BRS and attenuates the pressor response to KCN relative to the Sed-HF group (P < 0.05). The improvement in BRS was associated with a reduction in the pressor response following ExT in HF rats (P < 0.05). Moreover, ExT induced a reduction in left ventricular end-diastolic pressure and pulmonary congestion compared with the Sed-HF group (P < 0.05). The pressor response to KCN in the hypotensive state is decreased in sedentary HF rats. These results suggest that ExT improves cardiac function and BRS and attenuates the pressor response evoked by KCN in HF rats.
Collapse
Affiliation(s)
- Leonardo Calegari
- a Laboratory of Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,b Faculty of Physical Education and Physical Therapy, University of Passo Fundo, Brazil
| | - Bruna B Mozzaquattro
- a Laboratory of Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Edson Quagliotto
- a Laboratory of Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaina B Ferreira
- d Hypertension Unit, Heart Institute (InCor), University of São Paulo, Brazil
| | - Alberto Rasia-Filho
- a Laboratory of Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Dal Lago
- a Laboratory of Physiology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,e Department of Physical Therapy, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Mizuno M, Mitchell JH, Crawford S, Huang CL, Maalouf N, Hu MC, Moe OW, Smith SA, Vongpatanasin W. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R39-48. [PMID: 27170660 PMCID: PMC4967233 DOI: 10.1152/ajpregu.00124.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 01/14/2023]
Abstract
An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jere H Mitchell
- Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott Crawford
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chou-Long Huang
- Nephrology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Naim Maalouf
- Mineral Metabolism Division, University of Texas Southwestern Medical Center, Dallas, Texas; and Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming-Chang Hu
- Mineral Metabolism Division, University of Texas Southwestern Medical Center, Dallas, Texas; and Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Nephrology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Health Care Sciences, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Wanpen Vongpatanasin
- Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas; Hypertension Section, University of Texas Southwestern Medical Center, Dallas, Texas; Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
32
|
Xing J, Lu J, Li J. ASIC3 contributes to the blunted muscle metaboreflex in heart failure. Med Sci Sports Exerc 2016; 47:257-63. [PMID: 24983337 DOI: 10.1249/mss.0000000000000415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION During exercise, the sympathetic nervous system is activated and blood pressure and HR increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that lactic acid stimulates acid-sensing channel subtype 3 (ASIC3), inducing a neurally mediated pressor response. Thus, we hypothesized that the pressor response to ASIC3 stimulation is smaller in HF rats because of attenuation in expression and function of ASIC3 in sensory nerves. METHODS Lactic acid was injected into the arterial blood supply of the hind limb to stimulate ASIC3 in muscle afferent nerves and evoke muscle metaboreceptor response in control rats and HF rats. In addition, western blot analysis was used to examine expression of ASIC3 in dorsal root ganglion (DRG) and patch clamp to examine current response with ASIC3 activation. RESULTS Lactic acid (4 μmol·kg) increased mean arterial pressure by 28 ± 5 mm Hg in controls (n = 6) but only by 16 ± 3 mm Hg (P < 0.05 vs control) in HF (n = 8). In addition, HF decreased the protein levels of ASIC3 in DRG (optical density, 1.03 ± 0.02 in control, vs 0.79 ± 0.03 in HF; P < 0.05; n = 6 in each group). The peak current amplitude of dorsal DRG neuron in response to ASIC3 stimulation is smaller in HF rats than that in control rats. CONCLUSIONS Compared with those in controls, cardiovascular responses to lactic acid administered into the hind limb muscles are blunted in HF rats owing to attenuated ASIC3. This suggests that ASIC3 plays a role in engagement in the attenuated metaboreceptor component of the exercise pressor reflex in HF.
Collapse
Affiliation(s)
- Jihong Xing
- 1Department of Emergency Medicine, The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, CHINA; and 2Heart & Vascular Institute and Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | | |
Collapse
|
33
|
Gibbons DD, Kutschke WJ, Weiss RM, Benson CJ. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. J Physiol 2015; 593:4575-87. [PMID: 26314284 DOI: 10.1113/jp270690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure.
Collapse
Affiliation(s)
- David D Gibbons
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Christopher J Benson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|
34
|
Kennel PJ, Mancini DM, Schulze PC. Skeletal Muscle Changes in Chronic Cardiac Disease and Failure. Compr Physiol 2015; 5:1947-69. [PMID: 26426472 DOI: 10.1002/cphy.c110003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peak exercise performance in healthy man is limited not only by pulmonary or skeletal muscle function but also by cardiac function. Thus, abnormalities in cardiac function will have a major impact on exercise performance. Many cardiac diseases affect exercise performance and indeed for some cardiac conditions such as atherosclerotic heart disease, exercise testing is frequently used not only to measure functional capacity but also to make a diagnosis of heart disease, evaluate the efficacy of treatment, and predict prognosis. Early in the course of cardiac diseases, exercise performance will be minimally affected but with disease progression impairment in exercise capacity will become apparent. Ejection fraction, that is, the percent of blood volume ejected with each cardiac cycle is often used as a measure of cardiac performance but frequently there is a dissociation between the ejection fraction and exercise capacity in patients with heart disease. How abnormalities in cardiac function impacts the muscles, vasculature, and lungs to impact exercise performance will here be reviewed. The focus of this work will be on patients with systolic heart failure as the incidence and prevalence of heart failure is reaching epidemic proportions and heart failure is the end result of many other chronic cardiac diseases. The prognostic role of exercise and benefits of exercise training will also be discussed.
Collapse
Affiliation(s)
- Peter J Kennel
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| | - Donna M Mancini
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| | - P Christian Schulze
- Center for Advanced Cardiac Care, Division of Cardiology, New York-Presbyterian Hospital and Columbia University Medical Center, New York, USA
| |
Collapse
|
35
|
Mizuno M, Downey RM, Mitchell JH, Auchus RJ, Smith SA, Vongpatanasin W. Aldosterone and Salt Loading Independently Exacerbate the Exercise Pressor Reflex in Rats. Hypertension 2015. [PMID: 26195483 DOI: 10.1161/hypertensionaha.115.05810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sympathetic and pressor responses to exercise are exaggerated in hypertension. Evidence suggests that an overactive exercise pressor reflex (EPR) contributes to this abnormal responsiveness. The mechanisms underlying this EPR overactivity are poorly understood. An increasing body of evidence suggests that aldosterone and excessive salt intake play a role in regulating resting sympathetic activity and blood pressure in hypertension. Therefore, each is a good candidate for the generation of EPR dysfunction in this disease. The purpose of this study was to examine whether excessive salt intake and chronic administration of aldosterone potentiate EPR function. Changes in mean arterial pressure and renal sympathetic nerve activity induced by EPR stimulation were examined in vehicle and aldosterone-treated (4 weeks via osmotic mini-pump) Sprague-Dawley rats given either water or saline (elevated salt load) to drink. When compared with vehicle/water-treated rats, stimulation of the EPR by muscle contraction evoked significantly greater increases in mean arterial pressure in vehicle/saline, aldosterone/water, and aldosterone/saline-treated animals (14±3, 29±3, 37±6, and 44±7 mm Hg/kg, respectively; P<0.01). A similar renal sympathetic nerve activity response profile was likewise produced (39±11%, 87±15%, 110±20%, and 151±25%/kg, respectively; P<0.01). The pressor and sympathetic responses to the individual activation of the mechanically and chemically sensitive components of the EPR were also augmented by both saline and aldosterone. These data provide the first direct evidence that both aldosterone and high salt intake elicit EPR overactivity. As such, each represents a potential mechanism by which sympathetic activity and blood pressure are augmented during exercise in hypertension.
Collapse
Affiliation(s)
- Masaki Mizuno
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.)
| | - Ryan M Downey
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.)
| | - Jere H Mitchell
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.)
| | - Richard J Auchus
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.)
| | - Scott A Smith
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.)
| | - Wanpen Vongpatanasin
- From the Departments of Health Care Sciences (M.M., S.A.S.) and Internal Medicine (M.M., R.M.D., J.H.M., S.A.S., W.V.) and Hypertension Section, Cardiology Division (W.V.), University of Texas Southwestern Medical Center, Dallas; and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor (R.J.A.).
| |
Collapse
|
36
|
Mizuno M, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2015; 309:H762-70. [PMID: 26163445 DOI: 10.1152/ajpheart.00358.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Gary A Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Hypertension Section, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jere H Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
37
|
Laurin J, Pertici V, Dousset E, Marqueste T, Decherchi P. Group III and IV muscle afferents: Role on central motor drive and clinical implications. Neuroscience 2015; 290:543-51. [DOI: 10.1016/j.neuroscience.2015.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
|
38
|
Negrao CE, Middlekauff HR, Gomes-Santos IL, Antunes-Correa LM. Effects of exercise training on neurovascular control and skeletal myopathy in systolic heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H792-802. [PMID: 25681428 DOI: 10.1152/ajpheart.00830.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.
Collapse
Affiliation(s)
- Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California
| | - Igor L Gomes-Santos
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | |
Collapse
|
39
|
Affiliation(s)
- Satoshi Koba
- Division of Integrative Physiology, Tottori University Faculty of Medicine
| |
Collapse
|
40
|
Exaggerated increases in blood pressure during isometric muscle contraction in hypertension: role for purinergic receptors. Auton Neurosci 2014; 188:51-7. [PMID: 25577671 DOI: 10.1016/j.autneu.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/15/2014] [Accepted: 12/17/2014] [Indexed: 01/27/2023]
Abstract
Physical activity is a cornerstone therapy for the primary prevention and treatment of hypertension, which is becoming increasingly prevalent in modern societies. During exercise, heart rate and blood pressure (BP) increase in order to acutely meet the metabolic demands of the working skeletal muscle. In hypertensive adults, isometric exercise-induced increases in BP are excessive, potentially increasing the risk of an acute cardiovascular event during or after physical activity. Recently, the skeletal muscle metaboreflex has emerged as a significant contributor to the development of aberrant cardiovascular control during isometric exercise in this clinical population. Our laboratory has conducted a series of studies characterizing the skeletal muscle metaboreflex in hypertensive humans. We and others have demonstrated that hypertension is characterized by greater increases in muscle sympathetic nerve activity and BP during selective activation of the metaboreflex during post-exercise muscle ischemia compared to the increases noted in healthy age-matched normotensive adults, suggesting that the skeletal muscle metaboreflex is exaggerated in human hypertension. The focus of this review is the skeletal muscle metaboreflex (i.e., the metabolic component of the exercise pressor reflex) in hypertension, with particular emphasis on the potential role of purinergic receptors in mediating the exaggerated responses to muscle metaboreflex activation.
Collapse
|
41
|
Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJNN, Fernandes T, Couto GK, Rondon MUPB, Oliveira P, Lima M, Mathias W, Brum PC, Mady C, Almeida DR, Rossoni LV, Oliveira EM, Middlekauff HR, Negrao CE. Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol 2014; 307:H1655-66. [PMID: 25305179 DOI: 10.1152/ajpheart.00136.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Previous studies have demonstrated that muscle mechanoreflex and metaboreflex controls are altered in heart failure (HF), which seems to be due to changes in cyclooxygenase (COX) pathway and changes in receptors on afferent neurons, including transient receptor potential vanilloid type-1 (TRPV1) and cannabinoid receptor type-1 (CB1). The purpose of the present study was to test the hypotheses: 1) exercise training (ET) alters the muscle metaboreflex and mechanoreflex control of muscle sympathetic nerve activity (MSNA) in HF patients. 2) The alteration in metaboreflex control is accompanied by increased expression of TRPV1 and CB1 receptors in skeletal muscle. 3) The alteration in mechanoreflex control is accompanied by COX-2 pathway in skeletal muscle. Thirty-four consecutive HF patients with ejection fractions <40% were randomized to untrained (n = 17; 54 ± 2 yr) or exercise-trained (n = 17; 56 ± 2 yr) groups. MSNA was recorded by microneurography. Mechanoreceptors were activated by passive exercise and metaboreceptors by postexercise circulatory arrest (PECA). COX-2 pathway, TRPV1, and CB1 receptors were measured in muscle biopsies. Following ET, resting MSNA was decreased compared with untrained group. During PECA (metaboreflex), MSNA responses were increased, which was accompanied by the expression of TRPV1 and CB1 receptors. During passive exercise (mechanoreflex), MSNA responses were decreased, which was accompanied by decreased expression of COX-2, prostaglandin-E2 receptor-4, and thromboxane-A2 receptor and by decreased in muscle inflammation, as indicated by increased miRNA-146 levels and the stable NF-κB/IκB-α ratio. In conclusion, ET alters muscle metaboreflex and mechanoreflex control of MSNA in HF patients. This alteration with ET is accompanied by alteration in TRPV1 and CB1 expression and COX-2 pathway and inflammation in skeletal muscle.
Collapse
Affiliation(s)
| | - Thais S Nobre
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Raphaela V Groehs
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Tiago Fernandes
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele K Couto
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Patricia Oliveira
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marta Lima
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Wilson Mathias
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Charles Mady
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Dirceu R Almeida
- Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil; and
| | - Luciana V Rossoni
- Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Holly R Middlekauff
- Departament of Medicine (Cardiology) and Physiology, Geffen School of Medicine at University of California, Los Angeles, California
| | - Carlos E Negrao
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil; School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil;
| |
Collapse
|
42
|
Xing J, Lu J, Li J. Nerve growth factor decreases in sympathetic and sensory nerves of rats with chronic heart failure. Neurochem Res 2014; 39:1564-70. [PMID: 24913185 DOI: 10.1007/s11064-014-1348-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6-20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF.
Collapse
Affiliation(s)
- Jihong Xing
- The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China,
| | | | | |
Collapse
|
43
|
Smith SA, Downey RM, Williamson JW, Mizuno M. Autonomic dysfunction in muscular dystrophy: a theoretical framework for muscle reflex involvement. Front Physiol 2014; 5:47. [PMID: 24600397 PMCID: PMC3927082 DOI: 10.3389/fphys.2014.00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/24/2014] [Indexed: 01/16/2023] Open
Abstract
Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA ; Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ryan M Downey
- Internal Medicine, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Jon W Williamson
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Masaki Mizuno
- Department of Health Care Sciences, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
44
|
Pollak KA, Swenson JD, Vanhaitsma TA, Hughen RW, Jo D, White AT, Light KC, Schweinhardt P, Amann M, Light AR. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol 2013; 99:368-80. [PMID: 24142455 DOI: 10.1113/expphysiol.2013.075812] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can physiological concentrations of metabolite combinations evoke sensations of fatigue and pain when injected into skeletal muscle? If so, what sensations are evoked? What is the main finding and its importance? Low concentrations of protons, lactate and ATP evoked sensations related to fatigue. Higher concentrations of these metabolites evoked pain. Single metabolites evoked no sensations. This suggests that the combination of an ASIC receptor and a purinergic P2X receptor is required for signalling fatigue and pain. The results also suggest that two types of sensory neurons encode metabolites; one detects low concentrations of metabolites and signals sensations of fatigue, whereas the other detects higher levels of metabolites and signals ache and hot. The perception of fatigue is common in many disease states; however, the mechanisms of sensory muscle fatigue are not understood. In mice, rats and cats, muscle afferents signal metabolite production in skeletal muscle using a complex of ASIC, P2X and TRPV1 receptors. Endogenous muscle agonists for these receptors are combinations of protons, lactate and ATP. Here we applied physiological concentrations of these agonists to muscle interstitium in human subjects to determine whether this combination could activate sensations and, if so, to determine how the subjects described these sensations. Ten volunteers received infusions (0.2 ml over 30 s) containing protons, lactate and ATP under the fascia of a thumb muscle, abductor pollicis brevis. Infusion of individual metabolites at maximal amounts evoked no fatigue or pain. Metabolite combinations found in resting muscles (pH 7.4 + 300 nm ATP + 1 mm lactate) also evoked no sensation. The infusion of a metabolite combination found in muscle during moderate endurance exercise (pH 7.3 + 400 nm ATP + 5 mm lactate) produced significant fatigue sensations. Infusion of a metabolite combination associated with vigorous exercise (pH 7.2 + 500 nm ATP + 10 mm lactate) produced stronger sensations of fatigue and some ache. Higher levels of metabolites (as found with ischaemic exercise) caused more ache but no additional fatigue sensation. Thus, in a dose-dependent manner, intramuscular infusion of combinations of protons, lactate and ATP leads to fatigue sensation and eventually pain, probably through activation of ASIC, P2X and TRPV1 receptors. This is the first demonstration in humans that metabolites normally produced by exercise act in combination to activate sensory neurons that signal sensations of fatigue and muscle pain.
Collapse
Affiliation(s)
- Kelly A Pollak
- * University of Utah, Department of Anesthesiology 3C444 SOM, 30N 1900E, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang HJ, Wang W, Patel KP, Rozanski GJ, Zucker IH. Spinal cord GABA receptors modulate the exercise pressor reflex in decerebrate rats. Am J Physiol Regul Integr Comp Physiol 2013; 305:R42-9. [PMID: 23637133 DOI: 10.1152/ajpregu.00140.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurotransmitters and neuromodulators released by contraction-activated skeletal muscle afferents into the dorsal horn of the spinal cord initiate the central component of the exercise pressor reflex (EPR). Whether γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter within the mammalian central nervous system, is involved in the modulation of the EPR at the level of dorsal horn remains to be determined. We performed local microinjection of either the GABA(A) antagonist bicuculline or the GABA(B) antagonist CGP 52432 into the ipisilateral L4/L5 dorsal horns to investigate the effect of GABA receptor blockade on the pressor response to either static contraction induced by stimulation of the peripheral end of L4/L5 ventral roots, passive stretch, or hindlimb arterial injection of capsaicin (0.1 μg/0.2 ml) in decerebrate rats. Microinjection of either bicuculline (1 mM, 100 nl) or CGP 52432 (10 mM, 100 nl) into the L4/5 dorsal horns significantly increased the pressor and cardioaccelerator responses to all stimuli. Microinjection of either bicuculline or CGP 52432 into the L5 dorsal horn significantly increased the pressor and cardioaccelerator responses to direct microinjection of l-glutatmate (10 mM, 100 nl) into this spinal segment. The disinhibitory effect of both GABA receptor antagonists on the EPR was abolished by microinjection of the broad-spectrum glutamate receptor antagonist kynurenate (10 mM/100 nl). These data suggest that 1) GABA exerts a tonic inhibition of the EPR at the level of dorsal horn; and 2) that an interaction between glutamatergic and GABAergic inputs exist at the level of dorsal horn, contributing to spinal control of the EPR.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | | | |
Collapse
|
46
|
Lu J, Xing J, Li J. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 2013; 304:H1166-74. [PMID: 23417862 DOI: 10.1152/ajpheart.00926.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in each group). In contrast, there was no significant difference in B1 receptor expression in both experimental groups, and arterial injection of R-715, a B1 receptors blocker, had no significant effects on RSNA and MAP responses evoked by muscle stretch. Accordingly, results obtained from this study support our hypothesis that heightened kinin B2 receptor expression in the sensory nerves contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion.
Collapse
Affiliation(s)
- Jian Lu
- Penn State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
47
|
Li J, Gao Z, Lu J, Xing J. Exaggerated Pressor Response in Relation to Attenuated Muscle Temperature Response during Contraction in Ischemic Heart Failure. Front Physiol 2012. [PMID: 23189061 PMCID: PMC3505840 DOI: 10.3389/fphys.2012.00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is known that muscle temperature (Tm) increases with exercise. The purpose of this study was to examine if contraction-induced increase in Tm was altered in rats with heart failure (HF) induced by chronic myocardial infraction (MI) as compared with healthy control animals. A temperature probe was inserted in the triceps surae muscle to continuously measure Tm throughout experiments. Static muscle contraction was induced by electrical stimulation of the sciatic nerve for 1 min. As baseline Tm was 34°C, contraction increased temperature by 1.6 ± 0.18°C in nine health control rats and by 1.0 ± 0.15°C in 10 MI rats (P < 0.05 vs. control). Note that there were no differences in developed muscle tension and muscle weight between the two groups. In addition, muscle contraction increased mean arterial pressure by 23 ± 3 mmHg in control rats and by 31 ± 3 mmHg in MI rats (P < 0.05 vs. control). A regression analysis further shows that there is an inverse liner relationship between the pressor response and static contraction-induced increase in Tm. Our data suggest that Tm increase evoked by contraction is impaired in MI rats. The abnormal alteration in Tm likely modifies the reflex cardiovascular responses in MI via mechanisms of temperature-sensitive receptors on muscle afferent nerves.
Collapse
Affiliation(s)
- Jianhua Li
- Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA ; Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA
| | | | | | | |
Collapse
|
48
|
Wang HJ, Zucker IH, Wang W. Muscle reflex in heart failure: the role of exercise training. Front Physiol 2012; 3:398. [PMID: 23060821 PMCID: PMC3464681 DOI: 10.3389/fphys.2012.00398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Exercise evokes sympathetic activation and increases blood pressure and heart rate (HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic discharge are central command and the exercise pressor reflex (EPR). The former suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle which contributes significantly to the regulation of the cardiovascular and respiratory systems during exercise. The afferent arm of this reflex is composed of metabolically sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during exercise. In heart failure, the sympathetic activation during exercise is exaggerated, which potentially increases cardiovascular risk and contributes to exercise intolerance during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF increases exercise capacity, reduces sympatho-excitation and improves cardiovascular function in CHF animals and patients. In this review, we will discuss the effects of ExT and the mechanisms that contribute to the exaggerated EPR in the CHF state.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | | | | |
Collapse
|
49
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Wang HJ, Li YL, Zucker IH, Wang W. Exercise training prevents skeletal muscle afferent sensitization in rats with chronic heart failure. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1260-70. [PMID: 22496362 DOI: 10.1152/ajpregu.00054.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exaggerated exercise pressor reflex (EPR) contributes to exercise intolerance and excessive sympathoexcitation in the chronic heart failure (CHF) state, which is prevented by exercise training (ExT) at an early stage in the development of CHF. We hypothesized that ExT has a beneficial effect on the exaggerated EPR by improving the dysfunction of muscle afferents in CHF. We recorded the discharge of mechanically sensitive (group III) and metabolically sensitive (group IV) afferents in response to static contraction, passive stretch, and hindlimb intra-arterial injection of capsaicin in sham+sedentary (Sed), sham+ExT, CHF+Sed, and CHF+ExT rats. Compared with sham+Sed rats, CHF+Sed rats exhibited greater responses of group III afferents to contraction and stretch, whereas the responses of group IV afferents to contraction and capsaicin were blunted. ExT prevented the sensitization of group III responses to contraction or stretch and partially prevented the blunted group IV responses to contraction or capsaicin in CHF rats. Furthermore, we investigated whether purinergic 2X (P2X) and transient receptor potential vanilloid 1 (TRPV1) receptors mediate the altered sensitivity of muscle afferents by ExT in CHF. We found that the upregulated P2X and downregulated TRPV1 receptors in L4/5 dorsal root ganglia of CHF rats were normalized by ExT. Hindlimb intra-arterial infusion of a P2X antagonist attenuated the group III response to contraction or stretch in CHF rats to a greater extent than in sham rats, which was normalized by ExT. These findings suggest that ExT improves the abnormal sensitization of muscle afferents in CHF at least, in part, via restoring the dysfunction of P2X and TRPV1 receptors.
Collapse
Affiliation(s)
- Han-Jun Wang
- Dept. of Cellular and Integrative Physiology, Univ. of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | |
Collapse
|