1
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. BMPR2 Loss Activates AKT by Disrupting DLL4/NOTCH1 and PPARγ Signaling in Pulmonary Arterial Hypertension. Int J Mol Sci 2024; 25:5403. [PMID: 38791441 PMCID: PMC11121464 DOI: 10.3390/ijms25105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by pathologic vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in pulmonary artery endothelial cells (PAECs) activated AKT and suppressed the expression of DLL4. Consistent with these in vitro findings, increased AKT activation and reduced DLL4 expression was found in the small pulmonary arteries of patients with PAH. Increased NOTCH1 activation through exogenous DLL4 blocked AKT activation, decreased proliferation and reversed EndoMT. Exogenous and overexpression of DLL4 induced BMPR2 and PPRE promoter activity, and BMPR2 and PPARG mRNA in idiopathic PAH (IPAH) ECs. PPARγ, a nuclear receptor associated with EC homeostasis, suppressed by BMPR2 loss was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH ECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Directly blocking AKT or restoring DLL4/NOTCH1/PPARγ signaling may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Endothelial Cells/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Male
- Cell Proliferation
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Female
- Cells, Cultured
Collapse
Affiliation(s)
- Keytam S. Awad
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Shuibang Wang
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Edward J. Dougherty
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Ali Keshavarz
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Zu Xi Yu
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Latonia Miller
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
| | - Jason M. Elinoff
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| | - Robert L. Danner
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD 20892, USA; (S.W.); (E.J.D.); (A.K.); (C.Y.D.); (L.M.); (R.L.D.)
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; (Z.X.Y.); (J.M.E.)
| |
Collapse
|
2
|
Awad KS, Wang S, Dougherty EJ, Keshavarz A, Demirkale CY, Yu ZX, Miller L, Elinoff JM, Danner RL. Disruption of DLL4/NOTCH1 Causes Dysregulated PPARγ/AKT Signaling in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578230. [PMID: 38903104 PMCID: PMC11188078 DOI: 10.1101/2024.01.31.578230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiopulmonary disease characterized by vascular remodeling of small pulmonary arteries. Endothelial dysfunction in advanced PAH is associated with proliferation, apoptosis resistance, and endothelial to mesenchymal transition (EndoMT) due to aberrant signaling. DLL4, a cell membrane associated NOTCH ligand, activates NOTCH1 signaling and plays a pivotal role maintaining vascular integrity. Inhibition of DLL4 has been associated with the development of pulmonary hypertension, but the mechanism is incompletely understood. Here we report that BMPR2 silencing in PAECs activated AKT and decreased DLL4 expression. DLL4 loss was also seen in lungs of patients with IPAH and HPAH. Over-expression of DLL4 in PAECs induced BMPR2 promoter activity and exogenous DLL4 increased BMPR2 mRNA through NOTCH1 activation. Furthermore, DLL4/NOTCH1 signaling blocked AKT activation, decreased proliferation and reversed EndoMT in BMPR2-silenced PAECs and ECs from IPAH patients. PPARγ, suppressed by BMPR2 loss, was induced and activated by DLL4/NOTCH1 signaling in both BMPR2-silenced and IPAH PAECs, reversing aberrant phenotypic changes, in part through AKT inhibition. Finally, leniolisib, a well-tolerated oral PI3Kδ/AKT inhibitor, decreased cell proliferation, induced apoptosis and reversed markers of EndoMT in BMPR2-silenced PAECs. Restoring DLL4/NOTCH1/PPARγ signaling and/or suppressing AKT activation may be beneficial in preventing or reversing the pathologic vascular remodeling of PAH.
Collapse
Affiliation(s)
- Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Edward J Dougherty
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Ali Keshavarz
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| | - Zu Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Latonia Miller
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, US, 20892
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD, US, 20892
| |
Collapse
|
3
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Zhong (钟颖) Y, Yu (游博群) PB. Angiogenesis Redux: An Overall Protective Role of VEGF/KDR Signaling in the Microvasculature in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2023; 43:1784-1787. [PMID: 37675636 PMCID: PMC10803133 DOI: 10.1161/atvbaha.123.319839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Ying Zhong (钟颖)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B. Yu (游博群)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Rogula S, Pomirski B, Czyżak N, Eyileten C, Postuła M, Szarpak Ł, Filipiak KJ, Kurzyna M, Jaguszewski M, Mazurek T, Grabowski M, Gąsecka A. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med 2022; 9:980718. [PMID: 36277769 PMCID: PMC9582157 DOI: 10.3389/fcvm.2022.980718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the pulmonary arteries, and defined by elevated pulmonary arterial pressure, measured during right heart catheterization. There are three main challenges to the diagnostic and therapeutic process of patients with PAH. First, it is difficult to differentiate particular PAH etiology. Second, invasive diagnostic is required to precisely determine the severity of PAH, and thus to qualify patients for an appropriate treatment. Third, the results of treatment of PAH are unpredictable and remain unsatisfactory. MicroRNAs (miRNAs) are small non-coding RNAs that regulate post transcriptional gene-expression. Their role as a prognostic, and diagnostic biomarkers in many different diseases have been studied in recent years. MiRNAs are promising novel biomarkers in PAH due to their activity in various molecular pathways and processes underlying PAH. Lack of biomarkers to differentiate between particular PAH etiology and evaluate the severity of PAH, as well as paucity of therapeutic targets in PAH open a new field for the possibility to use miRNAs in these applications. In our article, we discuss the potential of miRNAs use as diagnostic tools, prognostic biomarkers and therapeutic targets in PAH.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Sylwester Rogula,
| | - Bartosz Pomirski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Norbert Czyżak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Szarpak
- Department of Outcomes Research, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Krzysztof J. Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre Otwock, Otwock, Poland
| | - Miłosz Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Sun QW, Sun Z. Stem Cell Therapy for Pulmonary Arterial Hypertension: An Update. J Heart Lung Transplant 2022; 41:692-703. [DOI: 10.1016/j.healun.2022.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 10/18/2022] Open
|
8
|
Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovasc Drugs Ther 2022; 36:363-370. [PMID: 33394361 PMCID: PMC7779643 DOI: 10.1007/s10557-020-07114-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a complex aetiology and high mortality. Functional and structural changes in the small pulmonary arteries lead to elevated pulmonary arterial pressure, resulting in right heart failure. The pathobiology of PAH is not fully understood, and novel treatment targets in PAH are desperately needed. The renin-angiotensin system is critical for maintaining homeostasis of the cardiovascular system. The system consists of the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang-(1-7)-Mas receptor axis. The former, the ACE-Ang II-AT1R axis, is involved in vasoconstrictive and hypertensive actions along with cardiac and vascular remodelling. The latter, the ACE2-Ang-(1-7)-Mas axis, generally mediates counterbalancing effects against those mediated by the ACE-Ang II-AT1R axis. Based on established functions, the ACE2-Ang-(1-7)-Mas axis may represent a novel target for the treatment of PAH. This review focuses on recent advances in pulmonary circulation science and the role of the ACE2-Ang-(1-7)-Mas axis in PAH.
Collapse
|
9
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
10
|
Abstract
Pulmonary arterial hypertension (PAH) is characterized by impaired regulation of pulmonary hemodynamics and vascular growth. Alterations of metabolism and bioenergetics are increasingly recognized as universal hallmarks of PAH, as metabolic abnormalities are identified in lungs and hearts of patients, animal models of the disease, and cells derived from lungs of patients. Mitochondria are the primary organelle critically mediating the complex and integrative metabolic pathways in bioenergetics, biosynthetic pathways, and cell signaling. Here, we review the alterations in metabolic pathways that are linked to the pathologic vascular phenotype of PAH, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, arginine metabolism, one-carbon metabolism, the reducing and oxidizing cell environment, and the tricarboxylic acid cycle, as well as the effects of PAH-associated nuclear and mitochondrial mutations on metabolism. Understanding of the metabolic mechanisms underlying PAH provides important knowledge for the design of new therapeutics for treatment of patients.
Collapse
Affiliation(s)
- Weiling Xu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
| | - Allison J Janocha
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA;
| | - Serpil C Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA; .,Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
11
|
Engole YM, Lepira FB, Nlandu YM, Lubenga YS, Longo AL, Nkodila A, Makulo JRR, Mokoli VM, Bukabau JB, Mboliasa MFI, Kadima EM, Ilunga CK, Mvunzi TS, Nseka NM, Sumaili EK. Prevalence and factors associated with pulmonary arterial hypertension on maintenance hemodialysis patients in Kinshasa, Democratic Republic of Congo: a cross-sectional study. BMC Nephrol 2020; 21:460. [PMID: 33148221 PMCID: PMC7640388 DOI: 10.1186/s12882-020-02131-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/27/2020] [Indexed: 11/11/2022] Open
Abstract
Background Although cardiovascular diseases in particular Pulmonary Arterial Hypertension (PAH) is associated with, high morbid-mortality in chronic hemodialysis, but its magnitude remains paradoxically unknown in sub-Saharan Africa. The aim of this study was to evaluate the prevalence of PAH and associated factors in chronic hemodialysis in Sub-Saharan African population. Method In a cross-sectional study, patients treated with HD for at least 6 months in 4 hemodialysis centers were examined. PAH was defined as estimated systolic pulmonary arterial pressure (sPAP) ≥ 35 mmHg using transthoracic Doppler echocardiography performed 24 h after the HD session. Results Eighty-five HD patients were included; their average age was 52.6 ± 15.9 years. Fifty-seven patients (67.1%) were male. Mean duration of HD was 13.3 ± 11 months. With reference to vascular access, 12 (14.1%), 29 (34.1%) and 44 (51.8%) patients had AVF, tunneled cuff and temporary catheter, respectively. The underlying cause of ESRD was diabetes in 30 patients (35.3%). The prevalence of PAH was 29.4%. Patients with PAH had more hyponatremia (11 (44%) vs 10 (16.7%), p = 0.010). In multivariate analysis, unsecured healthcare funding (aOR 4, 95% CI [1.18–6.018]), arrhythmia (aOR 3, 95% CI [1.29–7.34]), vascular access change (aOR 4, 95% CI [1.18–7.51]) and diastolic dysfunction (aOR 5, 95% CI [1.35–9.57] were independently associated with PAH. Conclusion One third of hemodialysis patients exhibit PAH, which is independently associated with low socioeconomic status (unsecured funding, vascular access change) and cardiovascular complications (arrhythmia, diastolic dysfunction).
Collapse
Affiliation(s)
- Yannick Mompango Engole
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - François Bompeka Lepira
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Yannick Mayamba Nlandu
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Yves Simbi Lubenga
- Cardiology Unit, University Hospital of Kinshasa, BP: 123, Kinshasa, XI, Democratic Republic of the Congo
| | | | - Aliocha Nkodila
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Vieux Momeme Mokoli
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Justine Busanga Bukabau
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Evariste Mukendi Kadima
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Cedric Kabemba Ilunga
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Tresor Swambulu Mvunzi
- Cardiology Unit, University Hospital of Kinshasa, BP: 123, Kinshasa, XI, Democratic Republic of the Congo
| | - Nazaire Mangani Nseka
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ernest Kiswaya Sumaili
- Nephrology Unit, University Hospital of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
12
|
Xin WX, Li QL, Fang L, Zhong LK, Zheng XW, Huang P. Preventive Effect and Mechanism of Ethyl Acetate Extract of Sceptridium ternatum in Monocrotaline-Induced Pulmonary Arterial Hypertension. Chin J Integr Med 2020; 26:205-211. [PMID: 30591962 DOI: 10.1007/s11655-018-2573-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2017] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To observe the effect and molecular mechanism of ethyl acetate extract of Sceptridium ternatum (STE) on the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). METHODS The main chemical components of Sceptridium ternatum were determined, and the effects in PAH rats were observed. A total of 140 Sprague Dawley rats were randomly and equally divided into the normal group, the model group, the Bosentan group, and the STE groups (2.5, 5, 10 g/kg) by the random number table method. The characteristic indicators of PAH were measured, and immunohistochemistry was used to observe the lung tissue of rats. Morphological changes of the lung tissue were observed under the light microscope. RESULTS Compared with the normal group, rats in the model group showed a significant increase in right ventricular free wall thickness (RVFWT), mean pulmonary arterial pressure (mPAP), mean right ventricular pressure (mRVP), max right ventricular pressure (max RVP), weight of right ventricle (RV), and lung index (LI), while a significant decrease in pulmonary artery acceleration time (PAAT, P<0.01). Compared with the model group, rats treated with STE had a significant decrease of RVFWT, mPAP, mRVP, max RVP, and RV, while a significant increase of PAAT (P<0.01). After injection of MCT, nuclear factor- κB (NF- κB) p65 and α -smooth muscle actin (α -SMA) expression levels were up-regulated, and on the contrary, the treatment groups showed a significant down-regulation without dose-dependent trend. CONCLUSIONS STE can relieve the PAH in rats. STE may relieve pulmonary vascular disease and pulmonary injury by down-regulating the expression of NF- κB p65 and α -SMA.
Collapse
Affiliation(s)
- Wen-Xiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qing-Lin Li
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Li-Ke Zhong
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Xiao-Wei Zheng
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| |
Collapse
|
13
|
Keshavarz A, Kadry H, Alobaida A, Ahsan F. Newer approaches and novel drugs for inhalational therapy for pulmonary arterial hypertension. Expert Opin Drug Deliv 2020; 17:439-461. [PMID: 32070157 DOI: 10.1080/17425247.2020.1729119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Pulmonary arterial hypertension (PAH) is a progressive disease characterized by remodeling of small pulmonary arteries leading to increased pulmonary arterial pressure. Existing treatments acts to normalize vascular tone via three signaling pathways: the prostacyclin, the endothelin-1, and the nitric oxide. Although over the past 20 years, there has been considerable progress in terms of treatments for PAH, the disease still remains incurable with a disappointing prognosis.Areas covered: This review summarizes the pathophysiology of PAH, the advantages and disadvantages of the inhalation route, and assess the relative advantages various inhaled therapies for PAH. The recent studies concerning the development of controlled-release drug delivery systems loaded with available anti-PAH drugs have also been summarized.Expert opinion: The main obstacles of current pharmacotherapies of PAH are their short half-life, stability, and formulations, resulting in reducing the efficacy and increasing systemic side effects and unknown pathogenesis of PAH. The pulmonary route has been proposed for delivering anti-PAH drugs to overcome the shortcomings. However, the application of approved inhaled anti-PAH drugs is limited. Inhalational delivery of controlled-release nanoformulations can overcome these restrictions. Extensive studies are required to develop safe and effective drug delivery systems for PAH patients.
Collapse
Affiliation(s)
- Ali Keshavarz
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hossam Kadry
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
14
|
Hu Y, Yang W, Xie L, Liu T, Liu H, Liu B. Endoplasmic reticulum stress and pulmonary hypertension. Pulm Circ 2020; 10:2045894019900121. [PMID: 32110387 PMCID: PMC7000863 DOI: 10.1177/2045894019900121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed.
Collapse
Affiliation(s)
- Yanan Hu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenhao Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tao Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanmin Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,The Vascular Remodeling and Developmental Defects Research Unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Liu
- Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
16
|
Nakamura K, Akagi S, Ejiri K, Yoshida M, Miyoshi T, Toh N, Nakagawa K, Takaya Y, Matsubara H, Ito H. Current Treatment Strategies and Nanoparticle-Mediated Drug Delivery Systems for Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:ijms20235885. [PMID: 31771203 PMCID: PMC6928621 DOI: 10.3390/ijms20235885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
There are three critical pathways for the pathogenesis and progression of pulmonary arterial hypertension (PAH): the prostacyclin (prostaglandin I2) (PGI2), nitric oxide (NO), and endothelin pathways. The current approved drugs targeting these three pathways, including prostacyclin (PGI2), phosphodiesterase type-5 (PDE5) inhibitors, and endothelin receptor antagonists (ERAs), have been shown to be effective, however, PAH remains a severe clinical condition and the long-term survival of patients with PAH is still suboptimal. The full therapeutic abilities of available drugs are reduced by medication, patient non-compliance, and side effects. Nanoparticles are expected to address these problems by providing a novel drug delivery approach for the treatment of PAH. Drug-loaded nanoparticles for local delivery can optimize the efficacy and minimize the adverse effects of drugs. Prostacyclin (PGI2) analogue, PDE5 inhibitors, ERA, pitavastatin, imatinib, rapamycin, fasudil, and oligonucleotides-loaded nanoparticles have been reported to be effective in animal PAH models and in vitro studies. However, the efficacy and safety of nanoparticle mediated-drug delivery systems for PAH treatment in humans are unknown and further clinical studies are required to clarify these points.
Collapse
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
- Correspondence: ; Tel.: +81-86-235-7351; Fax: +81-86-235-7353
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Norihisa Toh
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Koji Nakagawa
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Yoichi Takaya
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| | - Hiromi Matsubara
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan;
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.A.); (K.E.); (M.Y.); (T.M.); (N.T.); (Y.T.); (H.I.)
| |
Collapse
|
17
|
Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis. Heart Vessels 2018; 34:724-734. [PMID: 30460575 DOI: 10.1007/s00380-018-1304-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease associated with vasoconstriction and remodeling. Intracellular Ca2+ signaling regulates the contraction of pulmonary arteries and the proliferation of pulmonary arterial smooth muscle cells (PASMCs); however, it is not clear which molecules related to Ca2+ signaling contribute to the progression of PAH. In this study, we found the specific expression of type 2 inositol 1,4,5-trisphosphate receptor (IP3R2), which is an intracellular Ca2+ release channel, on the sarco/endoplasmic reticulum in mouse PASMCs, and demonstrated its inhibitory role in the progression of PAH using a chronic hypoxia-induced PAH mouse model. After chronic hypoxia exposure, IP3R2-/- mice exhibited the significant aggravation of PAH, as determined by echocardiography and right ventricular hypertrophy, with significantly greater medial wall thickness by immunohistochemistry than that of wild-type mice. In IP3R2-/- murine PASMCs with chronic hypoxia, a TUNEL assay revealed the significant suppression of apoptosis, whereas there was no significant change in proliferation. Thapsigargin-induced store-operated Ca2+ entry (SOCE) was significantly enhanced in IP3R2-/- PASMCs in both normoxia and hypoxia based on in vitro fluorescent Ca2+ imaging. Furthermore, the enhancement of SOCE in IP3R2-/- PASMCs was remarkably suppressed by the addition of DPB162-AE, an inhibitor of the stromal-interacting molecule (STIM)-Orai complex which is about 100 times more potent than 2-APB. Our results indicate that IP3R2 may inhibit the progression of PAH by promoting apoptosis and inhibiting SOCE via the STIM-Orai pathway in PASMCs. These findings suggest a previously undetermined role of IP3R in the development of PAH and may contribute to the development of targeted therapies.
Collapse
|
18
|
Vijayavani S, Vidyavathi M. Azadirachita indica gum based sildenafil citrate mucoadhesive microspheres – Design and optimization. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Crucial role of RAGE in inappropriate increase of smooth muscle cells from patients with pulmonary arterial hypertension. PLoS One 2018; 13:e0203046. [PMID: 30180189 PMCID: PMC6122782 DOI: 10.1371/journal.pone.0203046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/14/2018] [Indexed: 01/21/2023] Open
Abstract
Background Pulmonary vascular remodeling of pulmonary arterial hypertension (PAH) is characterized by an inappropriate increase of vascular cells. The receptor for advanced glycation end products (RAGE) is a type I single-pass transmembrane protein belonging to the immunoglobulin superfamily and is involved in a broad range of hyperproliferative diseases. RAGE is also implicated in the etiology of PAH and is overexpressed in pulmonary artery smooth muscle cells (PASMCs) in patients with PAH. We examined the role of RAGE in the inappropriate increase of PASMCs in patients with PAH. Methods and results PASMCs were obtained from 12 patients with PAH including 9 patients with idiopathic PAH (IPAH) and 3 patients with heritable PAH (HPAH) (2 patients with BMPR2 mutation and one patient with SMAD9 mutation) who underwent lung transplantation. Western blot analysis and immunofluorescence staining revealed that RAGE and S100A8 and A9, ligands of RAGE, were overexpressed in IPAH and HPAH-PASMCs in the absence of any external growth stimulus. PDGF-BB (10 ng/mL) up-regulated the expression of RAGE in IPAH and HPAH-PASMCs. PAH-PASMCs are hyperplastic in the absence of any external growth stimulus as assessed by 3H-thymidine incorporation. This result indicates overgrowth characterized by continued growth under a condition of no growth stimulation in PAH-PASMCs. PDGF-BB stimulation caused a higher growth rate of PAH-PASMCs than that of non-PAH-PASMCs. AS-1, an inhibitor of TIR domain-mediated RAGE signaling, significantly inhibited overgrowth characterized by continued growth under a condition of no growth stimulation in IPAH and HPAH-PASMCs (P<0.0001). Furthermore, AS-1 significantly inhibited PDGF-stimulated proliferation of IPAH and HPAH-PASMCs (P<0.0001). Conclusions RAGE plays a crucial role in the inappropriate increase of PAH-PASMCs. Inhibition of RAGE signaling may be a new therapeutic strategy for PAH.
Collapse
|
20
|
Plasma miR-451 with echocardiography serves as a diagnostic reference for pulmonary hypertension. Acta Pharmacol Sin 2018; 39:1208-1216. [PMID: 29795360 DOI: 10.1038/aps.2018.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Due to the lack of typical clinical symptoms, the average delay time for diagnosis of pulmonary hypertension (PH) is longer than 2 years. It is urgent to find biomarkers for PH diagnosis. In this study we investigated whether plasma microRNAs (miRNAs) can be used as biomarkers for PH diagnosis. We used microarray to identify dynamic miRNAs between PH and non-PH patients. The candidate miRNAs were verified using qRT-PCR in a mouse model of PH, which was induced by monocrotaline (MCT) injection. We observed that miR-21, miR-126, miR-145, miR-191 and miR-150 had no differences between control mice and MCT-treated mice; but plasma miR-451 was significantly decreased in the 2wk-MCT group, with no further decrease in the 4wk-MCT group. Plasma miR-451 was also markedly decreased in PH patients, whereas miR-21, miR-126, miR-150 and miR-320 did not show differences between 53 PH patients and 54 non-PH patients. Receiver operating characteristic curves (ROCs) were constructed from the patient data to assess the clinical diagnostic values of circulating miR-451 and Doppler echocardiography (D-ECHO). The areas under the curve (AUCs) of ROCs for miR-451 and D-ECHO were 0.710 and 0.766, respectively. Combination of miR-451 and D-ECHO with AUC of 0.825 was superior to the use of either miR-451 or D-ECHO alone for PH diagnosis. In conclusion, plasma miR-451 has a moderate diagnostic value in PH comparable to that of D-ECHO, and the combination of miR-451 with D-ECHO has better diagnostic value than either method alone, which may have implications for PH diagnosis.
Collapse
|
21
|
Smith B, Genuardi MV, Koczo A, Zou RH, Thoma FW, Handen A, Craig E, Hogan CM, Girard T, Althouse AD, Chan SY. Atrial arrhythmias are associated with increased mortality in pulmonary arterial hypertension. Pulm Circ 2018; 8:2045894018790316. [PMID: 29969045 PMCID: PMC6058427 DOI: 10.1177/2045894018790316] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a deadly vascular disease, characterized by increased pulmonary arterial pressures and right heart failure. Considering prior non-US studies of atrial arrhythmias in PAH, this retrospective, regional multi-center US study sought to define more completely the risk factors and impact of paroxysmal and non-paroxysmal forms of atrial fibrillation and flutter (AF/AFL) on mortality in this disease. We identified patients seen between 2010 and 2014 at UPMC (Pittsburgh) hospitals with hemodynamic and clinical criteria for PAH or chronic thromboembolic pulmonary hypertension (CTEPH) and determined those meeting electrocardiographic criteria for AF/AFL. We used Cox proportional hazards regression with time-varying covariates to analyze the association between AF/AFL occurrence and survival with adjustments for potential cofounders and hemodynamic severity. Of 297 patients with PAH/CTEPH, 79 (26.5%) suffered from AF/AFL at some point. AF/AFL was first identified after PAH diagnosis in 42 (53.2%), identified prior to PAH diagnosis in 27 (34.2%), and had unclear timing in the remainder. AF/AFL patients were older, more often male, had lower left ventricular ejection fractions, and greater left atrial volume indices and right atrial areas than patients without AF/AFL. AF/AFL (whether diagnosed before or after PAH) was associated with a 3.81-fold increase in the hazard of death (95% CI 2.64-5.52, p < 0.001). This finding was consistent with multivariable adjustment of hemodynamic, cardiac structural, and heart rate indices as well as in sensitivity analyses of patients with paroxysmal versus non-paroxysmal arrhythmias. In these PAH/CTEPH patients, presence of AF/AFL significantly increased mortality risk. Mortality remained elevated in the absence of a high burden of uncontrolled or persistent arrhythmias, thus suggesting additional etiologies beyond rapid heart rate as an explanation. Future studies are warranted to confirm this observation and interrogate whether other therapies beyond rate and rhythm control are necessary to mitigate this risk.
Collapse
Affiliation(s)
| | - Michael V. Genuardi
- Center for Pulmonary Vascular Biology
and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute,
Division
of Cardiology, Department of Medicine, University of Pittsburgh Medical Center,
USA
| | - Agnes Koczo
- Department
of Medicine, University of Pittsburgh,
USA
| | | | | | - Adam Handen
- Center for Pulmonary Vascular Biology
and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute,
Division
of Cardiology, Department of Medicine, University of Pittsburgh Medical Center,
USA
| | - Ethan Craig
- Department
of Medicine, University of Pittsburgh,
USA
| | | | - Timothy Girard
- Clinical Research, Investigation, and
Systems Modeling of Acute illness (CRISMA) Center;
Department
of Critical Care Medicine, University of Pittsburgh School of Medicine,
USA
| | | | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology
and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute,
Division
of Cardiology, Department of Medicine, University of Pittsburgh Medical Center,
USA
| |
Collapse
|
22
|
Shang W, Li Y, Ren Y, Li W, Wei H, Dong J. Prevalence of pulmonary hypertension in patients with chronic kidney disease without dialysis: a meta-analysis. Int Urol Nephrol 2018; 50:1497-1504. [PMID: 29582339 DOI: 10.1007/s11255-018-1853-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
PURPOSE Recent epidemiological evidence attempts to demonstrate the risk of pulmonary hypertension (PH) among patients with chronic kidney disease (CKD) without dialysis, but prevalence estimates of PH in CKD without dialysis vary widely in the existing studies. This meta-analysis was to summarize the point prevalence of PH in adults with CKD without dialysis. METHODS PubMed, EMBASE, the Cochrane Collaboration, and the reference lists of relevant articles were searched to identify eligible studies. We used a random-effect meta-analysis model to estimate the prevalence of PH. Associations were tested in subgroups and meta-regression analyses. We also performed sensitivity analyses and assessments of publishing bias. RESULTS Twenty-one observational studies (n = 8012 participants) were included in this meta-analysis. The result of analysis in random-effect model showed that the pooled prevalence was 32% (95% CI 23-42%), with significant heterogeneity between these studies (I2 = 98%, P < 0.01). Stratified analyses found that the study design, region, sample size, year of publication, and definition of PH based on PASP ≥ 35 mmHg may explain the variation between studies. Sensitivity analysis further demonstrated the results to be robust. There was no evidence of publication bias. CONCLUSIONS PH is highly prevalent in patients with CKD without dialysis. Owing to the high heterogeneity, future well-designed and large prospective studies are encouraged to confirm the findings and definitively clarify the potential biological mechanisms.
Collapse
Affiliation(s)
- Weifeng Shang
- Department of Nephrology and Rheumatology, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Department of Respiratory Medicine, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Yali Ren
- Department of Medical Affaires, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Li
- Department of Nephrology and Rheumatology, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - HongLan Wei
- Department of Nephrology and Rheumatology, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China
| | - Junwu Dong
- Department of Nephrology and Rheumatology, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX 3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw 2018; 18:e5. [PMID: 29503738 PMCID: PMC5833124 DOI: 10.4110/in.2018.18.e5] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023] Open
Abstract
Chemokine (C-X3-C motif) ligand 1 (CX3CL1, also known as fractalkine) and its receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) are widely expressed in immune cells and non-immune cells throughout organisms. However, their expression is mostly cell type-specific in each tissue. CX3CR1 expression can be found in monocytes, macrophages, dendritic cells, T cells, and natural killer (NK) cells. Interaction between CX3CL1 and CX3CR1 can mediate chemotaxis of immune cells according to concentration gradient of ligands. CX3CR1 expressing immune cells have a main role in either pro-inflammatory or anti-inflammatory response depending on environmental condition. In a given tissue such as bone marrow, brain, lung, liver, gut, and cancer, CX3CR1 expressing cells can maintain tissue homeostasis. Under pathologic conditions, however, CX3CR1 expressing cells can play a critical role in disease pathogenesis. Here, we discuss recent progresses of CX3CL1/CX3CR1 in major tissues and their relationships with human diseases.
Collapse
Affiliation(s)
- Myoungsoo Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Yongsung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Jihye Song
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Junhyung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| |
Collapse
|
24
|
Beigi AA, Sadeghi AMM, Khosravi AR, Karami M, Masoudpour H. Effects of the Arteriovenous Fistula on Pulmonary Artery Pressure and Cardiac Output in Patients with Chronic Renal Failure. J Vasc Access 2018; 10:160-6. [DOI: 10.1177/112972980901000305] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Access to the vascular system is necessary in patients with chronic renal failure planned to undergo dialysis. One of the complications of end-stage renal disease patients is pulmonary hypertension (PHT). Temporary arterio-venous access closure and successful kidney transplantation causes a significant fall in cardiac output and pulmonary artery pressure (PAP), indicating the possibility that excessive pulmonary blood flow is involved in the pathogenesis of the disease. We attempted to study the relationship of PHT with arteriovenous fistula (AVF) creation, as well as to assess the relationship between AVF flow and fistula characteristics. Methods Fifty patients were included in the study. Echocardiography was used to evaluate systolic PAP, cardiac output (CO), and ejection fraction (EF) before creating the AVF. After a follow-up interval of at least 6 months, a second echocardiographic assessment and a Doppler sonographic assessment of their fistula flow were carried out. Complete data were available for 34 patients. Results Study data were collected from 34 patients, 28 males and 6 females with a mean age of 52 yrs ranging from 15–78 yrs. The data showed a statistically significant positive correlation between fistula flow and PAP2 and PAP changes (p<0.05). Mean fistula flow was 1322 ml/min in patients without PHt and 2750 ml/min in patients with PHT. this difference (1428 ml/ min) was statistically significant (p=0.03). We found a significant negative correlation between PAP1 and EF1 and PAP2 and EF2 (p<0.05). In addition, the mean EF2 in patients without PHT was 57% in contrast to 46% in patients with PHT. Mean fistula flow in radial fistulae (mean=422 ml/min, range: 370–474 ml/min) was significantly less than brachial fistulae (mean=1463 ml, range: 270–3300 ml/min) (p=0.03). Mean systolic PAP2 of 14.8 mmHg in transplanted patients was 5.9 mmHg less than those who were not transplanted (20.7 mmHg). Diabetes was the most common cause of renal failure and diabetics had a significant reduction in their EF (15.5%) compared with non-diabetic patients (1% reduction) (p=0.016). Conclusion Fistula flow, PAP and EF of all patients should be checked at least 6 months after fistula creation. Patients with higher fistula flow rates and patients with diabetes mellitus need to be more closely observed. In addition, elderly patients with significant cardiac and other comorbidities may be more prone to develop symptoms after AVF creation
Collapse
Affiliation(s)
- Ali Akbar Beigi
- Vascular Surgery Department, Isfahan University of Medical Sciences, Alzahra Hospital, Isfahan - Iran
| | | | - Ali Reza Khosravi
- Cardiology Department, Isfahan University of Medical Sciences, Isfahan - Iran
| | - Mehdi Karami
- Radiology Department, Isfahan University of Medical Sciences, Isfahan - Iran
| | - Hassan Masoudpour
- General Surgery Department, Isfahan University of Medical Sciences, Alzahra Hospital, Isfahan - Iran
| |
Collapse
|
25
|
PCPA protects against monocrotaline-induced pulmonary arterial remodeling in rats: potential roles of connective tissue growth factor. Oncotarget 2017; 8:111642-111655. [PMID: 29340081 PMCID: PMC5762349 DOI: 10.18632/oncotarget.22882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to investigate the mechanism of monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and determine whether 4-chloro-DL-phenylalanine (PCPA) could inhibit pulmonary arterial remodeling associated with connective tissue growth factor (CTGF) expression and downstream signal pathway. MCT was administered to forty Sprague Dawley rats to establish the PAH model. PCPA was administered at doses of 50 and 100 mg/kg once daily for 3 weeks via intraperitoneal injection. On day 22, the pulmonary arterial pressure (PAP), right ventricle hypertrophy index (RVI) and pulmonary artery morphology were assessed and the serotonin receptor-1B (SR-1B), CTGF, p-ERK/ERK were measured by western blot or immunohistochemistry. The concentration of serotonin in plasma was checked by ELISA. Apoptosis and apoptosis-related indexes were detected by TUNEL and western blot. In the MCT-induced PAH models, the PAP, RVI, pulmonary vascular remodeling, SR-1B index, CTGF index, anti-apoptotic factors bcl-xl and bcl-2, serotonin concentration in plasma were all increased and the pro-apoptotic factor caspase-3 was reduced. PCPA significantly ameliorated pulmonary arterial remodeling induced by MCT, and this action was associated with accelerated apoptosis and down-regulation of CTGF, SR-1B and p-ERK/ERK. The present study suggests that PCPA protects against the pathogenesis of PAH by suppressing remodeling and inducing apoptosis, which are likely associated with CTGF and downstream ERK signaling pathway in rats.
Collapse
|
26
|
Yuan C, Xu M, Rong R, Mei Y, Cai W, Li L, Xue Y, Zhu B, Sun K, Han L. miR-200c regulates endothelin-1 induced PASMCs abnormal proliferation and apoptosis. IUBMB Life 2017; 69:877-886. [PMID: 29044995 DOI: 10.1002/iub.1686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chao Yuan
- Department of Emergency Medicine; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Min Xu
- Department of General Medicine; Jiangsu Province Official Hospital; Nanjing China
| | - Rong Rong
- Department of Pathology; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Yong Mei
- Department of Emergency Medicine; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Wenyan Cai
- Department of Occupational Disease Prevention; Jiangsu Provincial Center for Disease Control and Prevention; Nanjing China
- School of Public health; Nanjing Medicinal University; Nanjing China
| | - Lin Li
- Department of Emergency Medicine; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Yao Xue
- Department of Hematology and Oncology; Children's Hospital of Nanjing Medical University; Nanjing China
| | - Baoli Zhu
- Department of Occupational Disease Prevention; Jiangsu Provincial Center for Disease Control and Prevention; Nanjing China
| | - Kai Sun
- Department of Emergency Medicine; The First Affiliated Hospital with Nanjing Medical University; Nanjing China
| | - Lei Han
- Department of Occupational Disease Prevention; Jiangsu Provincial Center for Disease Control and Prevention; Nanjing China
| |
Collapse
|
27
|
van Duin RWB, Houweling B, Uitterdijk A, Duncker DJ, Merkus D. Pulmonary vasodilation by phosphodiesterase 5 inhibition is enhanced and nitric oxide independent in early pulmonary hypertension after myocardial infarction. Am J Physiol Heart Circ Physiol 2017; 314:H170-H179. [PMID: 28986358 DOI: 10.1152/ajpheart.00370.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial infarction (MI) may result in pulmonary hypertension (PH). Inhibition of phosphodiesterase 5 (PDE5), the enzyme responsible for the breakdown of cGMP in vascular smooth muscle, has become part of the contemporary therapeutic armamentarium for pulmonary arterial hypertension and may also be beneficial for PH secondary to MI. Nitric oxide (NO) is an important activator of cGMP synthesis and can be enhanced in early PH and decreased in severe PH. In the present study, we investigated if PDE5 inhibition ameliorates pulmonary hemodynamics in swine with PH secondary to MI and whether NO is essential. The PDE5 inhibitor EMD360527 was administered in awake, chronically instrumented swine with or without MI. At rest, PDE5 inhibition produced pulmonary vasodilation as evidenced by a decrease in pulmonary vascular resistance, which was more pronounced in MI ( n = 5) compared with normal swine ( n = 10, P ≤ 0.01) and was accompanied by an increase in stroke volume in MI swine. Both pulmonary vasodilation and increased stroke volume were maintained during exercise, suggesting that this therapy may improve exercise capacity in patients with PH secondary to MI. Interestingly, prior inhibition of NO significantly enhanced ( P ≤ 0.01) pulmonary vasodilation by PDE5 inhibition in both normal ( n = 8) and MI swine ( n = 5, P ≤ 0.05 vs. normal). This suggests that the increased vasodilator responses to PDE5 inhibition after MI were not due to an increase in NO-induced cGMP production. These observations indicate that PDE5 inhibition represents an interesting pharmacotherapeutic approach in early PH after a recent MI to prevent overt PH. NEW & NOTEWORTHY This research article is the first to describe that pulmonary vasodilation to phosphodiesterase 5 inhibition is enhanced and nitric oxide independent in resting and exercising swine with pulmonary hypertension as a result of myocardial infarction. This suggests that phosphodiesterase 5 inhibition can normalize pulmonary hemodynamics in postcapillary pulmonary hypertension after a recent myocardial infarction and may improve exercise capacity.
Collapse
Affiliation(s)
- Richard W B van Duin
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam , The Netherlands
| | - Birgit Houweling
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam , The Netherlands
| | - André Uitterdijk
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam , The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam , The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam , The Netherlands
| |
Collapse
|
28
|
Chakraborti S, Sarkar J, Bhuyan R, Chakraborti T. Role of curcumin in PLD activation by Arf6-cytohesin1 signaling axis in U46619-stimulated pulmonary artery smooth muscle cells. Mol Cell Biochem 2017; 438:97-109. [PMID: 28780751 DOI: 10.1007/s11010-017-3117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/15/2017] [Indexed: 01/01/2023]
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to produce phosphatidic acid (PA) which in some cell types play a pivotal role in agonist-induced increase in NADPH oxidase-derived [Formula: see text]production. Involvement of ADP ribosylation factor (Arf) in agonist-induced activation of PLD is known for smooth muscle cells of systemic arteries, but not in pulmonary artery smooth muscle cells (PASMCs). Additionally, role of cytohesin in this scenario is unknown in PASMCs. We, therefore, determined the involvement of Arf and cytohesin in U46619-induced stimulation of PLD in PASMCs, and the probable mechanism by which curcumin, a natural phenolic compound, inhibits the U46619 response. Treatment of PASMCs with U46619 stimulated PLD activity in the cell membrane, which was inhibited upon pretreatment with SQ29548 (Tp receptor antagonist), FIPI (PLD inhibitor), SecinH3 (inhibitor of cytohesins), and curcumin. Transfection of the cells with Tp, Arf-6, and cytohesin-1 siRNA inhibited U46619-induced activation of PLD. Upon treatment of the cells with U46619, Arf-6 and cytohesin-1 were translocated and associated in the cell membrane, which were not inhibited upon pretreatment of the cells with curcumin. Cytohesin-1 appeared to be necessary for in vitro binding of GTPγS with Arf-6; however, addition of curcumin inhibited binding of GTPγS with Arf-6 even in the presence of cytohesin-1. Our computational study suggests that although curcumin to some extent binds with Tp receptor, yet the inhibition of Arf6GDP to Arf6GTP conversion appeared to be an important mechanism by which curcumin inhibits U46619-induced increase in PLD activity in PASMCs.
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| |
Collapse
|
29
|
Rothman A, Restrepo H, Sarukhanov V, Evans WN, Wiencek RG, Williams R, Hamburger N, Anderson K, Balsara J, Mann D. Assessment of microRNA and gene dysregulation in pulmonary hypertension by endoarterial biopsy. Pulm Circ 2017; 7:455-464. [PMID: 28597755 PMCID: PMC5467936 DOI: 10.1177/2045893217704206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) may regulate a number of genes, each of which may have a variety of functions. We utilized an endoarterial biopsy catheter to assess the dysregulation of miRNAs in a porcine shunt model of pulmonary hypertension (PH). Two Yucatan micropigs underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Endoarterial biopsy samples were obtained at baseline, and at regular intervals during the progression of PH. RNA, isolated from biopsy samples, was analyzed by Illumina miRNA expression microarrays (containing ∼1200 human miRNAs), Affymetrix Porcine GeneChips, Bioconductor, and GeneSpring. We examined a total of 925 genes in a PH whole genome microarray. Biopsy samples showed that 39 miRNAs were downregulated and 34 miRNAs were upregulated compared to baseline. The number of PH-associated genes reported to be controlled by each of the dysregulated miRNAs was in the range of 1–113. The five miRNAs that had the largest number of PH-associated genes were: miR-548c-3p, miR-520d-3p, miR-130a-5p, miR-30a-3p, and miR-let-7g-3p. Several of the dysregulated miRNAs have been associated with molecular pathways and biologic processes involved in PH. Among 29 miRNAs, which were predicted to be dysregulated by a systems biology approach, we found four that were dysregulated in our porcine shunt model. An endoarterial biopsy technique was successful in showing that a large number of miRNAs are dysregulated in a porcine shunt model of PH. Many of these miRNAs control multiple PH-associated genes, molecular pathways, and biologic processes. Endoarterial biopsy offers potential experimental and clinical diagnostic value.
Collapse
Affiliation(s)
- Abraham Rothman
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | - Humberto Restrepo
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | | | - William N Evans
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | - Robert G Wiencek
- 5 Department of Cardiothoracic Surgery, Stanford University, Cardiothoracic Dignity Healthcare, Las Vegas, NV, USA
| | - Roy Williams
- 3 Scripps Research Institute, La Jolla, CA, USA.,4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Nicole Hamburger
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Kylie Anderson
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Jasmine Balsara
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - David Mann
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| |
Collapse
|
30
|
Nakamura K, Matsubara H, Akagi S, Sarashina T, Ejiri K, Kawakita N, Yoshida M, Miyoshi T, Watanabe A, Nishii N, Ito H. Nanoparticle-Mediated Drug Delivery System for Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6050048. [PMID: 28468233 PMCID: PMC5447939 DOI: 10.3390/jcm6050048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/22/2017] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles have been used as a novel drug delivery system. Drug-incorporated nanoparticles for local delivery might optimize the efficacy and minimize the side effects of drugs. The efficacy and safety of intratracheal administration of prostacyclin analog (beraprost) -incorporated nanoparticles and imatinib (a PDGF-receptor tyrosine kinase inhibitor) -incorporated nanoparticles in Sugen-hypoxia-normoxia or monocrotaline rat models of pulmonary arterial hypertension (PAH) and in human PAH-pulmonary arterial smooth muscle cells have been reported. The use of inhaled drug-incorporated nanoparticles might be a novel approach for the treatment of PAH.
Collapse
Affiliation(s)
- Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiromi Matsubara
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan.
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toshihiro Sarashina
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Norifumi Kawakita
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Atsuyuki Watanabe
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Nobuhiro Nishii
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
31
|
Nieri D, Neri T, Petrini S, Vagaggini B, Paggiaro P, Celi A. Cell-derived microparticles and the lung. Eur Respir Rev 2017; 25:266-77. [PMID: 27581826 DOI: 10.1183/16000617.0009-2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/19/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-derived microparticles are small (0.1-1 μm) vesicles shed by most eukaryotic cells upon activation or during apoptosis. Microparticles carry on their surface, and enclose within their cytoplasm, molecules derived from the parental cell, including proteins, DNA, RNA, microRNA and phospholipids. Microparticles are now considered functional units that represent a disseminated storage pool of bioactive effectors and participate both in the maintenance of homeostasis and in the pathogenesis of diseases. The mechanisms involved in microparticle generation include intracellular calcium mobilisation, cytoskeleton rearrangement, kinase phosphorylation and activation of the nuclear factor-κB. The role of microparticles in blood coagulation and inflammation, including airway inflammation, is well established in in vitro and animal models. The role of microparticles in human pulmonary diseases, both as pathogenic determinants and biomarkers, is being actively investigated. Microparticles of endothelial origin, suggestive of apoptosis, have been demonstrated in the peripheral blood of patients with emphysema, lending support to the hypothesis that endothelial dysfunction and apoptosis are involved in the pathogenesis of the disease and represent a link with cardiovascular comorbidities. Microparticles also have potential roles in patients with asthma, diffuse parenchymal lung disease, thromboembolism, lung cancer and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Dario Nieri
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy Both authors contributed equally
| | - Tommaso Neri
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy Both authors contributed equally
| | - Silvia Petrini
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Barbara Vagaggini
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Pierluigi Paggiaro
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Laboratorio di Biologia Cellulare Respiratoria, SVD Fisiopatologia Respiratoria e Riabilitazione, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, University of Pisa, Pisa, Italy
| |
Collapse
|
32
|
Kimura G, Kataoka M, Inami T, Fukuda K, Yoshino H, Satoh T. Sorafenib as a potential strategy for refractory pulmonary arterial hypertension. Pulm Pharmacol Ther 2017; 44:46-49. [PMID: 28315488 DOI: 10.1016/j.pupt.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/25/2016] [Accepted: 03/13/2017] [Indexed: 10/20/2022]
Abstract
Sorafenib is an inhibitor of multi-kinases including tyrosine and serine/threonine kinases. We investigated the efficacy and safety of sorafenib for the treatment of patients with refractory pulmonary arterial hypertension (PAH). Sorafenib was started in 9 patients (7 with idiopathic PAH, 2 with pulmonary veno-occlusive disease) who had severe PAH and right heart failure, in spite of treatment with vasodilators specific for PAH. Sorafenib was started as an add-on therapy at a dose of 50 or 100 mg/day, and increased to 100-400 mg/day. New York Heart Association functional class improved in 8 patients and did not change in 1. Mean pulmonary arterial pressure improved in 6 patients (14-28% decrease) and did not apparently change in 2 (follow-up catheterization was not performed in 1 patient). The main adverse effects of sorafenib were skin reactions on the hands and feet, which appeared in 5 patients. They were tolerable in 4 patients, but discontinuation of sorafenib was needed in only 1 patient. In conclusion, sorafenib had favorable effects to improve symptoms and objective variables in patients with refractory PAH, with tolerable adverse events. Sorafenib is an alternative strategy for patients with refractory PAH.
Collapse
Affiliation(s)
- Gou Kimura
- Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masaharu Kataoka
- Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan; Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Takumi Inami
- Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideaki Yoshino
- Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Toru Satoh
- Second Department of Internal Medicine, Kyorin University School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Sarkar J, Nandy SK, Chowdhury A, Chakraborti T, Chakraborti S. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Biomed Pharmacother 2016; 84:340-347. [PMID: 27668533 DOI: 10.1016/j.biopha.2016.09.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/09/2016] [Accepted: 09/14/2016] [Indexed: 11/27/2022] Open
Abstract
Green tea polyphenolic catechins have been shown to prevent various types of diseases such as pulmonary hypertension (PAH), cancer and cardiac and neurological disorders. Matrix metalloproteinases (MMPs) play an important role in the development of PAH. The present study demonstrated that among the four green tea catechins (EGCG, ECG, EC and EGC), EGCG and ECG inhibit pro-/active MMP-9 activities in pulmonary artery smooth muscle cell culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-9 with the green tea catechins by computational methods. In silico molecular docking analysis revealed a strong interaction between pro-/active MMP-9 and EGCG/ECG, and galloyl group appears to be responsible for this enhanced interaction. The molecular docking studies corroborate our experimental observation that EGCG and ECG are mainly active in preventing both the proMMP-9 and MMP-9 activities.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Suman Kumar Nandy
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
34
|
Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways. Int J Biochem Cell Biol 2016; 77:141-154. [DOI: 10.1016/j.biocel.2016.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
|
35
|
von Siebenthal C, Aubert JD, Mitsakis P, Yerly P, Prior JO, Nicod LP. Pulmonary Hypertension and Indicators of Right Ventricular Function. Front Med (Lausanne) 2016; 3:23. [PMID: 27376066 PMCID: PMC4891340 DOI: 10.3389/fmed.2016.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/10/2016] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease, whose underlying mechanisms are not fully understood. It is characterized by pulmonary arterial vasoconstriction and vessels wall thickening, mainly intimal and medial layers. Several molecular pathways have been studied, but their respective roles remain unknown. Cardiac repercussions of PH are hypertrophy, dilation, and progressive right ventricular dysfunction. Multiple echocardiographic parameters are being used, in order to assess anatomy and cardiac function, but there are no guidelines edited about their usefulness. Thus, it is now recommended to associate the best-known parameters, such as atrial and ventricular diameters or tricuspid annular plane systolic excursion. Cardiac catheterization remains necessary to establish the diagnosis of PH and to assess pulmonary hemodynamic state. Concerning energetic metabolism, free fatty acids, normally used to provide energy for myocardial contraction, are replaced by glucose uptake. These abnormalities are illustrated by increased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake on positron emission tomography/computed tomography, which seems to be correlated with echocardiographic and hemodynamic parameters.
Collapse
Affiliation(s)
| | - John-David Aubert
- Pneumology, Centre Hospitalier Universitaire Vaudois , Lausanne , Switzerland
| | - Periklis Mitsakis
- Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois , Lausanne , Switzerland
| | - Patrick Yerly
- Cardiology, Centre Hospitalier Universitaire Vaudois , Lausanne , Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Imaging, Centre Hospitalier Universitaire Vaudois , Lausanne , Switzerland
| | | |
Collapse
|
36
|
Mónica FZ, Bian K, Murad F. The Endothelium-Dependent Nitric Oxide-cGMP Pathway. ADVANCES IN PHARMACOLOGY 2016; 77:1-27. [PMID: 27451093 DOI: 10.1016/bs.apha.2016.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nitric oxide (NO)-cyclic 3'-5' guanosine monophosphate (cGMP) signaling plays a critical role on smooth muscle tone, platelet activity, cardiac contractility, renal function and fluid balance, and cell growth. Studies of the 1990s established endothelium dysfunction as one of the major causes of cardiovascular diseases. Therapeutic strategies that benefit NO bioavailability have been applied in clinical medicine extensively. Basic and clinical studies of cGMP regulation through activation of soluble guanylyl cyclase (sGC) or inhibition of cyclic nucleotide phosphodiesterase type 5 (PDE5) have resulted in effective therapies for pulmonary hypertension, erectile dysfunction, and more recently benign prostatic hyperplasia. This section reviews (1) how endothelial dysfunction and NO deficiency lead to cardiovascular diseases, (2) how soluble cGMP regulation leads to beneficial effects on disorders of the circulation system, and (3) the epigenetic regulation of NO-sGC pathway components in the cardiovascular system. In conclusion, the discovery of the NO-cGMP pathway revolutionized the comprehension of pathophysiological mechanisms involved in cardiovascular and other diseases. However, considering the expression "from bench to bedside" the therapeutic alternatives targeting NO-cGMP did not immediately follow the marked biochemical and pathophysiological revolution. Some therapeutic options have been effective and released on the market for pulmonary hypertension and erectile dysfunction such as inhaled NO, PDE5 inhibitors, and recently sGC stimulators. The therapeutic armamentarium for many other disorders is expected in the near future. There are currently numerous active basic and clinical research programs in universities and industries attempting to develop novel therapies for many diseases and medical applications.
Collapse
Affiliation(s)
- F Z Mónica
- School of Medicine, George Washington University, Washington, DC, United States; State University of Campinas (UNICAMP), Campinas, Brazil
| | - K Bian
- School of Medicine, George Washington University, Washington, DC, United States.
| | - F Murad
- School of Medicine, George Washington University, Washington, DC, United States.
| |
Collapse
|
37
|
Yin X, Wang L, Qin G, Luo H, Liu X, Zhang F, Ye Z, Zhang J, Wang E. Rats with Chronic, Stable Pulmonary Hypertension Tolerate Low Dose Sevoflurane Inhalation as Well as Normal Rats Do. PLoS One 2016; 11:e0154154. [PMID: 27144451 PMCID: PMC4856326 DOI: 10.1371/journal.pone.0154154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The effects of low concentration of sevoflurane on right ventricular (RV) function and intracellular calcium in the setting of pulmonary arterial hypertension (PAH) have not been investigated clearly. We aim to study these effects and associated signaling pathways in rats with PAH. METHODS Hemodynamics were assessed with or without sevoflurane inhalation in established PAH rats. We analysis the classic RV function parameters and RV-PA coupling efficiency using steady-state PV loop recordings. The protein levels of SERCA2, PLB and p-PLB expression was analyzed by western blot to assess their relevance in PAH. RESULTS Rats with PAH presented with RV hypertrophy and increased pulmonary arterial pressure. The values of Ea, R/L ratio, ESP, SW, PRSW, +dP/dtmax and the slope of the dP/dtmax-EDV relationship increased significantly in PAH rats (P<0.05). Sevoflurane induced a concentration-dependent decrease of systemic and pulmonary blood pressure, HR, RV contractility, and increased the R/L ratio in both groups. Sevoflurane reduced the expression of SERCA2 and increased the expression of PLB in both groups. Interestingly, sevoflurane only reduced the p-PLB/PLB ratio in PAH rats, not in normal rats. CONCLUSIONS Rats with chronic, stable pulmonary hypertension tolerate low concentrations of sevoflurane inhalation as well as normal rats do. It may be related to the modulation of the SERCA2-PLB signaling pathway.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Calcium-Binding Proteins/metabolism
- Familial Primary Pulmonary Hypertension/drug therapy
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/physiopathology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/drug therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Lung/drug effects
- Lung/metabolism
- Lung/physiopathology
- Male
- Methyl Ethers/administration & dosage
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats
- Rats, Sprague-Dawley
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Sevoflurane
- Ventricular Dysfunction, Right/drug therapy
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Right/drug effects
- Ventricular Function, Right/physiology
Collapse
Affiliation(s)
- Xiaoqing Yin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Li S, Han D, Zhang Y, Xie X, Ke R, Zhu Y, Liu L, Song Y, Yang L, Li M. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery. Med Sci Monit Basic Res 2016; 22:27-33. [PMID: 26978596 PMCID: PMC4795089 DOI: 10.12659/msmbr.897505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Dong Han
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yonghong Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Rui Ke
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yanting Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Lu Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Yang Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Lan Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
39
|
|
40
|
Li L, Zhang X, Li X, Lv C, Yu H, Xu M, Zhang M, Fu Y, Meng H, Zhou J. TGF-β1 inhibits the apoptosis of pulmonary arterial smooth muscle cells and contributes to pulmonary vascular medial thickening via the PI3K/Akt pathway. Mol Med Rep 2016; 13:2751-6. [PMID: 26861477 DOI: 10.3892/mmr.2016.4874] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 10/29/2015] [Indexed: 11/05/2022] Open
Abstract
Previous studies have highlighted that the transforming growth factor‑β1 (TGF‑β1) pathway may be activated by hypoxic conditions. TGF‑β1 also participates in the regulation of proliferation, differentiation, migration and apoptosis of various cell types. Furthermore, TGF‑β1 has been reported to participate in the regulation of the progression of pulmonary arterial hypertension (PAH). However, the effect of TGF‑β1 on pulmonary arterial smooth muscle cells (PASMCs) and the corresponding molecular mechanisms remain unclear. The present study aimed to determine whether TGF‑β1 protects against cell apoptosis in PASMCs, and identify the underlying molecular mechanisms. Western blotting, MTT and lactate dehydrogenase activity assays were performed, and the activity of caspase‑3 and caspase‑9 was detected in order to investigate the hypothesis. It was determined that TGF‑β1 may facilitate cell growth in a dose‑dependent manner in serum‑starved PASMCs. Furthermore, it was observed that apoptosis in serum‑starved PASMCs was inhibited by TGF‑β1 via regulation of the expression levels of mitochondrial membrane proteins. Additionally, the phosphatidylinositol 3‑kinase/protein kinase B (PI3K/Akt) pathway was found to be activated by TGF‑β1 in PASMCs, while the inhibition of PI3K/Akt signaling also prevented the apoptosis‑limiting effects of TGF‑β1. These observations suggest that TGF‑β1 protects PASMCs from apoptosis and contributes to pulmonary vascular medial thickening via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Limin Li
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoqian Zhang
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaoxia Li
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chengfang Lv
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongjuan Yu
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mengyuan Xu
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingwen Zhang
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yueyue Fu
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongbin Meng
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jin Zhou
- Department of Hematology, The First Affiliated Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
41
|
Makowski CT, Rissmiller RW, Bullington WM. Riociguat: a novel new drug for treatment of pulmonary hypertension. Pharmacotherapy 2015; 35:502-19. [PMID: 26011143 DOI: 10.1002/phar.1592] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Riociguat is the first approved medication from the novel class of soluble guanylate cyclase (sGC) stimulators and the only agent approved for treating both chronic thromboembolic hypertension (CTEPH) and pulmonary arterial hypertension (PAH). The novel mechanism of riociguat lies in its ability to restore the homeostatic and therapeutic effects of nitric oxide that are diminished as a result of phenotypic alterations associated with pulmonary hypertension (PH). Improvements in 6-minute walk distance (6MWD) in patients with PAH during the phase 3 PATENT-1 trial were comparable to other oral agents approved for the treatment of PAH. Improvements in 6MWD in patients with CTEPH during the phase 3 CHEST-1 trial were greater than those previously observed with other oral PAH-directed therapies. Hypotension is the dose-limiting adverse effect of riociguat and dose titration is performed gradually according to systolic blood pressure. Riociguat was tolerated at maximal doses by most patients during PATENT-1 and CHEST-1 and was well tolerated during long-term extension studies. Key factors to consider with riociguat are a patient's systolic blood pressure, drug interactions mediated by CYP1A1, CYP3A4, and P-glycoprotein, cost, and teratogenicity requiring enrollment in a Risk Evaluation and Mitigation Strategy program. Recently published guidelines recommend riociguat monotherapy as an option for treatment-naïve patients with World Health Organization Functional Class (WHO FC) II or III symptoms or as add-on therapy for patients with persistent WHO FC III or IV symptoms being treated with an ERA or inhaled prostanoid. Postmarketing experience and ongoing clinical investigations will further define the safety and role of riociguat in patients with PAH and other types of PH.
Collapse
Affiliation(s)
| | - Richard W Rissmiller
- Division of Pulmonary and Critical Care, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy M Bullington
- Department of Pharmacy Services, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
42
|
Dahan I, Farber E, Thauho N, Nakhoul N, Francis A, Awawde M, Levy AP, Kim-Shapiro DB, Basu S, Nakhoul F. Interaction between the Haptoglobin 2 Phenotype and Diabetes Mellitus on Systolic Pulmonary Arterial Pressure and Nitric Oxide Bioavailability in Hemodialysis Patients. J Diabetes Res 2015; 2015:613860. [PMID: 26171400 PMCID: PMC4481085 DOI: 10.1155/2015/613860] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 01/22/2023] Open
Abstract
Elevated systolic pulmonary artery pressure (s-PAP, ≥35 mmHg) serves as an independent predictor of mortality in hemodialysis (HD) and diabetic (DM) patients. A polymorphism in the antioxidant Haptoglobin (Hp) gene has been shown to regulate the bioavailability of nitric oxide (NO), a major mediator of pulmonary vascular tone. We therefore set out to test the hypothesis that the Hp polymorphism may be a determinant of developing elevated s-PAP specifically in the DM state due to a decreased bioavailability of NO. To test our hypothesis we Hp typed and performed transthoracic echocardiography on a series of HD patients and stratified them into elevated and normal s-PAP groups and then evaluated whether there was a significant association between the Hp type, elevated s-PAP, and decreased NO bioavailability as defined by low plasma nitrite. We found a statistically significant interaction between the Hp type and DM on the prevalence of elevated s-PAP and lower mean nitrite levels with the combination of elevated s-PAP and low nitrite levels being significantly more prevalent in Hp 2-2 DM individuals. We conclude that the Hp 2 type is associated with elevated s-PAP levels and low plasma nitrite levels in HD patients specifically in the DM state.
Collapse
Affiliation(s)
- Inbal Dahan
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Evgeny Farber
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Nadia Thauho
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Nakhoul Nakhoul
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| | - Adi Francis
- Division of Vascular Medicine, Holy Family Hospital, 16234 Nazareth, Israel
| | - Mohamad Awawde
- Division of Vascular Medicine, Holy Family Hospital, 16234 Nazareth, Israel
| | - Andrew P. Levy
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel
| | - Daniel B. Kim-Shapiro
- Department of Physics and Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - Swati Basu
- Department of Physics and Translational Science Center, Wake Forest University, Reynolda Campus, Winston-Salem, NC 27109, USA
| | - Farid Nakhoul
- Diabetic Nephropathy Laboratory, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
- Division of Nephrology & Hypertension, The Baruch Padeh Poriya Medical Center, Faculty of Medicine in the Galilee, 15208 The Lower Galilee, Israel
| |
Collapse
|
43
|
Beltrán-Gámez ME, Sandoval-Zárate J, Pulido T. [Phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2015; 85:215-24. [PMID: 26047999 DOI: 10.1016/j.acmx.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/24/2022] Open
Abstract
In experimental and clinical cardiology, phosphodiesterase type 5 (PDE-5) inhibitors have brought scientific interest as a therapeutic tool in pulmonary arterial hypertension (PAH) management in recent years. Phosphodiesterases are a superfamily of enzymes that inactivate cyclic adenosine monophosphate and cyclic guanosine monophosphate, the second messengers of prostacyclin and nitric oxide. The rationale for the use of PDE-5 inhibitors in PAH is based on their capacity to overexpresss the nitric oxide pathway pursued inhibition of cyclic guanosine monophosphate hydrolysis. By increasing cyclic guanosine monophosphate levels it promotes vasodilation, antiproliferative and pro-apoptotic effects that may reverse pulmonary vascular remodeling. There is also evidence that these drugs may directly enhance right ventricular contractility through an increase in cyclic adenosine monophosphate mediated by the inhibition of the cyclic guanosine monophosphate -sensitive PDE-3. Sildenafil, tadalafil and vardenafil are 3 specific PDE-5 inhibitors in current clinical use, which share similar mechanisms of action but present some significant differences regarding potency, selectivity for PDE-5 and pharmacokinetic properties. Sildenafil received approval in 2005 by the Food and Drug Administration and the European Medicines Agency and tadalafil in 2009 by the Food and Drug Administration and the European Medicines Agency for the treatment of PAH in patients classified as NYHA/WHO functional class II and III. In Mexico, sildenafil and tadalafil were approved by Comisión Federal de Protección contra Riesgos Sanitarios for this indication in 2010 and 2011, respectively.
Collapse
Affiliation(s)
- Miguel E Beltrán-Gámez
- Hospital Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado de Baja California, Tijuana, B.C., México.
| | - Julio Sandoval-Zárate
- Departamento de Investigación Clínica, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | - Tomás Pulido
- Departamento de Cardiopulmonar, Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| |
Collapse
|
44
|
Saito Y, Nakamura K, Akagi S, Sarashina T, Ejiri K, Miura A, Ogawa A, Matsubara H, Ito H. Epoprostenol sodium for treatment of pulmonary arterial hypertension. Vasc Health Risk Manag 2015; 11:265-70. [PMID: 25999730 PMCID: PMC4437604 DOI: 10.2147/vhrm.s50368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The release of endogenous prostacyclin (PGI2) is depressed in patients with pulmonary arterial hypertension (PAH). PGI2 replacement therapy by epoprostenol infusion is one of the best treatments available for PAH. Here, we provide an overview of the current clinical data for epoprostenol. Epoprostenol treatment improves symptoms, exercise capacity, and hemodynamics, and is the only treatment that has been shown to reduce mortality in patients with idiopathic PAH (IPAH) in randomized clinical trials. We have reported that high-dose epoprostenol therapy (>40 ng/kg/min) also results in marked hemodynamic improvement in some patients with IPAH. High-dose epoprostenol has a pro-apoptotic effect on PAH-PASMCs via the IP receptor and upregulation of Fas ligand (FasL) in vitro. However, long-term intravenous administration of epoprostenol is sometimes associated with catheter-related infections and leads to considerable inconvenience for the patient. In the future, the development of new routes of administration or the development of powerful PGI2 analogs, IP-receptor agonists, and gene and cell-based therapy enhancing PGI2 production with new routes of administration is required.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiro Sarashina
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Ejiri
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aya Miura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aiko Ogawa
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Hiromi Matsubara
- Division of Cardiology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
45
|
Rose-Jones LJ, Mclaughlin VV. Pulmonary hypertension: types and treatments. Curr Cardiol Rev 2015; 11:73-9. [PMID: 24251459 PMCID: PMC4347212 DOI: 10.2174/1573403x09666131117164122] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/09/2013] [Accepted: 09/27/2013] [Indexed: 11/28/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a panvasculopathy that affects the distal pulmonary arteries and leads to restricted blood flow. This increased afterload leads to adaptive mechanisms of the right ventricle, with eventual failure once it can no longer compensate. Pulmonary hypertension from associated conditions, most importantly left heart disease, i.e. heart failure, can also lead to the same sequela. Patients often experience early vague symptoms of dyspnea and exercise intolerance, and thus PH can elude clinicians until right heart failure symptoms predominate. Evidence-based treatment options with pulmo-nary vasodilators are available for those with PAH and should be employed early. It is essential that patients be accurately categorized by their etiology of PH, as treatment strategies differ, and can potentially be dangerous if employed in the wrong clinical scenario.
Collapse
Affiliation(s)
| | - Vallerie V Mclaughlin
- UNC Center for Heart & Vascular Care, 160 Dental Circle, CB 7075, Chapel Hill, NC 27599-7075, USA.
| |
Collapse
|
46
|
Zhang S, Yang T, Xu X, Wang M, Zhong L, Yang Y, Zhai Z, Xiao F, Wang C. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study. BMC Pulm Med 2015; 15:50. [PMID: 25934483 PMCID: PMC4477508 DOI: 10.1186/s12890-015-0045-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress (OS) and reduced nitric oxide (NO) bioavailability contribute to the pathogenesis of pulmonary hypertension (PH). Whether there are associations between OS and NO signaling biomarkers and whether these biomarkers are associated with the severity of PH remain unclear. METHODS Blood samples were collected from 35 healthy controls and 35 patients with pulmonary arterial hypertension (PAH, n = 12) or chronic thromboembolic pulmonary hypertension (CTEPH, n = 23). The mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance index (PVRI) were measured by right heart catheterization. We measured the derivative of reactive oxygen molecules (d-ROMs), biological antioxidant potential (BAP) and superoxide dismutase (SOD) by automatic biochemical analyzer, malondialdehyde (MDA) and asymmetric dimethylarginine (ADMA) by enzyme-linked immunosorbent assay. The relationship between oxidative-antioxidative biomarkers and ADMA, as well as their association with pulmonary hemodynamics, were analyzed. RESULTS Compared with age- and gender-matched controls, there was no significant difference of d-ROMs in PAH and CTEPH patients; MDA was increased in CTEPH patients (P = 0.034); BAP and SOD were decreased in PAH (P = 0.014, P < 0.001) and CTEPH patients (P = 0.015, P < 0.001); ADMA level was significantly higher in PAH (P = 0.007) and CTEPH patients (P < 0.001). No association between oxidative-antioxidative biomarkers and ADMA was found. Serum ADMA concentration was correlated with mPAP (r = 0.762, P = 0.006) and PVRI (r = 0.603, P = 0.038) in PAH patients. CONCLUSIONS The antioxidative potential and NO signaling are impaired in PAH and CTEPH. Increased serum ADMA level is associated with unfavorable pulmonary hemodynamics in PAH patients. Thus, ADMA may be useful in the severity evaluation and risk stratification of PAH.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China. .,Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, People's Republic of China.
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China. .,Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, People's Republic of China.
| | - Xiaomao Xu
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, Beijing, People's Republic of China. .,National Clinical Research Center of Respiratory Diseases, Beijing, People's Republic of China.
| | - Meng Wang
- Department of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| | - Linye Zhong
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China. .,Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, People's Republic of China.
| | - Yuanhua Yang
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China. .,Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, People's Republic of China.
| | - Zhenguo Zhai
- Department of Pulmonary and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China. .,Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, People's Republic of China.
| | - Fei Xiao
- National Clinical Research Center of Respiratory Diseases, Beijing, People's Republic of China. .,Department of Cell Biology, Institute of Geriatrics, Beijing Hospital, Beijing, People's Republic of China.
| | - Chen Wang
- National Clinical Research Center of Respiratory Diseases, Beijing, People's Republic of China. .,Department of Respiratory Medicine, Capital Medical University, Beijing, People's Republic of China. .,China-Japan Friendship Hospital, Beijing, People's Republic of China.
| |
Collapse
|
47
|
Zhu R, Bi LQ, Wu SL, Li L, Kong H, Xie WP, Wang H, Meng ZL. Iptakalim attenuates hypoxia-induced pulmonary arterial hypertension in rats by endothelial function protection. Mol Med Rep 2015; 12:2945-52. [PMID: 25936382 DOI: 10.3892/mmr.2015.3695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 01/09/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the protective effects of iptakalim, an adenosine triphosphate (ATP)-sensitive potassium channel opener, on the inflammation of the pulmonary artery and endothelial cell injury in a hypoxia-induced pulmonary arterial hypertension (PAH) rat model. Ninety-six Sprague-Dawley rats were placed into normobaric hypoxia chambers for four weeks and were treated with iptakalim (1.5 mg/kg/day) or saline for 28 days. The right ventricle systolic pressures (RVSP) were measured and small pulmonary arterial morphological alterations were analyzed with hematoxylin and eosin staining. Enzyme-linked immunosorbent assay (ELISA) was performed to analyze the content of interleukin (IL)-1β and IL-10. Immunohistochemical analysis for ED1(+) monocytes was performed to detect the inflammatory cells surrounding the pulmonary arterioles. Western blot analysis was performed to analyze the expression levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) and endothelial nitric oxide synthase (eNOS) in the lung tissue. Alterations in small pulmonary arteriole morphology and the ultrastructure of pulmonary arterial endothelial cells were observed via light and transmission electron microscopy, respectively. Iptakalim significantly attenuated the increase in mean pulmonary artery pressure, RVSP, right ventricle to left ventricle plus septum ratio and small pulmonary artery wall remodeling in hypoxia-induced PAH rats. Iptakalim also prevented an increase in IL-1β and a decrease in IL-10 in the peripheral blood and lung tissue, and alleviated inflammatory cell infiltration in hypoxia-induced PAH rats. Furthermore, iptakalim enhanced PECAM-1 and eNOS expression and prevented the endothelial cell injury induced by hypoxic stimuli. Iptakalim suppressed the pulmonary arteriole and systemic inflammatory responses and protected against the endothelial damage associated with the upregulation of PECAM-1 and eNOS, suggesting that iptakalim may represent a potential therapeutic agent for PAH.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li-Qing Bi
- Geriatric Intensive Care Unit, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Su-Ling Wu
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lan Li
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei-Ping Xie
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zi-Li Meng
- Department of Respiratory Medicine, The Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
48
|
Ma C, Liu Y, Wang Y, Zhang C, Yao H, Ma J, Zhang L, Zhang D, Shen T, Zhu D. Hypoxia activates 15-PGDH and its metabolite 15-KETE to promote pulmonary artery endothelial cells proliferation via ERK1/2 signalling. Br J Pharmacol 2015; 171:3352-63. [PMID: 24467360 DOI: 10.1111/bph.12594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/29/2013] [Accepted: 01/12/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysfunction and injury of endothelial cells in the pulmonary artery play critical roles in the hypertension induced by chronic hypoxia. One consequence of hypoxia is increased activity of 15-hydroxyprostaglandin dehydrogenase (PGDH). Here, we have explored, in detail, the effects of hypoxia on the proliferation of pulmonary artery endothelial cells. EXPERIMENTAL APPROACH We used bromodeoxyuridine incorporation, cell-cycle analysis, immunohistochemistry and Western blot analysis to study the effects of hypoxia, induced 15-PGDH) activity and its product, 15-keto-6Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15-KETE), on endothelial cell proliferation. Scratch-wound and tube formation assays were also used to study migration of endothelial cells. KEY RESULTS 15-KETE increased DNA synthesis and enhanced the transition from the G0 /G1 phase to the S phase in hypoxia. Inhibition of 15-PGDH or siRNA for 15-PGDH reversed these effects. 15-KETE also activated the ERK1/2 signalling pathway. 15-KETE-induced cell migration and tube formation were reversed by blocking ERK1/2, but not the p38 MAPK pathway. CONCLUSIONS AND IMPLICATIONS Hypoxia-induced endothelial proliferation and migration, an important underlying mechanism contributing to hypoxic pulmonary vascular remodelling, appears to be mediated by 15-PGDH and 15-KETE, via the ERK1/2 signalling pathway.
Collapse
Affiliation(s)
- Cui Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kimura M, Tamura Y, Takei M, Yamamoto T, Ono T, Kuwana M, Fukuda K, Satoh T. Rapid initiation of intravenous epoprostenol infusion is the favored option in patients with advanced pulmonary arterial hypertension. PLoS One 2015; 10:e0121894. [PMID: 25844932 PMCID: PMC4386822 DOI: 10.1371/journal.pone.0121894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/04/2015] [Indexed: 12/02/2022] Open
Abstract
Background Intravenous infusion (IVI) of epoprostenol is an effective treatment for patients with advanced pulmonary arterial hypertension (PAH). However, there is no widely accepted standard method for initiating the IVI therapy. This study evaluated the hemodynamic improvements achieved with IVI epoprostenol to determine the optimal protocol for treatment initiation. Methods and Results We retrospectively analyzed 42 consecutive PAH patients who underwent IVI epoprostenol in Keio University Hospital from 2001 to 2013. The study group comprised 30 women with a mean age of 34.3 ± 1.9 years. The etiology of PAH was idiopathic or heritable PAH (I/HPAH) in 38 cases, PAH associated with connective tissue disease in 3, and Eissenmenger’s syndrome in the remaining case. We divided the patients into rapid- and slow-initiation therapy groups according to the cumulative epoprostenol dose administered during the first 180 days, and compared the hemodynamic changes between the groups. The median cumulative doses were 6142 ± 165 μg/kg and 3998 ± 132 μg/kg epoprostenol, respectively. While there were no significant differences in mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), or cardiac index (CI) between the groups before the IVI epoprostenol therapy, the rapid-initiation therapy group achieved significant improvements in these hemodynamic data compared with the slow-initiation therapy group (P < 0.005) at the follow-up right-heart catheterization (RHC). Conclusion Rapid initiation of IVI epoprostenol therapy achieved the optimal hemodynamic improvements in patients with severe PAH.
Collapse
Affiliation(s)
- Mai Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuichi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Makoto Takei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsunehisa Yamamoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomohiko Ono
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Kuwana
- Department of Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Toru Satoh
- Department of Cardiology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Gandhi H, Shah B, Patel R, Toshani R, Pujara J, Kothari J, Shastri N. Effect of preoperative oral sildenafil on severe pulmonary artery hypertension in patients undergoing mitral valve replacement. Indian J Pharmacol 2015; 46:281-5. [PMID: 24987174 PMCID: PMC4071704 DOI: 10.4103/0253-7613.132158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/27/2013] [Accepted: 03/20/2014] [Indexed: 11/17/2022] Open
Abstract
Aim: Long standing mitral valve disease is usually associated with severe pulmonary hypertension. Perioperative pulmonary hypertension is a risk factor for right ventricular (RV) failure and a cause for morbidity and mortality in patients undergoing mitral valve replacement. Phosphodiesterase 5 inhibitor-sildenafil citrate is widely used to treat primary pulmonary hypertension. There is a lack of evidence of effects of oral sildenafil on secondary pulmonary hypertension due to mitral valve disease. The study aims to assess the effectiveness of preoperative oral sildenafil on severe pulmonary hypertension and incidence of RV failure in patients undergoing mitral valve replacement surgery. Materials and Methods: A total of 40 patients scheduled for mitral valve replacement with severe pulmonary hypertension (RV systolic pressure (RVSP) ≥60 mmHg) on preoperative transthoracic echo were randomly treated with oral sildenafil 25 mg (N = 20) or placebo (N = 20) eight hourly for 24 h before surgery. Hemodynamic variables were measured 20 min after insertion of pulmonary artery catheter (PAC) under anesthesia (T1), 20 min at weaning from cardiopulmonary bypass (CPB) (T2) and after 1,2, and 6 h (T3, T4, T5, respectively) during the postoperative period. Results: Systolic and mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance index (PVRI) were significantly lower (P < 0.0001) in sildenafil group at all times. Ventilation time and postoperative recovery room stay were significantly lower (P < 0.001) in sildenafil group. Conclusion: Sildenafil produces significant pulmonary vasodilatory effect as compared with placebo in mitral valve replacement patients with severe pulmonary hypertension. It also reduces ventilation time and intensive care unit (ICU) stay time as compared with placebo. It is concluded that sildenafil is effective in reducing pulmonary hypertension when administered preoperatively in patients with severe pulmonary hypertension undergoing mitral valve replacement surgery.
Collapse
Affiliation(s)
- Hemang Gandhi
- Department of Cardiac Anesthesia, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Bipin Shah
- Department of Cardiac Anesthesia, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Ramesh Patel
- Department of Cardiac Anesthesia, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Rajesh Toshani
- Department of Cardiac Anesthesia, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Jigisha Pujara
- Department of Cardiac Anesthesia, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Jignesh Kothari
- Department of Cardio Vascular Thoracic Surgery, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| | - Naman Shastri
- Department of Cardio Vascular Thoracic Surgery, Uttambhai Nathalal Mehta Institute of Cardiology and Research Center, Sir Byramjee Jeejeebhoy Medical College, Civil Hospital, Asarwa, Ahmadabad, Gujarat, India
| |
Collapse
|