1
|
Shafi I, Patel DA, Osman H, Patel N, Ramaseshan K, Goel M, Alraies MC. Outcomes of Intravascular Ultrasound-Guided Percutaneous Coronary Intervention Among Patients With Acute Coronary Syndrome. Am J Cardiol 2023; 204:115-121. [PMID: 37541147 DOI: 10.1016/j.amjcard.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Intravascular ultrasound (IVUS) use in percutaneous coronary intervention (PCI) improves outcomes. However, data on outcomes of IVUS-guided PCI in patients presenting with acute coronary syndrome (ACS) is scarce. Therefore, we sought to study the utilization rate and outcomes of IVUS-guided PCI in patients with ACS. Using the National Readmission database, we identified all patients with ACS who underwent PCI from 2016 to 2019. We used a 1:1 propensity-matched analysis to compare the outcome of patients with ACS who underwent PCI with and without IVUS. In 1,263,997 patients with ACS, 563,521 (44.6%) underwent PCI without IVUS and 40,095 (3.17%) underwent IVUS-guided PCI. A Propensity scored matched comparison of PCI with and without IVUS showed IVUS-guided PCI was associated with a lower risk of in-hospital mortality (odds ratio 0.74, 95% confidence interval 0.64 to 0.85, p <0.01) compared with PCI without IVUS. The utilization of IVUS increased from 2.64% in 2016 to 4.10% in 2019, p <0.001. In conclusion, IVUS-guided PCI is associated with lower in-hospital mortality in patients with ACS, yet the current utilization of IVUS-guided PCI remains low across the United States.
Collapse
Affiliation(s)
| | | | - Heba Osman
- Department of Internal Medicine - Pediatrics
| | - Neel Patel
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, New York Medical College/Landmark Medical Center, Woonsocket, Rhode Island
| | - Karthik Ramaseshan
- Department of Internal Medicine, Wayne State University/Detroit Medical Center, Detroit, Michigan
| | | | | |
Collapse
|
2
|
Fogell NAT, Patel M, Yang P, Ruis RM, Garcia DB, Naser J, Savvopoulos F, Davies Taylor C, Post AL, Pedrigi RM, de Silva R, Krams R. Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation. Ann Biomed Eng 2023; 51:1950-1964. [PMID: 37436564 PMCID: PMC10409843 DOI: 10.1007/s10439-023-03214-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/18/2023] [Indexed: 07/13/2023]
Abstract
The endothelium in the coronary arteries is subject to wall shear stress and vessel wall strain, which influences the biology of the arterial wall. This study presents vessel-specific fluid-structure interaction (FSI) models of three coronary arteries, using directly measured experimental geometries and boundary conditions. FSI models are used to provide a more physiologically complete representation of vessel biomechanics, and have been extended to include coronary bending to investigate its effect on shear and strain. FSI both without- and with-bending resulted in significant changes in all computed shear stress metrics compared to CFD (p = 0.0001). Inclusion of bending within the FSI model produced highly significant changes in Time Averaged Wall Shear Stress (TAWSS) + 9.8% LAD, + 8.8% LCx, - 2.0% RCA; Oscillatory Shear Index (OSI) + 208% LAD, 0% LCx, + 2600% RCA; and transverse wall Shear Stress (tSS) + 180% LAD, + 150% LCx and + 200% RCA (all p < 0.0001). Vessel wall strain was homogenous in all directions without-bending but became highly anisotropic under bending. Changes in median cyclic strain magnitude were seen for all three vessels in every direction. Changes shown in the magnitude and distribution of shear stress and wall strain suggest that bending should be considered on a vessel-specific basis in analyses of coronary artery biomechanics.
Collapse
Affiliation(s)
- Nicholas A T Fogell
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK.
| | - Miten Patel
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Pan Yang
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Roosje M Ruis
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - David B Garcia
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Jarka Naser
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Fotios Savvopoulos
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | | | - Anouk L Post
- Amsterdam UMC, Department of Biomedical Engineering and Physics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ryan M Pedrigi
- Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Ranil de Silva
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Cale Street, London, SW3 6LY, UK
| | - Rob Krams
- School for Material Sciences and Engineering, Queen Mary University, London, UK
| |
Collapse
|
3
|
Wu W, Oguz UM, Banga A, Zhao S, Thota AK, Gadamidi VK, Vasa CH, Harmouch KM, Naser A, Tieliwaerdi X, Chatzizisis YS. 3D reconstruction of coronary artery bifurcations from intravascular ultrasound and angiography. Sci Rep 2023; 13:13031. [PMID: 37563354 PMCID: PMC10415353 DOI: 10.1038/s41598-023-40257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Coronary bifurcation lesions represent a challenging anatomical subset, and the understanding of their 3D anatomy and plaque composition appears to play a key role in devising the optimal stenting strategy. This study proposes a new approach for the 3D reconstruction of coronary bifurcations and plaque materials by combining intravascular ultrasound (IVUS) and angiography. Three patient-specific silicone bifurcation models were 3D reconstructed and compared to micro-computed tomography (µCT) as the gold standard to test the accuracy and reproducibility of the proposed methodology. The clinical feasibility of the method was investigated in three diseased patient-specific bifurcations of varying anatomical complexity. The IVUS-based 3D reconstructed bifurcation models showed high agreement with the µCT reference models, with r2 values ranging from 0.88 to 0.99. The methodology successfully 3D reconstructed all the patient bifurcations, including plaque materials, in less than 60 min. Our proposed method is a simple, time-efficient, and user-friendly tool for accurate 3D reconstruction of coronary artery bifurcations. It can provide valuable information about bifurcation anatomy and plaque burden in the clinical setting, assisting in bifurcation stent planning and education.
Collapse
Affiliation(s)
- Wei Wu
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Usama M Oguz
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Akshat Banga
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Shijia Zhao
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Anjani Kumar Thota
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vinay Kumar Gadamidi
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Charu Hasini Vasa
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Khaled M Harmouch
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Abdallah Naser
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Xiarepati Tieliwaerdi
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yiannis S Chatzizisis
- Center for Digital Cardiovascular Innovations, Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Division of Cardiovascular Medicine, Leonard M. Miller School of Medicine, University of Miami Health System, University of Miami, 1120 NW 14th Street, Suite 1124, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Ghorbannia A, LaDisa JF. Intravascular imaging of angioplasty balloon under-expansion during pre-dilation predicts hyperelastic behavior of coronary artery lesions. Front Bioeng Biotechnol 2023; 11:1192797. [PMID: 37284239 PMCID: PMC10240066 DOI: 10.3389/fbioe.2023.1192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction: Stent-induced mechanical stimuli cause pathophysiological responses in the coronary artery post-treatment. These stimuli can be minimized through choice of stent, size, and deployment strategy. However, the lack of target lesion material characterization is a barrier to further personalizing treatment. A novel ex-vivo angioplasty-based intravascular imaging technique using optical coherence tomography (OCT) was developed to characterize local stiffness of the target lesion. Methods: After proper institutional oversight, atherosclerotic coronary arteries (n = 9) were dissected from human donor hearts for ex vivo material characterization <48 h post-mortem. Morphology was imaged at the diastolic blood pressure using common intravascular OCT protocols and at subsequent pressures using a specially fabricated perfusion balloon that accommodates the OCT imaging wire. Balloon under-expansion was quantified relative to the nominal balloon size at 8 ATM. Correlation to a constitutive hyperelastic model was empirically investigated (n = 13 plaques) using biaxial extension results fit to a mixed Neo-Hookean and Exponential constitutive model. Results and discussion: The average circumferential Cauchy stress was 66.5, 130.2, and 300.4 kPa for regions with <15, 15-30, and >30% balloon under-expansion at a 1.15 stretch ratio. Similarly, the average longitudinal Cauchy stress was 68.1, 172.6, and 412.7 kPa, respectively. Consequently, strong correlation coefficients >0.89 were observed between balloon under-expansion and stress-like constitutive parameters. These parameters allowed for visualization of stiffness and material heterogeneity for a range of atherosclerotic plaques. Balloon under-expansion is a strong predictor of target lesion stiffness. These findings are promising as stent deployment could now be further personalized via target lesion material characterization obtained pre-operatively.
Collapse
Affiliation(s)
- Arash Ghorbannia
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Marquette University and The Medical College of Wisconsin, Milwaukee, WI, United States
| | - John F. LaDisa
- Section of Pediatric Cardiology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Marquette University and The Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Physiology, Milwaukee, WI, United States
- Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
|
6
|
He Y, Northrup H, Le H, Cheung AK, Berceli SA, Shiu YT. Medical Image-Based Computational Fluid Dynamics and Fluid-Structure Interaction Analysis in Vascular Diseases. Front Bioeng Biotechnol 2022; 10:855791. [PMID: 35573253 PMCID: PMC9091352 DOI: 10.3389/fbioe.2022.855791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/08/2022] [Indexed: 01/17/2023] Open
Abstract
Hemodynamic factors, induced by pulsatile blood flow, play a crucial role in vascular health and diseases, such as the initiation and progression of atherosclerosis. Computational fluid dynamics, finite element analysis, and fluid-structure interaction simulations have been widely used to quantify detailed hemodynamic forces based on vascular images commonly obtained from computed tomography angiography, magnetic resonance imaging, ultrasound, and optical coherence tomography. In this review, we focus on methods for obtaining accurate hemodynamic factors that regulate the structure and function of vascular endothelial and smooth muscle cells. We describe the multiple steps and recent advances in a typical patient-specific simulation pipeline, including medical imaging, image processing, spatial discretization to generate computational mesh, setting up boundary conditions and solver parameters, visualization and extraction of hemodynamic factors, and statistical analysis. These steps have not been standardized and thus have unavoidable uncertainties that should be thoroughly evaluated. We also discuss the recent development of combining patient-specific models with machine-learning methods to obtain hemodynamic factors faster and cheaper than conventional methods. These critical advances widen the use of biomechanical simulation tools in the research and potential personalized care of vascular diseases.
Collapse
Affiliation(s)
- Yong He
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
| | - Hannah Northrup
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ha Le
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, United States
- Vascular Surgery Section, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States
| | - Yan Tin Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
- Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT, United States
- *Correspondence: Yan Tin Shiu,
| |
Collapse
|
7
|
Qin H, Li C, Li Y, Huang J, Yang F, Kubo T, Akasaka T, Xiao C, Gutiérrez-Chico JL, Tu S. Automatic Coregistration Between Coronary Angiography and Intravascular Optical Coherence Tomography. JACC: ASIA 2021; 1:274-278. [PMID: 36338157 PMCID: PMC9627884 DOI: 10.1016/j.jacasi.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/03/2022]
Abstract
This study sought to evaluate a novel approach for automatic coregistration of optical coherence tomography (OCT) and coronary angiography. Lumen diameters and side branches from both coronary angiography and OCT were used to create 2 feature sets. Subsequently, a 2-step coregistration approach was performed on the feature sets for matching of each OCT cross section on the angiographic centerline. For validation, all side branches with ≥1.0 mm diameter were identified and used as paired fiduciary landmarks. Geographical error was defined as the distance between the automatically coregistered and the true-paired landmarks. Altogether 212 vessels from 181 patients were analyzed. Mismatch of coronary angiography and OCT occurred in 64 of 1,530 reference landmarks. Median geographical error was 0.32 (interquartile range: 0.00-0.56) mm. The mean time for coregistration was 20.69 ± 1.07 seconds. In conclusion, fast and automatic coregistration of OCT and angiography using a single standard angiographic loop is feasible and accurate.
Collapse
Affiliation(s)
- Hui Qin
- College of Electrical and Information Engineering, Hunan University, Changsha, China
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunming Li
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yingguang Li
- Kunshan Industrial Technology Research Institute Co Ltd, Kunshan, China
| | - Jiayue Huang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Takashi Kubo
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Changyan Xiao
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Juan Luis Gutiérrez-Chico
- Cardiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Address for correspondence: Dr Shengxian Tu, Room123, Med-X Research Institute, Shanghai Jiao Tong University, No. 1954, Hua Shan Road, Xuhui District, Shanghai 200030, China.
| |
Collapse
|
8
|
Wu X, Ono M, Kawashima H, Poon EKW, Torii R, Shahzad A, Gao C, Wang R, Barlis P, von Birgelen C, Reiber JHC, Bourantas CV, Tu S, Wijns W, Serruys PW, Onuma Y. Angiography-Based 4-Dimensional Superficial Wall Strain and Stress: A New Diagnostic Tool in the Catheterization Laboratory. Front Cardiovasc Med 2021; 8:667310. [PMID: 34222366 PMCID: PMC8249568 DOI: 10.3389/fcvm.2021.667310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
A novel method for four-dimensional superficial wall strain and stress (4D-SWS) is derived from the arterial motion as pictured by invasive coronary angiography. Compared with the conventional finite element analysis of cardiovascular biomechanics using the estimated pulsatile pressure, the 4D-SWS approach can calculate the dynamic mechanical state of the superficial wall in vivo, which could be directly linked with plaque rupture or stent fracture. The validation of this approach using in silico models showed that the distribution and maximum values of superficial wall stress were similar to those calculated by conventional finite element analysis. The in vivo deformation was validated on 16 coronary arteries, from the comparison of centerlines predicted by the 4D-SWS approach against the actual centerlines reconstructed from angiograms at a randomly selected time-point, which demonstrated a good agreement of the centerline morphology between both approaches (scaling: 0.995 ± 0.018 and dissimilarity: 0.007 ± 0.014). The in silico vessel models with softer plaque and larger plaque burden presented more variation in mean lumen diameter and resulted in higher superficial wall stress. In more than half of the patients (n = 16), the maximum superficial wall stress was found at the proximal lesion shoulder. Additionally, in three patients who later suffered from acute coronary syndrome, the culprit plaque rupture sites co-localized with the site of highest superficial wall stress on their baseline angiography. These representative cases suggest that angiography-based superficial wall dynamics have the potential to identify coronary segments at high-risk of plaque rupture and fracture sites of implanted stents. Ongoing studies are focusing on identifying weak spots in coronary bypass grafts, and on exploring the biomechanical mechanisms of coronary arterial remodeling and aneurysm formation. Future developments involve integration of fast computational techniques to allow online availability of superficial wall strain and stress in the catheterization laboratory.
Collapse
Affiliation(s)
- Xinlei Wu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Masafumi Ono
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hideyuki Kawashima
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric K W Poon
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Atif Shahzad
- Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Department of Cardiology, Xijing Hospital, Xi'an, China
| | - Peter Barlis
- Department of Medicine, Melbourne Medical School, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry Health Sciences, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Clemens von Birgelen
- Thoraxcentrum Twente, Medisch Spectrum Twente, Enschede, Netherlands.,Department of Health Technology and Services Research, Technical Medical Centre, Faculty of Behavioural, Management, and Social Sciences, University of Twente, Enschede, Netherlands
| | - Johan H C Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Christos V Bourantas
- Institute of Cardiovascular Science, University College London, London, United Kingdom.,Department of Cardiology, Barts Heart Centre, London, United Kingdom
| | - Shengxian Tu
- School of Biomedical Engineering, Biomedical Instrument Institute, Shanghai Jiao Tong University, Shanghai, China
| | - William Wijns
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Smart Sensors Lab, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland.,Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|
9
|
Urschel K, Tauchi M, Achenbach S, Dietel B. Investigation of Wall Shear Stress in Cardiovascular Research and in Clinical Practice-From Bench to Bedside. Int J Mol Sci 2021; 22:5635. [PMID: 34073212 PMCID: PMC8198948 DOI: 10.3390/ijms22115635] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/16/2022] Open
Abstract
In the 1900s, researchers established animal models experimentally to induce atherosclerosis by feeding them with a cholesterol-rich diet. It is now accepted that high circulating cholesterol is one of the main causes of atherosclerosis; however, plaque localization cannot be explained solely by hyperlipidemia. A tremendous amount of studies has demonstrated that hemodynamic forces modify endothelial athero-susceptibility phenotypes. Endothelial cells possess mechanosensors on the apical surface to detect a blood stream-induced force on the vessel wall, known as "wall shear stress (WSS)", and induce cellular and molecular responses. Investigations to elucidate the mechanisms of this process are on-going: on the one hand, hemodynamics in complex vessel systems have been described in detail, owing to the recent progress in imaging and computational techniques. On the other hand, investigations using unique in vitro chamber systems with various flow applications have enhanced the understanding of WSS-induced changes in endothelial cell function and the involvement of the glycocalyx, the apical surface layer of endothelial cells, in this process. In the clinical setting, attempts have been made to measure WSS and/or glycocalyx degradation non-invasively, for the purpose of their diagnostic utilization. An increasing body of evidence shows that WSS, as well as serum glycocalyx components, can serve as a predicting factor for atherosclerosis development and, most importantly, for the rupture of plaques in patients with high risk of coronary heart disease.
Collapse
Affiliation(s)
| | | | | | - Barbara Dietel
- Department of Medicine 2—Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum, 91054 Erlangen, Germany; (K.U.); (M.T.); (S.A.)
| |
Collapse
|
10
|
Vardhan M, Randles A. Application of physics-based flow models in cardiovascular medicine: Current practices and challenges. BIOPHYSICS REVIEWS 2021; 2:011302. [PMID: 38505399 PMCID: PMC10903374 DOI: 10.1063/5.0040315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/18/2021] [Indexed: 03/21/2024]
Abstract
Personalized physics-based flow models are becoming increasingly important in cardiovascular medicine. They are a powerful complement to traditional methods of clinical decision-making and offer a wealth of physiological information beyond conventional anatomic viewing using medical imaging data. These models have been used to identify key hemodynamic biomarkers, such as pressure gradient and wall shear stress, which are associated with determining the functional severity of cardiovascular diseases. Importantly, simulation-driven diagnostics can help researchers understand the complex interplay between geometric and fluid dynamic parameters, which can ultimately improve patient outcomes and treatment planning. The possibility to compute and predict diagnostic variables and hemodynamics biomarkers can therefore play a pivotal role in reducing adverse treatment outcomes and accelerate development of novel strategies for cardiovascular disease management.
Collapse
Affiliation(s)
- M. Vardhan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - A. Randles
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
11
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Kerolus MG, Joshi KC, Johnson AK, Beer-Furlan A, Mangubat EZ, Theessen H, Schafer S, Lopes DK. Co-registration of Intravascular Ultrasound With Angiographic Imaging for Carotid Artery Disease. World Neurosurg 2020; 143:325-331. [PMID: 32777396 DOI: 10.1016/j.wneu.2020.07.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intravascular ultrasound (IVUS) provides endoluminal views and cross-sectional images of carotid arteries but lacks overview of vascular territory provided by angiography. Co-registration of IVUS with angiographic images may provide the potential to navigate both imaging modalities in a synchronous manner. The objective of this study is to evaluate the feasibility and accuracy of co-registering both imaging modalities in the carotid vasculature of the neck. METHODS Fourteen patients with 15 cervical carotid artery lesions underwent angiography and subsequent treatment. In each case, an IVUS catheter was advanced to the target lesion and a reference angiography sequence was acquired. This was followed by an electrocardiography-triggered fluoroscopy sequence that was initiated upon IVUS catheter pullback. IVUS data collected during pullback were registered with fluoroscopy and evaluated for error and clinical usability. RESULTS A total of 32 landmarks were identified that demonstrated reasonable agreement during IVUS-angiography co-registration. There was a mean registration error distance of 3.36 mm (SD 2.82 mm) between targets. The longitudinal extent and severity of the disease through the target segment could be easily evaluated after co-registration. CONCLUSION Semiautomatic tracking and co-registration of angiography and IVUS is a new technology and has the potential to increase the use of IVUS in carotid disease and to proivde the opportunity to optimize procedural outcomes.
Collapse
Affiliation(s)
- Mena G Kerolus
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Krishna C Joshi
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew K Johnson
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - André Beer-Furlan
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Erwin Z Mangubat
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Heike Theessen
- Siemens Healthcare, Imaging and Therapy Systems, Forchheim, Germany
| | | | - Demetrius K Lopes
- Department of Neurosurgery, Advocate Aurora Health System, Chicago, Illinois, USA.
| |
Collapse
|
13
|
Ono M, Kawashima H, Hara H, Gao C, Wang R, Kogame N, Takahashi K, Chichareon P, Modolo R, Tomaniak M, Wykrzykowska JJ, Piek JJ, Mori I, Courtney BK, Wijns W, Sharif F, Bourantas C, Onuma Y, Serruys PW. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front Cardiovasc Med 2020; 7:119. [PMID: 32850981 PMCID: PMC7411139 DOI: 10.3389/fcvm.2020.00119] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have been developed and improved as both diagnostic and guidance tools for interventional procedures over the past three decades. IVUS has a resolution of 100 μm with a high tissue penetration and capability of assessing the entire structure of a coronary artery including the external elastic membrane, whereas OCT has a higher resolution of 10–20 μm to assess endoluminal structures with a limited tissue penetration compared to IVUS. Recently, two companies, CONAVI and TERUMO, integrated IVUS and OCT into a single catheter system. With their inherent strength and limitations, the combined IVUS and OCT probes are complementary and work synergistically to enable a comprehensive depiction of coronary artery. In this review, we summarize the performance of the two intracoronary imaging modalities—IVUS and OCT—and discuss the expected potential of the novel hybrid IVUS–OCT catheter system in the clinical field.
Collapse
Affiliation(s)
- Masafumi Ono
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hideyuki Kawashima
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Hironori Hara
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Chao Gao
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Radboud University, Nijmegen, Netherlands.,Depatrment of Cardiology, Xijing hospital, Xi'an, China
| | - Norihiro Kogame
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kuniaki Takahashi
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ply Chichareon
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Rodrigo Modolo
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Cardiology Division, Department of Internal Medicine, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariusz Tomaniak
- Thoraxcentre, Erasmus Medical Centre, Rotterdam, Netherlands.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Joanna J Wykrzykowska
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan J Piek
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Brian K Courtney
- Schulich Heart Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Conavi Medical, North York, ON, Canada
| | - William Wijns
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Faisal Sharif
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| |
Collapse
|
14
|
Tomaniak M, Serruys PW. Combining anatomy and physiology: New angiography-based and computed tomography coronary angiography-derived fractional flow reserve indices. Cardiol J 2020; 27:225-229. [PMID: 32583402 DOI: 10.5603/cj.2020.0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 05/16/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Patrick W Serruys
- National Heart and Lung Institute, Imperial College London, United Kingdom. .,Department of Cardiology, National University of Ireland, Galway, Ireland.
| |
Collapse
|
15
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|
16
|
Neumann EE, Young M, Erdemir A. A pragmatic approach to understand peripheral artery lumen surface stiffness due to plaque heterogeneity. Comput Methods Biomech Biomed Engin 2019; 22:396-408. [PMID: 30712373 DOI: 10.1080/10255842.2018.1560427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The goal of this study was to develop a pragmatic approach to build patient-specific models of the peripheral artery that are aware of plaque inhomogeneity. Patient-specific models using element-specific material definition (to understand the role of plaque composition) and homogeneous material definition (to understand the role of artery diameter and thickness) were automatically built from intravascular ultrasound images of three artery segments classified with low, average, and high calcification. The element-specific material models had average surface stiffness values of 0.0735, 0.0826, and 0.0973 MPa/mm, whereas the homogeneous material models had average surface stiffness values of 0.1392, 0.1276, and 0.1922 MPa/mm for low, average, and high calcification, respectively. Localization of peak lumen stiffness and differences in patient-specific average surface stiffness for homogeneous and element-specific models suggest the role of plaque composition on surface stiffness in addition to local arterial diameter and thickness.
Collapse
Affiliation(s)
- Erica E Neumann
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Computational Biomodeling (CoBi) Core, Lerner Research Institute , Cleveland Clinic , Cleveland , OH , USA
| | - Melissa Young
- c Division of Cardiovascular Diseases , Mayo Clinic , Rochester , MN , USA
| | - Ahmet Erdemir
- a Department of Biomedical Engineering , Lerner Research Institute, Cleveland Clinic , Cleveland , OH , USA.,b Computational Biomodeling (CoBi) Core, Lerner Research Institute , Cleveland Clinic , Cleveland , OH , USA
| |
Collapse
|
17
|
Chen Z, Pazdernik M, Zhang H, Wahle A, Guo Z, Bedanova H, Kautzner J, Melenovsky V, Kovarnik T, Sonka M. Quantitative 3D Analysis of Coronary Wall Morphology in Heart Transplant Patients: OCT-Assessed Cardiac Allograft Vasculopathy Progression. Med Image Anal 2018; 50:95-105. [PMID: 30253306 PMCID: PMC6237624 DOI: 10.1016/j.media.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) accounts for about 30% of all heart-transplant (HTx) patient deaths. For patients at high risk for CAV complications after HTx, therapy must be initiated early to be effective. Therefore, new phenotyping approaches are needed to identify such HTx patients at the earliest possible time. Coronary optical coherence tomography (OCT) images were acquired from 50 HTx patients 1 and 12 months after HTx. Quantitative analysis of coronary wall morphology used LOGISMOS segmentation strategy to simultaneously identify three wall-layer surfaces for the entire pullback length in 3D: luminal, outer intimal, and outer medial surfaces. To quantify changes of coronary wall morphology between 1 and 12 months after HTx, the two pullbacks were mutually co-registered. Validation of layer thickness measurements showed high accuracy of performed layer analyses with layer thickness measures correlating well with manually-defined independent standard (Rautomated2 = 0.93, y=1.0x-6.2μm), average intimal+medial thickness errors were 4.98 ± 31.24 µm, comparable with inter-observer variability. Quantitative indices of coronary wall morphology 1 month and 12 months after HTx showed significant local as well as regional changes associated with CAV progression. Some of the newly available fully-3D baseline indices (intimal layer brightness, medial layer brightness, medial thickness, and intimal+medial thickness) were associated with CAV-related progression of intimal thickness showing promise of identifying patients subjected to rapid intimal thickening at 12 months after HTx from OCT-image data obtained just 1 month after HTx. Our approach allows quantification of location-specific alterations of coronary wall morphology over time and is sensitive even to very small changes of wall layer thicknesses that occur in patients following heart transplant.
Collapse
Affiliation(s)
- Zhi Chen
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Michal Pazdernik
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Honghai Zhang
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Andreas Wahle
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Zhihui Guo
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA
| | - Helena Bedanova
- Cardiovascular and Transplantation Surgery Center, Department of Cardiovascular Diseases, St. Annes University Hospital and Masaryk University Brno, Czech Republic
| | - Josef Kautzner
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Vojtech Melenovsky
- Institute of Clinical and Experimental Medicine (IKEM) in Prague, Czech Republic
| | - Tomas Kovarnik
- 2nd Department of Medicine - Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University in Prague & General University Hospital in Prague, Czech Republic
| | - Milan Sonka
- Iowa Institute for Biomedical Imaging, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
18
|
Houissa K, Ryan N, Escaned J, Cruden NL, Uren N, Slots T, Kayaert P, Carlier SG. Validation of a Novel System for Co-Registration of Coronary Angiographic and Intravascular Ultrasound Imaging. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 20:775-781. [PMID: 30420279 DOI: 10.1016/j.carrev.2018.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Intravascular ultrasound (IVUS) is a useful adjunct to guide percutaneous coronary intervention (PCI). Correlating IVUS images with angiographic findings can be challenging. We evaluated the utility of a novel co-registration system for IVUS and coronary angiography. METHODS AND RESULTS A 3-D virtual catheter trajectory was constructed from separate angiographic imaging runs using bespoke software. Intravascular ultrasound images were obtained using a commercially available mechanical rotational transducer with motorized pullback. Co-registration of ultrasound and angiographic images was then performed retrospectively based on the length of pullback, the 3-D trajectory and the start position of the catheter. Validation was performed in a spherical phantom model and in vivo in the coronary circulation of patients undergoing coronary angiography and intravascular imaging for clinical purposes. 111 paired angiographic and IVUS runs were performed in 3 phantom models. The differences between the reference length and the length measured on the 3D reconstructed path was -0.01 ± 0.40 mm. Intra-observer variability was 0.4%. We enrolled 25 patients in 3 European hospitals and performed 35 co-registration attempts with an 86% success rate. 71 landmarks were selected by the first operator, 68 by the second. Differences between angiographic and IVUS landmarks were -0.22 ± 0.72 mm and 0.05 ± 1.01 mm, respectively. Inter-observer variability was 0.23 ± 0.63 mm. CONCLUSION We present a novel method for the co-registration of IVUS and coronary angiographic images. This system performed well in a phantom model and using images obtained from the human coronary circulation. CLASSIFICATIONS Innovation, intravascular ultrasound, other technique.
Collapse
Affiliation(s)
| | - Nicola Ryan
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | - Javier Escaned
- Hospital Clínico Universitario San Carlos, Madrid, Spain
| | | | - Neal Uren
- Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
19
|
Shi C, Luo X, Guo J, Najdovski Z, Fukuda T, Ren H. Three-Dimensional Intravascular Reconstruction Techniques Based on Intravascular Ultrasound: A Technical Review. IEEE J Biomed Health Inform 2018; 22:806-817. [DOI: 10.1109/jbhi.2017.2703903] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Migliori S, Chiastra C, Bologna M, Montin E, Dubini G, Aurigemma C, Fedele R, Burzotta F, Mainardi L, Migliavacca F. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images. Med Eng Phys 2017; 47:105-116. [PMID: 28711588 DOI: 10.1016/j.medengphy.2017.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/09/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023]
Abstract
The clinical challenge of percutaneous coronary interventions (PCI) is highly dependent on the recognition of the coronary anatomy of each individual. The classic imaging modality used for PCI is angiography, but advanced imaging techniques that are routinely performed during PCI, like optical coherence tomography (OCT), may provide detailed knowledge of the pre-intervention vessel anatomy as well as the post-procedural assessment of the specific stent-to-vessel interactions. Computational fluid dynamics (CFD) is an emerging investigational tool in the setting of optimization of PCI results. In this study, an OCT-based reconstruction method was developed for the execution of CFD simulations of patient-specific coronary artery models which include the actual geometry of the implanted stent. The method was applied to a rigid phantom resembling a stented segment of the left anterior descending coronary artery. The segmentation algorithm was validated against manual segmentation. A strong correlation was found between automatic and manual segmentation of lumen in terms of area values. Similarity indices resulted >96% for the lumen segmentation and >77% for the stent strut segmentation. The 3D reconstruction achieved for the stented phantom was also assessed with the geometry provided by X-ray computed micro tomography scan, used as ground truth, and showed the incidence of distortion from catheter-based imaging techniques. The 3D reconstruction was successfully used to perform CFD analyses, demonstrating a great potential for patient-specific investigations. In conclusion, OCT may represent a reliable source for patient-specific CFD analyses which may be optimized using dedicated automatic segmentation algorithms.
Collapse
Affiliation(s)
- Susanna Migliori
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Marco Bologna
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Eros Montin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Cristina Aurigemma
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Fedele
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Francesco Burzotta
- Institute of Cardiology, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
| |
Collapse
|
21
|
Bourantas CV, Jaffer FA, Gijsen FJ, van Soest G, Madden SP, Courtney BK, Fard AM, Tenekecioglu E, Zeng Y, van der Steen AF, Emelianov S, Muller J, Stone PH, Marcu L, Tearney GJ, Serruys PW. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J 2017; 38:400-412. [PMID: 27118197 PMCID: PMC5837589 DOI: 10.1093/eurheartj/ehw097] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/31/2016] [Accepted: 02/22/2016] [Indexed: 11/14/2022] Open
Abstract
Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis.
Collapse
Affiliation(s)
| | - Farouc A. Jaffer
- Cardiovascular Research Center and Cardiology Division, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Frank J. Gijsen
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Gijs van Soest
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | - Brian K. Courtney
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Ali M. Fard
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Erhan Tenekecioglu
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Yaping Zeng
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | - Stanislav Emelianov
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - Peter H. Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, CA, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Patrick W. Serruys
- Thorax Center, Erasmus MC, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
- International Centre for Cardiovascular Health, NHLI, Imperial College London, London, UK
| |
Collapse
|
22
|
O’Brien CC, Kolandaivelu K, Brown J, Lopes AC, Kunio M, Kolachalama VB, Edelman ER. Constraining OCT with Knowledge of Device Design Enables High Accuracy Hemodynamic Assessment of Endovascular Implants. PLoS One 2016; 11:e0149178. [PMID: 26906566 PMCID: PMC4764338 DOI: 10.1371/journal.pone.0149178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/27/2015] [Indexed: 11/21/2022] Open
Abstract
Background Stacking cross-sectional intravascular images permits three-dimensional rendering of endovascular implants, yet introduces between-frame uncertainties that limit characterization of device placement and the hemodynamic microenvironment. In a porcine coronary stent model, we demonstrate enhanced OCT reconstruction with preservation of between-frame features through fusion with angiography and a priori knowledge of stent design. Methods and Results Strut positions were extracted from sequential OCT frames. Reconstruction with standard interpolation generated discontinuous stent structures. By computationally constraining interpolation to known stent skeletons fitted to 3D ‘clouds’ of OCT-Angio-derived struts, implant anatomy was resolved, accurately rendering features from implant diameter and curvature (n = 1 vessels, r2 = 0.91, 0.90, respectively) to individual strut-wall configurations (average displacement error ~15 μm). This framework facilitated hemodynamic simulation (n = 1 vessel), showing the critical importance of accurate anatomic rendering in characterizing both quantitative and basic qualitative flow patterns. Discontinuities with standard approaches systematically introduced noise and bias, poorly capturing regional flow effects. In contrast, the enhanced method preserved multi-scale (local strut to regional stent) flow interactions, demonstrating the impact of regional contexts in defining the hemodynamic consequence of local deployment errors. Conclusion Fusion of planar angiography and knowledge of device design permits enhanced OCT image analysis of in situ tissue-device interactions. Given emerging interests in simulation-derived hemodynamic assessment as surrogate measures of biological risk, such fused modalities offer a new window into patient-specific implant environments.
Collapse
Affiliation(s)
- Caroline C. O’Brien
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail:
| | - Kumaran Kolandaivelu
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jonathan Brown
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Augusto C. Lopes
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Mie Kunio
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Vijaya B. Kolachalama
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA, United States of America
| | - Elazer R. Edelman
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
23
|
Shi C, Tercero C, Wu X, Ikeda S, Komori K, Yamamoto K, Arai F, Fukuda T. Real-time in vitro intravascular reconstruction and navigation for endovascular aortic stent grafting. Int J Med Robot 2016; 12:648-657. [PMID: 26858168 DOI: 10.1002/rcs.1736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Trans-catheter endovascular stent grafting minimizes trauma and increases the benefitting patient population. However, the alignment between stent graft branches and vasculature branches remains time-consuming and challenging, and such techniques require a significant amount of contrast agent for imaging. METHODS A new framework for intravascular reconstruction based on sensor fusion between intravascular ultrasound (IVUS) imaging and electromagnetic (EM) tracking was proposed. A new image processing method was presented to realize fully automatic processing of IVUS imaging and 3D reconstruction in real time, as well as branch detection for alignment and deployment. Complementary navigation using CT data allows for efficient catheter advancement and assistant clinical judgement. RESULTS The reconstruction of an in vitro descending aorta phantom with branches was realized at 35 Hz, with cross-section radius average error of 0.64 mm. CONCLUSION The proposed method demonstrates significant potential for clinical applications, enables navigation for precise alignment and placement for stent grafting to reduce surgical time, and decreases hemorrhagic collisions and the use of contrast agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Carlos Tercero
- Department of Micro-nano Systems Engineering, Nagoya University, Nagoya, Japan
| | | | - Seiichi Ikeda
- Department of Micro-nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Graduate School of Medicine, Nagoya University
| | - Kiyohito Yamamoto
- Division of Vascular Surgery, Graduate School of Medicine, Nagoya University
| | - Fumihito Arai
- Department of Micro-nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Toshio Fukuda
- Department of Micro-nano Systems Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
24
|
Puri R, Leong DP, Nicholls SJ, Liew GYL, Nelson AJ, Carbone A, Copus B, Wong DT, Beltrame JF, Worthley SG, Worthley MI. Coronary artery wall shear stress is associated with endothelial dysfunction and expansive arterial remodelling in patients with coronary artery disease. EUROINTERVENTION 2016; 10:1440-8. [PMID: 24425248 DOI: 10.4244/eijv10i12a249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS To investigate in vivo relationships between segmental wall shear stress (WSS), endothelium-dependent vasoreactivity and arterial remodelling. METHODS AND RESULTS Twenty-four patients with minor angiographic coronary arterial disease (≤30% stenosis severity) underwent intracoronary (IC) salbutamol provocation during intravascular ultrasound (IVUS)-upon-Doppler guidewire imaging. Macrovascular response (change in segmental lumen volume [SLV] at baseline and following IC salbutamol), plaque burden (percent atheroma volume [PAV]), remodelling indices (RI), eccentricity indices (EI) and WSS were evaluated in 179 consecutive 5 mm coronary segments. Baseline WSS was directly related to endothelium-dependent epicardial coronary vasomotion (% change SLV, coefficient 17.2, p=0.004), and inversely related to RI (coefficient -0.23, p=0.02) and EI (coefficient -10.0, p=0.001). Baseline WSS was lower in segments displaying endothelial dysfunction (defined as any change in SLV ≤0) compared with preserved function (0.66±0.33 vs. 0.71±0.22 N/m2, p=0.046). Independent of plaque burden, segments with the lowest tertile of WSS displayed less vasodilatation, or vasoconstriction, than segments with the highest tertile of WSS. Higher plaque burden segments harbouring the lowest tertiles of WSS displayed vasoconstriction, expansive arterial remodelling and greater plaque eccentricity. CONCLUSIONS In patients with stable coronary syndromes and minor angiographic coronary disease, coronary segments with lower in vivo WSS values display functional and morphological features of plaque vulnerability.
Collapse
Affiliation(s)
- Rishi Puri
- Discipline of Medicine, Cardiovascular Research Centre, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schrauwen JTC, Karanasos A, van Ditzhuijzen NS, Aben JP, van der Steen AFW, Wentzel JJ, Gijsen FJH. Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study. PLoS One 2015; 10:e0145114. [PMID: 26690897 PMCID: PMC4686962 DOI: 10.1371/journal.pone.0145114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/28/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Wall shear stress (WSS) plays a key role in the onset and progression of atherosclerosis in human coronary arteries. Especially sites with low and oscillating WSS near bifurcations have a higher propensity to develop atherosclerosis. WSS computations in coronary bifurcations can be performed in angiography-based 3D reconstructions. It is essential to evaluate how reconstruction errors influence WSS computations in mildly-diseased coronary bifurcations. In mildly-diseased lesions WSS could potentially provide more insight in plaque progression. MATERIALS METHODS Four Plexiglas phantom models of coronary bifurcations were imaged with bi-plane angiography. The lumens were segmented by two clinically experienced readers. Based on the segmentations 3D models were generated. This resulted in three models per phantom: one gold-standard from the phantom model itself, and one from each reader. Steady-state and transient simulations were performed with computational fluid dynamics to compute the WSS. A similarity index and a noninferiority test were used to compare the WSS in the phantoms and their reconstructions. The margin for this test was based on the resolution constraints of angiography. RESULTS The reconstruction errors were similar to previously reported data; in seven out of eight reconstructions less than 0.10 mm. WSS in the regions proximal and far distal of the stenosis showed a good agreement. However, the low WSS areas directly distal of the stenosis showed some disagreement between the phantoms and the readers. This was due to small deviations in the reconstruction of the stenosis that caused differences in the resulting jet, and consequently the size and location of the low WSS area. DISCUSSION This study showed that WSS can accurately be computed within angiography-based 3D reconstructions of coronary arteries with early stage atherosclerosis. Qualitatively, there was a good agreement between the phantoms and the readers. Quantitatively, the low WSS regions directly distal to the stenosis were sensitive to small reconstruction errors.
Collapse
Affiliation(s)
- Jelle T C Schrauwen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Antonios Karanasos
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Jolanda J Wentzel
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank J H Gijsen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
26
|
Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S, Fujino Y, Mitsouras D, Doulaverakis C, Tsampoulatidis I, Koutkias VG, Bouki K, Li Y, Chouvarda I, Cheimariotis G, Maglaveras N, Kompatsiaris I, Nakamura S, Reiber JHC, Rybicki F, Karvounis H, Stefanadis C, Tousoulis D, Giannoglou GD. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015; 240:510-519. [PMID: 25932791 DOI: 10.1016/j.atherosclerosis.2015.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/15/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter- and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. METHODS-RESULTS 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter- and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n = 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (Bland-Altman analysis). 3D OCT exhibited excellent inter- and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. CONCLUSIONS Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries.
Collapse
Affiliation(s)
- Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Yiannis S Chatzizisis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
| | - Maria Riga
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Andreas Giannopoulos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yusuke Fujino
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charalampos Doulaverakis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Tsampoulatidis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Vassilis G Koutkias
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantina Bouki
- Second Department of Cardiology, General Hospital of Nikaia, Piraeus, Greece
| | - Yingguang Li
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Chouvarda
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Grigorios Cheimariotis
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nicos Maglaveras
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Sunao Nakamura
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haralambos Karvounis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Christodoulos Stefanadis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
27
|
Ma J, Martin KH, Li Y, Dayton PA, Shung KK, Zhou Q, Jiang X. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Phys Med Biol 2015; 60:3441-3457. [PMID: 25856384 PMCID: PMC4427901 DOI: 10.1088/0031-9155/60/9/3441] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.
Collapse
Affiliation(s)
- Jianguo Ma
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - K. Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul A. Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
28
|
Garbey M, Rahman M, Berceli SA. A Multiscale Computational Framework to Understand Vascular Adaptation. JOURNAL OF COMPUTATIONAL SCIENCE 2015; 8:32-47. [PMID: 25977733 PMCID: PMC4426998 DOI: 10.1016/j.jocs.2015.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The failure rate for vascular interventions (vein bypass grafting, arterial angioplasty/stenting) remains unacceptably high. Over the past two decades, researchers have applied a wide variety of approaches to investigate the primary failure mechanisms, neointimal hyperplasia and aberrant remodeling of the wall, in an effort to identify novel therapeutic strategies. Despite incremental progress, specific cause/effect linkages among the primary drivers of the pathology, (hemodynamic factors, inflammatory biochemical mediators, cellular effectors) and vascular occlusive phenotype remain lacking. We propose a multiscale computational framework of vascular adaptation to develop a bridge between theory and experimental observation and to provide a method for the systematic testing of relevant clinical hypotheses. Cornerstone to our model is a feedback mechanism between environmental conditions and dynamic tissue plasticity described at the cellular level with an agent based model. Our implementation (i) is modular, (ii) starts from basic mechano-biology principle at the cell level and (iii) facilitates the agile development of the model.
Collapse
Affiliation(s)
- Marc Garbey
- Dept. of Biology, University of Houston, USA ; MITIE, The Houston Methodist Hospital, Houston USA
| | | | - Scott A Berceli
- Dept. of Surgery, University of Florida, Malcom Randall VAMC, USA
| |
Collapse
|
29
|
Kousera CA, Nijjer S, Torii R, Petraco R, Sen S, Foin N, Hughes AD, Francis DPP, Xu XY, Davies JE. Patient-specific coronary stenoses can be modeled using a combination of OCT and flow velocities to accurately predict hyperemic pressure gradients. IEEE Trans Biomed Eng 2015; 61:1902-13. [PMID: 24845301 DOI: 10.1109/tbme.2014.2310954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Computational fluid dynamics (CFD) is increasingly being developed for the diagnostics of arterial diseases. Imaging methods such as computed tomography (CT) and angiography are commonly used. However, these have limited spatial resolution and are subject to movement artifact. This study developed a new approach to generate CFD models by combining high-fidelity, patient-specific coronary anatomy models derived from optical coherence tomography (OCT) imaging with patient-specific pressure and velocity phasic data. Additionally, we used a new technique which does not require the catheter to be used to determine the centerline of the vessel. The CFD data were then compared with invasively measured pressure and velocity. Angiography imaging data of 21 vessels collected from 19 patients were fused with OCT visualizations of the same vessels using an algorithm that produces reconstructions inheriting the in-plane (10 μm) and longitudinal (0.2 mm) resolution of OCT. Proximal pressure and distal velocity waveforms ensemble averaged from invasively measured data were used as inlet and outlet boundary conditions, respectively, in CFD simulations. The resulting distal pressure waveform was compared against the measured waveform to test the model. The results followed the shape of the measured waveforms closely (cross-correlation coefficient = 0.898 ± 0.005, ), indicating realistic modeling of flow resistance, the mean of differences between measured and simulated results was -3. 5 mmHg, standard deviation of differences (SDD) = 8.2 mmHg over the cycle and -9.8 mmHg, SDD = 16.4 mmHg at peak flow. Models incorporating phasic velocity in patient-specific models of coronary anatomy derived from high-resolution OCT images show a good correlation with the measured pressure waveforms in all cases, indicating that the model results may be an accurate representation of the measured flow conditions.
Collapse
|
30
|
Molony DS, Timmins LH, Hung OY, Rasoul-Arzrumly E, Samady H, Giddens DP. An assessment of intra-patient variability on observed relationships between wall shear stress and plaque progression in coronary arteries. Biomed Eng Online 2015; 14 Suppl 1:S2. [PMID: 25603192 PMCID: PMC4306111 DOI: 10.1186/1475-925x-14-s1-s2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wall shear stress (WSS) has been associated with sites of plaque localization and with changes in plaque composition in human coronary arteries. Different values have been suggested for categorizing WSS as low, physiologic or high; however, uncertainties in flow rates, both across subjects and within a given individual, can affect the classification of WSS and thus influence the observed relationships between local hemodynamics and plaque changes over time. This study examines the effects of uncertainties in flow rate boundary conditions upon WSS values and investigates the influence of this variability on the observed associations of WSS with changes in VH-IVUS derived plaque components. METHODS Three patients with coronary artery disease underwent baseline and 12 month follow-up angiography and virtual histology-intravascular ultrasound (VH-IVUS) measurements. Coronary artery models were reconstructed from the data and models with and without side-branches were created. Patient-specific Doppler ultrasound (DUS) data were employed as inflow boundary conditions and computational fluid dynamics was used to calculate the WSS in each model. Further, the influence of representative coronary artery flow waveforms upon WSS values was investigated and the concept of treating WSS using relative, rather than actual, values was explored. RESULTS Models that included side-branch outflows and subject-specific DUS velocities were considered to be the reference cases. Hemodynamic differences were caused by the exclusion of side-branches and by imposing alternative velocity waveforms. One patient with fewer side-branches and a scaled generic waveform had little deviation from the reference case, while another patient with several side-branches excluded showed much larger departures from the reference situation. Differences between models and the respective reference cases were reduced when data were analyzed using relative, rather than actual, WSS. CONCLUSIONS When considering individual subjects, large variations in patient-specific flow rates and exclusion of multiple side-branches in computational models can cause significant differences in observed associations between plaque evolution and ranges of computed WSS. These differences may contribute to the large variability typically found among subjects in pooled populations. Relative WSS may be more useful than actual WSS as a correlative variable when there is a large degree of uncertainty in flow rate data.
Collapse
|
31
|
Development of 3D IVOCT Imaging and Co-Registration of IVOCT and Angiography in the Catheterization Laboratory. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014. [DOI: 10.1007/s12410-014-9290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
32
|
Schrauwen J, Wentzel J, van der Steen A, Gijsen F. Geometry-based pressure drop prediction in mildly diseased human coronary arteries. J Biomech 2014; 47:1810-5. [DOI: 10.1016/j.jbiomech.2014.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/18/2022]
|
33
|
Mortier P, Verdonck PR. Stent design matters: insights from virtual bench testing. Expert Rev Cardiovasc Ther 2014; 8:613-5. [DOI: 10.1586/erc.10.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Wentzel JJ, Schuurbiers JC, Gonzalo Lopez N, Gijsen FJ, van der Giessen AG, Groen HC, Dijkstra J, Garcia-Garcia HM, Serruys PW. In vivo assessment of the relationship between shear stress and necrotic core in early and advanced coronary artery disease. EUROINTERVENTION 2013; 9:989-95; discussion 995. [DOI: 10.4244/eijv9i8a165] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Reiber JHC, Tu S, Tuinenburg JC, Koning G, Janssen JP, Dijkstra J. QCA, IVUS and OCT in interventional cardiology in 2011. Cardiovasc Diagn Ther 2013; 1:57-70. [PMID: 24282685 DOI: 10.3978/j.issn.2223-3652.2011.09.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Over the past 30 years, quantitative coronary arteriography (QCA) has been used extensively as an objective and reproducible tool in clinical research to assess changes in vessel dimensions as a result of interventions, but also as a tool to provide evidence to the interventionalist prior to and after an intervention and at follow-up when necessary. With the increasing complexities of bifurcation stenting, corresponding analytical tools for bifurcation analysis have been developed with extensive reporting schemes. Although intravascular ultrasound (IVUS) has been around for a long time as well, more recent radiofrequency analysis provides additional information about the vessel wall composition; likewise optical coherence tomography (OCT) provides detailed information about the positions of the stent struts and the quality of the stent placement. Combining the information from the X-ray lumenogram and the intravascular imaging devices is mentally a challenging task for the interventionalist. To support the registration of these intravascular images with the X-ray images, 3D QCA has been developed and registered with the IVUS or OCT images, so that at every position along the vessel of interest the luminal data and the vessel wall data by IVUS or the stent strut data by OCT can be combined. From the 3D QCA the selection of the optimal angiographic views can also be facilitated. It is the intention of this overview paper to provide an extensive description of the techniques that we have developed and validated over the past 30 years.
Collapse
Affiliation(s)
- Johan H C Reiber
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Auricchio F, Conti M, Ferrazzano C, Sgueglia GA. A simple framework to generate 3D patient-specific model of coronary artery bifurcation from single-plane angiographic images. Comput Biol Med 2013; 44:97-109. [PMID: 24377693 DOI: 10.1016/j.compbiomed.2013.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/30/2013] [Accepted: 10/28/2013] [Indexed: 11/26/2022]
Abstract
Although computer-based simulations, such as structural finite element analysis, have proven their usefulness to support procedural planning of coronary stenting, the link between the clinical practice and these engineering techniques is still limited to research test-cases. A key point to further promote such an interaction is to generate in a fast and effective manner the computational grids from the medical images. Hence, the present study proposes a simple framework to generate 3D meshes of coronary bifurcations from a pair of planar angiographic images obtained by X-ray angiography, which is the gold standard technique for the diagnosis of coronary artery stenosis.
Collapse
Affiliation(s)
- Ferdinando Auricchio
- Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy; CESNA - Centro di Simulazione Numerica Avanzata, Pavia, Italy; IUSS - Istituto Universitario degli Studi Superiori di Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Michele Conti
- Dipartimento di Ingegneria Civile e Architettura, Università degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy
| | - Carolina Ferrazzano
- IUSS - Istituto Universitario degli Studi Superiori di Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy.
| | - Gregory A Sgueglia
- UOC Cardiologia, Ospedale Sant'Eugenio, Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| |
Collapse
|
37
|
Zheng S, Mengchan L. Reconstruction of coronary vessels from intravascular ultrasound image sequences based on compensation of the in-plane motion. Comput Med Imaging Graph 2013; 37:618-27. [DOI: 10.1016/j.compmedimag.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
38
|
Bourantas CV, Papafaklis MI, Athanasiou L, Kalatzis FG, Naka KK, Siogkas PK, Takahashi S, Saito S, Fotiadis DI, Feldman CL, Stone PH, Michalis LK. A new methodology for accurate 3-dimensional coronary artery reconstruction using routine intravascular ultrasound and angiographic data: implications for widespread assessment of endothelial shear stress in humans. EUROINTERVENTION 2013; 9:582-593. [PMID: 23608530 DOI: 10.4244/eijv9i5a94] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS To develop and validate a new methodology that allows accurate 3-dimensional (3-D) coronary artery reconstruction using standard, simple angiographic and intravascular ultrasound (IVUS) data acquired during routine catheterisation enabling reliable assessment of the endothelial shear stress (ESS) distribution. METHODS AND RESULTS Twenty-two patients (22 arteries: 7 LAD; 7 LCx; 8 RCA) who underwent angiography and IVUS examination were included. The acquired data were used for 3-D reconstruction using a conventional method and a new methodology that utilised the luminal 3-D centreline to place the detected IVUS borders and anatomical landmarks to estimate their orientation. The local ESS distribution was assessed by computational fluid dynamics. In corresponding consecutive 3 mm segments, lumen, plaque and ESS measurements in the 3-D models derived by the centreline approach were highly correlated to those derived from the conventional method (r>0.98 for all). The centreline methodology had a 99.5% diagnostic accuracy for identifying segments exposed to low ESS and provided similar estimations to the conventional method for the association between the change in plaque burden and ESS (centreline method: slope= -1.65%/Pa, p=0.078; conventional method: slope= -1.64%/Pa, p=0.084; p =0.69 for difference between the two methodologies). CONCLUSIONS The centreline methodology provides geometrically correct models and permits reliable ESS computation. The ability to utilise data acquired during routine coronary angiography and IVUS examination will facilitate clinical investigation of the role of local ESS patterns in the natural history of coronary atherosclerosis.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Academic Unit, University of Hull, Kingston-upon-Hull, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Doulaverakis C, Tsampoulatidis I, Antoniadis AP, Chatzizisis YS, Giannopoulos A, Kompatsiaris I, Giannoglou GD. IVUSAngio tool: a publicly available software for fast and accurate 3D reconstruction of coronary arteries. Comput Biol Med 2013; 43:1793-803. [PMID: 24209925 DOI: 10.1016/j.compbiomed.2013.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/30/2013] [Accepted: 08/18/2013] [Indexed: 11/25/2022]
Abstract
There is an ongoing research and clinical interest in the development of reliable and easily accessible software for the 3D reconstruction of coronary arteries. In this work, we present the architecture and validation of IVUSAngio Tool, an application which performs fast and accurate 3D reconstruction of the coronary arteries by using intravascular ultrasound (IVUS) and biplane angiography data. The 3D reconstruction is based on the fusion of the detected arterial boundaries in IVUS images with the 3D IVUS catheter path derived from the biplane angiography. The IVUSAngio Tool suite integrates all the intermediate processing and computational steps and provides a user-friendly interface. It also offers additional functionality, such as automatic selection of the end-diastolic IVUS images, semi-automatic and automatic IVUS segmentation, vascular morphometric measurements, graphical visualization of the 3D model and export in a format compatible with other computer-aided design applications. Our software was applied and validated in 31 human coronary arteries yielding quite promising results. Collectively, the use of IVUSAngio Tool significantly reduces the total processing time for 3D coronary reconstruction. IVUSAngio Tool is distributed as free software, publicly available to download and use.
Collapse
Affiliation(s)
- Charalampos Doulaverakis
- Information Technologies Institute, Center for Research and Technology Hellas, 6th km Charilaou-Thermi road, 57001, Thermi, Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sakamoto S, Takahashi S, Coskun AU, Papafaklis MI, Takahashi A, Saito S, Stone PH, Feldman CL. Relation of distribution of coronary blood flow volume to coronary artery dominance. Am J Cardiol 2013; 111:1420-1424. [PMID: 23540543 DOI: 10.1016/j.amjcard.2013.01.290] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/15/2022]
Abstract
Coronary artery dominance influences the amount and anatomic location of myocardium that is perfused by the left or right coronary circulation. However, it is unknown whether coronary artery dominance also influences the distribution of coronary blood flow volume. The aim of this study was to evaluate volumetric coronary blood flow in 1,322 vessels from 496 patients in the Prediction of Progression of Coronary Artery Disease and Clinical Outcomes Using Vascular Profiling of Endothelial Shear Stress and Arterial Wall Morphology (PREDICTION) study. Patients were divided into 2 groups (right-dominant and left-dominant or balanced circulation). Coronary blood flow volume was calculated by coronary segment volume measurement using angiography and intravascular ultrasound and the contrast transit time through the segment. Coronary blood flow in the left circumflex coronary artery was significantly higher in left-dominant or balanced circulation than in right-dominant circulation (113 ± 43 vs 72 ± 37 ml/min, p <0.001), whereas flow in the right coronary artery was significantly lower in left-dominant or balanced circulation than in right-dominant circulation (56 ± 40 vs 113 ± 49 ml/min, p = 0.003). There was no significant difference in the left anterior descending coronary artery. In conclusion, coronary artery dominance has an impact on coronary blood flow volume in the left circumflex and right coronary arteries but not in the left anterior descending coronary artery. These findings suggest that the extent of myocardial perfusion area is associated with coronary blood flow volume.
Collapse
|
41
|
Exploring coronary atherosclerosis with intravascular imaging. Int J Cardiol 2013; 168:670-9. [PMID: 23571162 DOI: 10.1016/j.ijcard.2013.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/19/2013] [Accepted: 03/17/2013] [Indexed: 11/22/2022]
Abstract
Coronary angiography has been widely used for five decades to evaluate a range of vascular pathologies and triage patients to therapeutic interventions. The inability to directly visualize the artery wall with conventional angiographic techniques has stimulated development of a number of intravascular imaging modalities. These approaches have the potential to provide a more comprehensive characterization of the burden, composition and functionality of atherosclerotic plaque, neointimal hyperplasia and allograft vasculopathy that develop within coronary arteries. The ability to use these modalities in vivo and in a serial fashion has provided a greater insight into the factors that underlie the disease process and guide therapeutic interventions.
Collapse
|
42
|
Bourantas CV, Garcia-Garcia HM, Naka KK, Sakellarios A, Athanasiou L, Fotiadis DI, Michalis LK, Serruys PW. Hybrid Intravascular Imaging. J Am Coll Cardiol 2013; 61:1369-78. [DOI: 10.1016/j.jacc.2012.10.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 02/02/2023]
|
43
|
Balocco S, Gatta C, Alberti M, Carrillo X, Rigla J, Radeva P. Relation between plaque type, plaque thickness, blood shear stress, and plaque stress in coronary arteries assessed by X-ray Angiography and Intravascular Ultrasound. Med Phys 2012; 39:7430-45. [DOI: 10.1118/1.4760993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Morlacchi S, Migliavacca F. Modeling stented coronary arteries: where we are, where to go. Ann Biomed Eng 2012; 41:1428-44. [PMID: 23090621 DOI: 10.1007/s10439-012-0681-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/16/2012] [Indexed: 01/09/2023]
Abstract
In the last two decades, numerical models have become well-recognized and widely adopted tools to investigate stenting procedures. Due to limited computational resources and modeling capabilities, early numerical studies only involved simplified cases and idealized stented arteries. Nowadays, increased computational power allows for numerical models to meet clinical needs and include more complex cases such as the implantation of multiple stents in bifurcations or curved vessels. Interesting progresses have been made in the numerical modeling of stenting procedures both from a structural and a fluid dynamics points of view. Moreover, in the drug eluting stents era, new insights on drug elution capabilities are becoming essential in the stent development. Lastly, image-based methods able to reconstruct realistic geometries from medical images have been proposed in the recent literature aiming to better describe the peculiar anatomical features of coronary vessels and increase the accuracy of the numerical models. In this light, this review provides a comprehensive analysis of the current state-of-the-art in this research area, discussing the main methodological advances and remarkable results drawn from a number of significant studies.
Collapse
Affiliation(s)
- Stefano Morlacchi
- Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | | |
Collapse
|
45
|
Soloperto G, Casciaro S. Progress in atherosclerotic plaque imaging. World J Radiol 2012; 4:353-71. [PMID: 22937215 PMCID: PMC3430733 DOI: 10.4329/wjr.v4.i8.353] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/14/2012] [Accepted: 05/21/2012] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods.
Collapse
|
46
|
Serruys PW, Girasis C, Papadopoulou SL, Onuma Y. Non-invasive fractional flow reserve: scientific basis, methods and perspectives. EUROINTERVENTION 2012; 8:511-9. [DOI: 10.4244/eijv8i4a79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Wentzel JJ, Chatzizisis YS, Gijsen FJH, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 2012; 96:234-43. [PMID: 22752349 DOI: 10.1093/cvr/cvs217] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The heterogeneity of plaque formation, the vascular remodelling response to plaque formation, and the consequent phenotype of plaque instability attest to the extraordinarily complex pathobiology of plaque development and progression, culminating in different clinical coronary syndromes. Atherosclerotic plaques predominantly form in regions of low endothelial shear stress (ESS), whereas regions of moderate/physiological and high ESS are generally protected. Low ESS-induced compensatory expansive remodelling plays an important role in preserving lumen dimensions during plaque progression, but when the expansive remodelling becomes excessive promotes continued influx of lipids into the vessel wall, vulnerable plaque formation and potential precipitation of an acute coronary syndrome. Advanced plaques which start to encroach into the lumen experience high ESS at their most stenotic region, which appears to promote plaque destabilization. This review describes the role of ESS from early atherogenesis to early plaque formation, plaque progression to advanced high-risk stenotic or non-stenotic plaque, and plaque destabilization. The critical implication of the vascular remodelling response to plaque growth is also discussed. Current developments in technology to characterize local ESS and vascular remodelling in vivo may provide a rationale for innovative diagnostic and therapeutic strategies for coronary patients that aim to prevent clinical coronary syndromes.
Collapse
Affiliation(s)
- Jolanda J Wentzel
- Biomedical Engineering, Department Cardiology, ErasmusMC, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Burkitt M, Walker D, Romano DM, Fazeli A. Constructing complex 3D biological environments from medical imaging using high performance computing. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:643-654. [PMID: 21464515 DOI: 10.1109/tcbb.2011.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Extracting information about the structure of biological tissue from static image data is a complex task requiring computationally intensive operations. Here, we present how multicore CPUs and GPUs have been utilized to extract information about the shape, size, and path followed by the mammalian oviduct, called the fallopian tube in humans, from histology images, to create a unique but realistic 3D virtual organ. Histology images were processed to identify the individual cross sections and determine the 3D path that the tube follows through the tissue. This information was then related back to the histology images, linking the 2D cross sections with their corresponding 3D position along the oviduct. A series of linear 2D spline cross sections, which were computationally generated for the length of the oviduct, were bound to the 3D path of the tube using a novel particle system technique that provides smooth resolution of self-intersections. This results in a unique 3D model of the oviduct, which is grounded in reality. The GPU is used for the processor intensive operations of image processing and particle physics based simulations, significantly reducing the time required to generate a complete model.
Collapse
Affiliation(s)
- Mark Burkitt
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom.
| | | | | | | |
Collapse
|
49
|
Shi C, Tercero C, Ikeda S, Ooe K, Fukuda T, Komori K, Yamamoto K. In vitro
three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker. Int J Med Robot 2012; 8:291-9. [DOI: 10.1002/rcs.1416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Chaoyang Shi
- Department of Micro-nano Systems Engineering; Nagoya University; Nagoya Japan
| | - Carlos Tercero
- Department of Micro-nano Systems Engineering; Nagoya University; Nagoya Japan
| | - Seiichi Ikeda
- Department of Micro-nano Systems Engineering; Nagoya University; Nagoya Japan
| | - Katsutoshi Ooe
- Department of Micro-nano Systems Engineering; Nagoya University; Nagoya Japan
| | - Toshio Fukuda
- Department of Micro-nano Systems Engineering; Nagoya University; Nagoya Japan
| | - Kimihiro Komori
- Division of Vascular Surgery, Graduate School of Medicine; Nagoya University
| | - Kiyohito Yamamoto
- Division of Vascular Surgery, Graduate School of Medicine; Nagoya University
| |
Collapse
|
50
|
Onuma Y, Girasis C, Aben JP, Sarno G, Piazza N, Lokkerbol C, Morel MA, Serruys P. A novel dedicated 3-dimensional quantitative coronary analysis methodology for bifurcation lesions. EUROINTERVENTION 2011; 7:629-35. [DOI: 10.4244/eijv7i5a100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|