1
|
Nanthakumar K, Jalife J, Massé S, Downar E, Pop M, Asta J, Ross H, Rao V, Mironov S, Sevaptsidis E, Rogers J, Wright G, Dhopeshwarkar R. Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. Am J Physiol Heart Circ Physiol 2007; 293:H875-80. [PMID: 17369453 DOI: 10.1152/ajpheart.01415.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our objective was to establish a novel model for the study of ventricular fibrillation (VF) in humans. We adopted the established techniques of optical mapping to human ventricles for the first time to determine whether human VF is the result of wave breaks and singularity point formation and is maintained by high-frequency rotors and fibrillatory conduction. We describe the technique of acquiring optical signals in human hearts during VF, their characteristics, and the feasibility of possible analyses that could be performed to elucidate mechanisms of human VF. We used explanted hearts from five cardiomyopathic patients who underwent transplantation. The hearts were Langendorff perfused with Tyrode solution (95% O(2)-5% CO(2)), and the potentiometric dye di-4-ANEPPS was injected as a bolus into the coronary circulation. Fluorescence was excited at 531 +/- 20 nm with a 150-W halogen light source; the emission signal was long-pass filtered at 610 nm and recorded with a mapping camera. Fractional change of fluorescence varied between 2% and 12%. Average signal-to-noise ratio was 40 dB. The mean velocity of VF wave fronts was 0.25 +/- 0.04 m/s. Submillimetric spatial resolution (0.65-0.85 mm), activation mapping, and transformation of the data to phase-based analysis revealed reentrant, colliding, and fractionating wave fronts in human VF. On many occasions the VF wave fronts were as large as the entire vertical length (8 cm) of the mapping field, suggesting that there are a limited number of wave fronts on the human heart during VF. Phase transformation of the optical signals allowed the first demonstration ever of phase singularity point, wave breaks, and rotor formation in human VF. This method provides opportunities for potential analyses toward elucidation of the mechanisms of VF and defibrillation in humans.
Collapse
Affiliation(s)
- Kumaraswamy Nanthakumar
- Division of Cardiology, University Health Network, Toronto General Hospital, 150 Gerrard Street W., Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Ashihara T, Trayanova NA. Asymmetry in membrane responses to electric shocks: insights from bidomain simulations. Biophys J 2005; 87:2271-82. [PMID: 15454429 PMCID: PMC1304652 DOI: 10.1529/biophysj.104.043091] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Models of myocardial membrane dynamics have not been able to reproduce the experimentally observed negative bias in the asymmetry of transmembrane potential changes (DeltaVm) induced by strong electric shocks delivered during the action potential plateau. The goal of this study is to determine what membrane model modifications can bridge this gap between simulation and experiment. We conducted simulations of shocks in bidomain fibers and sheets with membrane dynamics represented by the LRd'2000 model. We found that in the fiber, the negative bias in DeltaVm asymmetry could not be reproduced by addition of electroporation only, but by further addition of hypothetical outward current, Ia, activated upon strong shock-induced depolarization. Furthermore, the experimentally observed rectangularly shaped positive DeltaVm, negative-to-positive DeltaVm ratio (asymmetry ratio) = approximately 2, electroporation occurring at the anode only, and the increase in positive DeltaVm caused by L-type Ca2+-channel blockade were reproduced in the strand only if Ia was assumed to be a part of K+ flow through the L-type Ca2+-channel. In the sheet, Ia not only contributed to the negative bias in DeltaVm asymmetry at sites polarized by physical and virtual electrodes, but also restricted positive DeltaVm. Inclusion of Ia and electroporation is thus the bridge between experiment and simulation.
Collapse
Affiliation(s)
- Takashi Ashihara
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
3
|
Evans FG, Gray RA. Shock-Induced Epicardial and Endocardial Virtual Electrodes Leading to Ventricular Fibrillation via Reentry, Graded Responses, and Transmural Activation. J Cardiovasc Electrophysiol 2004; 15:79-87. [PMID: 15028078 DOI: 10.1046/j.1540-8167.2004.03312.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The mechanism of ventricular fibrillation (VF) induction by T wave shocks has been attributed to reentry, propagated graded responses (PGR), and triggered activity. The limitation of recording transmembrane potential (V(m)) from only a single surface has hampered efforts to elucidate the relative role of these phenomena and their relationship to shock-induced virtual electrodes. METHODS AND RESULTS V(m) patterns from epicardial and endocardial surfaces of isolated sheep right ventricles were recorded with two CCD cameras for monophasic (M) and biphasic (B) shocks delivered at various coupling intervals (CI) from a unipolar mesh electrode on the epicardium. VF was induced via (1) the formation of reentry following make or break excitation; (2) propagated graded responses during apparent isoelectric window; and (3) breakthrough activation patterns coincident with endocardial-to-epicardial gradients in V(m). M shocks depolarized both surfaces at long CIs and polarized epicardial and endocardial surfaces oppositely at short CIs. At intermediate CIs, postshock V(m) patterns could lead to reentry on one surface or endocardial-to-epicardial gradients resulting in breakthrough. B induced VF less than M for short and intermediate CIs due to more homogeneous end-shock V(m) patterns. However, at long CIs these homogeneous patterns resulted in more VF induction because B left the tissue closer to the V(m) threshold for propagation. CONCLUSION Postshock activity occurred either immediately via epicardial or endocardial reentry, or after a delay caused by transmural propagation or propagated graded responses. These findings could explain the isoelectric window and focal activation patterns observed on the epicardium following VF induction shocks.
Collapse
Affiliation(s)
- Frederick G Evans
- Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
4
|
Hayashi H, Miyauchi Y, Chou CC, Karagueuzian HS, Chen PS, Lin SF. Effects of Cytochalasin D on Electrical Restitution and the Dynamics of Ventricular Fibrillation in Isolated Rabbit Heart. J Cardiovasc Electrophysiol 2003; 14:1077-84. [PMID: 14521661 DOI: 10.1046/j.1540-8167.2003.03234.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Cytochalasin D in Rabbit Ventricle. INTRODUCTION Cytochalasin D (cyto-D) has been used as an excitation-contraction uncoupler during optical mapping studies. However, its effects on action potential duration restitution (APDR) and dynamics during ventricular fibrillation (VF) are unclear. METHODS AND RESULTS Langendorff-perfused rabbit hearts (N = 6) were immersed in a tissue chamber. Transmembrane potential was recorded using glass microelectrodes. APD measured to 90% repolarization (APD90) was used to construct the APDR curve. During regular pacing at 300-msec cycle length, increasing concentrations of cyto-D resulted in progressively prolonged APD90 (131 +/- 26 msec, 171 +/- 14 msec, and 177 +/- 14 msec) and steepened maximum slope of the APDR curve (1.1 +/- 0.2, 1.3 +/- 0.2, and 1.6 +/- 0.4 for control, 5 micromoles, and 10 micromoles, respectively; P < 0.01). Resting membrane potential, AP amplitude, and maximum dV/dt did not change. Cyto-D lengthened VF cycle length and APD90, and steepened the maximum slope of the APDR curve. However, cyto-D did not significantly change the diastolic interval. The dominant frequency of pseudoelectrocardiogram progressively decreased with increasing concentrations of cyto-D (15.2 +/- 0.6 Hz, 11.1 +/- 2.4 Hz, and 9.8 +/- 3.2 Hz for control, 5 micromoles, and 10 micromoles, respectively; P < 0.01). Sustained (>1 min) VF was repeatedly inducible at baseline and with 5 or 10 micromoles of cyto-D. CONCLUSION Continuous perfusion of cyto-D at 5 or 10 micromoles prolonged APD90, steepened APDR slope, and reduced dominant frequency in rabbit ventricles. Cyto-D at these concentrations allowed induction of sustained VF.
Collapse
Affiliation(s)
- Hideki Hayashi
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, and David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
5
|
Qin H, Kay MW, Chattipakorn N, Redden DT, Ideker RE, Rogers JM. Effects of heart isolation, voltage-sensitive dye, and electromechanical uncoupling agents on ventricular fibrillation. Am J Physiol Heart Circ Physiol 2003; 284:H1818-26. [PMID: 12679330 DOI: 10.1152/ajpheart.00923.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested whether the interventions typically required for optical mapping affect activation patterns during ventricular fibrillation (VF). A 21 x 24 unipolar electrode array (1.5 mm spacing) was sutured to the left ventricular epicardium of 16 anesthetized pigs, and four episodes of electrically induced VF (30-s duration) were recorded. The hearts were then rapidly excised and connected to a Langendorff perfusion apparatus. Four of the hearts were controls, in which 24 additional VF episodes were then mapped. In the remaining 12 hearts, four VF episodes were mapped after isolation, four more episodes were mapped after exposure to the voltage-sensitive dye di-4-ANEPPS, and six more episodes were mapped after exposure to the electromechanical uncoupling agents diacetyl monoxime (DAM; 20 mmol/l, n = 6) or cytochalasin D (CytoD; 10 micromol/l, n = 6). VF episodes were separated by 4 min. VF activation patterns were quantified using custom pattern analysis algorithms. From comparisons with time-corrected control data, all interventions significantly changed VF patterns. Most changes were broadly consistent with slowing and regularization due to loss of excitability. Heart isolation had the largest effect on VF patterns, followed by CytoD, DAM, and dye.
Collapse
Affiliation(s)
- Hao Qin
- Department of Physiology and Biophysics, University of Alabama, 1670 University Boulevard, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
6
|
Yashima M, Kim YH, Armin S, Wu TJ, Miyauchi Y, Mandel WJ, Chen PS, Karagueuzian HS. On the mechanism of the probabilistic nature of ventricular defibrillation threshold. Am J Physiol Heart Circ Physiol 2003; 284:H249-55. [PMID: 12388279 DOI: 10.1152/ajpheart.00742.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The probabilistic nature of the ventricular defibrillation threshold (DFT) remains poorly understood. We hypothesized that shock outcome is a function of the amount of myocardium in its vulnerable period (VP). The endocardial surface of five isolated, perfused swine right ventricles was mapped with 477 bipolar electrodes during ventricular fibrillation (VF). Shock parameters and VF cycle length were not significantly different in the successful (S; n = 26) and failed (F; n = 26) trials. At the instant of the shock, the number of sites with 45- to 55-ms recovery was significantly smaller in the S trials than the F trials (P < 0.04). No significant difference in the number of sites with recovery intervals outside the 45- to 55-ms range was seen in S and F shocks. Endocardial action potential showed that a recovery time of 45-55 ms corresponded to the VP spanning -15 to -60 mV in 92% of the regenerative action potentials. We conclude that the probabilistic nature of the DFT is related to the amount of myocardium in its VP.
Collapse
Affiliation(s)
- Masaaki Yashima
- Division of Cardiology, Cedars-Sinai Medical Center, Department of Medicine, School of Medicine, University of California, Los Angeles 90048, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Skouibine K, Wall J, Krassowska W, Trayanova N. Modelling induction of a rotor in cardiac muscle by perpendicular electric shocks. Med Biol Eng Comput 2002; 40:47-55. [PMID: 11954708 DOI: 10.1007/bf02347695] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A strong, properly timed shock applied perpendicularly to a propagating wavefront causes a rotor in the canine myocardium. Experimental data indicate that the induction of this rotor relies on the shock exciting tissue away from the electrodes. The computational study reproduced such direct excitation in a two-dimensional model of a 2.7 x 3 cm sheet of cardiac muscle. The model used experimentally measured extracellular potentials to represent 100 and 150 V shocks delivered through extracellular electrodes. The shock-induced transmembrane potential was computed according to two mechanisms, the activating function and the unit-bundle sawtooth potential. The overall process leading to initiation of a rotor was the same in model and experiment. For the 100 V shock, the directly excited region extended 2.26 cm away from the electrode; the centre of the rotor ('critical point') was 1.28 cm away, where the electric field Ecr was 4.54 Vcm(-1). Increasing the shock strength to 150 V moved the critical point 1.02 cm further and decreased Ecr by 0.39 Vcm(-1). The results are comparable with experimental data. The model suggests that the unit-bundle sawtooth is responsible for the creation of the directly excited region, and the activating function is behind the dependence of Ecr on shock strength.
Collapse
Affiliation(s)
- K Skouibine
- Department of Mathematics, Duke University, USA
| | | | | | | |
Collapse
|
8
|
Gomes PA, Bassani RA, Bassani JW. Electric field stimulation of cardiac myocytes during postnatal development. IEEE Trans Biomed Eng 2001; 48:630-6. [PMID: 11396593 DOI: 10.1109/10.923781] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies on cardiac cell response to electric field stimulation are important for understanding basic phenomena underlying cardiac defibrillation. In this work, we used a model of a prolate spheroidal cell in a uniform external field (Klee and Plonsey, 1976) to predict the threshold electric field (ET) for stimulation of isolated ventricular myocytes of rats at different ages. The model assumes that ET is primarily determined by cell shape and dimensions, which markedly change during postnatal development. Neonatal cells showed very high ET, which progressively decreased with maturation (experimental mean values were 29, 21, 13, and 5.9 and 6.3 V/cm for 3-6, 13-16, 20-21, 28-35, and 120-180 day-old rats, respectively, P < 0.001; theoretical values were 24, 18, 11, 9, and 6 V/cm, respectively). Estimated maximum membrane depolarization at threshold (deltaVT approximately equals 35 mV, under our experimental conditions) was reasonably constant during development, except for cells from 1-mo-old animals, in which deltaVT was lower than at other ages. We conclude that the model reasonably correlates ET with cell geometry and size in most cases. Our results might be relevant for the development of efficient procedures for defibrillation of pediatric patients.
Collapse
Affiliation(s)
- P A Gomes
- Núcleo de Pesquisas Tecnologicas, Universidade de Mogi das Cruzes, SP, Brazil
| | | | | |
Collapse
|
9
|
Sakai T, Kamino K. Optical mapping approaches to cardiac electrophysiological functions. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:1-18. [PMID: 11295638 DOI: 10.2170/jjphysiol.51.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, optical methods for monitoring membrane potential with fast voltage-sensitive dyes have been introduced as a powerful tool for studying cardiac electrical functions. These methods offer two principal advantages over more conventional electrophysiological techniques. One is that optical recordings may be made from very small cells that are inaccessible to microelectrode impalement, and the other is that multiple sites/regions of a preparation can be monitored simultaneously to provide spatially resolved mapping of electrical activity. The former has made it possible to record spontaneous electrical activities in early embryonic precontractile hearts, and the latter has been applied for mapping of the propagation patterns of electrical activities in the cardiac tissue. In this article, optical studies of the electrophysiological function of the vertebrate heart are reviewed.
Collapse
Affiliation(s)
- T Sakai
- Department of Physiology, Tokyo Medical and Dental University Graduate School and Faculty of Medicine, Bunkyo-ku, Tokyo, 113-8519 Japan.
| | | |
Collapse
|
10
|
Knisley SB, Justice RK, Kong W, Johnson PL. Ratiometry of transmembrane voltage-sensitive fluorescent dye emission in hearts. Am J Physiol Heart Circ Physiol 2000; 279:H1421-33. [PMID: 10993810 DOI: 10.1152/ajpheart.2000.279.3.h1421] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transmembrane voltage-sensitive fluorescence measurements are limited by baseline drift that can obscure changes in resting membrane potential and by motion artifacts that can obscure repolarization. Voltage-dependent shift of emission wavelengths may allow reduction of drift and motion artifacts by emission ratiometry. We have tested this for action potentials and potassium-induced changes in resting membrane potential in rabbit hearts stained with di-4-ANEPPS [Pyridinium, 4-(2-(6-(dibutylamino)-2-naphthalenyl) ethenyl)-1-(3-sulfopropyl)-, hydroxide, inner salt] using laser excitation (488 nm) and a two-photomultiplier tube system or spectrofluorometer (resolution of 500-1,000 Hz and <1 mm). Green and red emissions produced upright and inverted action potentials, respectively. Ratios of green emission to red emission followed action potential contours and exhibited larger fractional changes than either emission alone (P < 0.001). The largest changes and signal-to-noise ratio (signal/noise) were obtained with numerator wavelengths of 525-550 nm and denominator wavelengths of 650-700 nm. Ratiometry lessened drift 56-66% (P < 0.015) and indicated decreases in resting membrane potential. Ratiometry lessened motion artifacts and increased magnitudes of deflections representing phase-zero depolarizations relative to total deflections by 123-188% in intact hearts (P < 0.02). Durations of action potentials at different pacing rates, temperatures, and potassium concentrations were independent of whether they were measured ratiometrically or with microelectrodes (P > or = 0.65). The ratiometric calibration slope was 0.017/100 mV and decreased with time. Thus emission ratiometry lessens the effects of motion and drift and indicates resting membrane potential changes and repolarization.
Collapse
Affiliation(s)
- S B Knisley
- Department of Biomedical Engineering of the School of Engineering, The University of Alabama at Birmingham, Alabama 35294-0019, USA.
| | | | | | | |
Collapse
|
11
|
Skouibine K, Trayanova N, Moore P. Success and failure of the defibrillation shock: insights from a simulation study. J Cardiovasc Electrophysiol 2000; 11:785-96. [PMID: 10921796 DOI: 10.1111/j.1540-8167.2000.tb00050.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION This simulation study presents a further inquiry into the mechanisms by which a strong electric shock fails to halt life-threatening cardiac arrhythmias. METHODS AND RESULTS The research uses a model of the defibrillation process that represents a sheet of myocardium as a bidomain. The tissue consists of nonuniformly curved fibers in which spiral wave reentry is initiated. Monophasic defibrillation shocks are delivered via two line electrodes that occupy opposite tissue boundaries. In some simulation experiments, the polarity of the shock is reversed. Electrical activity in the sheet is compared for failed and successful shocks under controlled conditions. The maps of transmembrane potential and activation times calculated during and after the shock demonstrate that weak shocks fail to terminate the reentrant activity via two major mechanisms. As compared with strong shocks, weak shocks result in (1) smaller extension of refractoriness in the areas depolarized by the shock, and (2) slower or incomplete activation of the excitable gap created by deexcitation of the negatively polarized areas. In its turn, mechanism 2 is associated with one or more of the following events: (a) lack of some break excitations, (b) latency in the occurrence of the break excitations, and (c) slower propagation through deexcited areas. Reversal of shock polarity results in a change of the extent of the regions of deexcitation, and thus, in a change in defibrillation threshold. CONCLUSION The results of this study indicate the paramount importance of shock-induced deexcitation in both defibrillation and postshock arrhythmogenesis.
Collapse
Affiliation(s)
- K Skouibine
- Department of Mathematics, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
12
|
Kodama I, Sakuma I, Shibata N, Knisley SB, Niwa R, Honjo H. Regional differences in arrhythmogenic aftereffects of high intensity DC stimulation in the ventricles. Pacing Clin Electrophysiol 2000; 23:807-17. [PMID: 10833699 DOI: 10.1111/j.1540-8159.2000.tb00848.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regional differences of the aftereffects of high intensity DC stimulation were investigated in isolated rabbit hearts stained with a voltage-sensitive dye (di-4-ANEPPS). Optical action potential signals were recorded from the epicardial surface of the right and left ventricular free wall (RVep, LVep) and from the right endocardial surface of the interventricular septum (IVS). Ten-millisecond monophasic DC stimulation (S2, 20-120 V) was applied to the signal recording spots during the early plateau phase of the action potential induced by basic stimuli (S1, 2.5 Hz). There was a linear relationship between S2 voltage and the S2 field intensity (FI). S2 caused postshock additional depolarization, giving rise to a prolongation of the shocked action potential. With S2 > or = 40 V (FI > or = approximately 20 V/cm), terminal repolarization of action potential was inhibited, and subsequent postshock S1 action potentials for 1-5 minutes were characterized by a decrease in the maximum diastolic potential and a decrease in the amplitude and a slowing of their upstroke phase. The higher the S2 voltage, the larger the aftereffects. The changes in postshock action potential configuration in RVep were significantly greater than those observed in LVep and IVS when compared at the same levels of S2 intensity. In RVep, 12 of 20 shocks of 120 V resulted in a prolonged refractoriness to S1 (> 1 s), and the arrest was often followed by oscillation of membrane potential. Ventricular tachycardia or fibrillation ensued from the oscillation in five cases. No such long arrest or serious arrhythmias were elicited in LVep and IVS. These results suggest that RVep is more susceptible than LVep and IVS for arrhythmogenic aftereffects of high intensity DC stimulation.
Collapse
Affiliation(s)
- I Kodama
- Department of Circulation, Nagoya University, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Clark DM, Pollard AE, Ideker RE, Knisley SB. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks. J Interv Card Electrophysiol 1999; 3:109-20. [PMID: 10387137 DOI: 10.1023/a:1009801027049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The prolongation of the action potential after defibrillation-strength shocks is believed to be a critical component of defibrillation. The response of the transmembrane potential to the shock may affect this prolongation. We studied the effects of an intracardiac shock on the transmembrane potential and action potential duration at multiple sites on the epicardium using a voltage-sensitive dye and optical mapping system. METHODS AND RESULTS A laser scanner recorded optical action potentials with voltage-sensitive dye at 63 spots on both the left and right ventricles of six isolated, perfused rabbit hearts. Hearts were paced with epicardial point stimulation followed by the delivery of a 2 A and 20 ms rectangular waveform shock during the relative refractory period. The shock was given between right atrial and right ventricular electrodes. Of 621 total spots analyzed, 241 spots hyperpolarized and 76 spots depolarized with a right ventricular anode, whereas 159 spots hyperpolarized and 145 spots depolarized with a right ventricular cathode (P < 0.05). Both hyperpolarized and depolarized spots exhibited prolonged action potential duration, although prolongation was greater with depolarizing responses (16.7 +/- 9 ms vs. 13.3 +/- 13.4 ms, p<0.001). Hyperpolarized and depolarized spots were not randomly distributed, but clustered into regions. The size of the hyperpolarized regions was larger than the depolarized regions with RV anodal stimulation (27 +/- 20 spots/hyperpolarized region vs. 8.5 +/- 9 spots/depolarized region, p < 0.03) but not with RV cathodal stimulation. With reversal of electrode polarity, spots hyperpolarized near the shocking electrodes frequently did not reverse polarization but remained hyperpolarized. CONCLUSIONS Distinct regions of either polarization occur during intracardiac defibrillation-strength shocks. Although hyperpolarizing membrane responses were observed more often than depolarizing responses, depolarizing membrane polarization resulted in greater action potential prolongation. The absence of sign change in polarization in some regions with shocks of opposite polarities suggests that nonlinear intrinsic membrane properties are operative during strong electrical stimulation.
Collapse
Affiliation(s)
- D M Clark
- The Division of Cardiovascular Disease, Department of Medicine, Department of Biomedical Engineering, and Department of Physiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
14
|
Aguel F, Debruin KA, Krassowska W, Trayanova NA. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J Cardiovasc Electrophysiol 1999; 10:701-14. [PMID: 10355926 DOI: 10.1111/j.1540-8167.1999.tb00247.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Defibrillation shocks, when delivered through internal electrodes, establish transmembrane potentials (Vm) large enough to electroporate the membrane of cardiac cells. The effects of such shocks on the transmembrane potential distribution are investigated in a two-dimensional rectangular sheet of cardiac muscle modeled as a bidomain with unequal anisotropy ratios. METHODS AND RESULTS The membrane is represented by a capacitance Cm, a leakage conductance g(l) and a variable electroporation conductance G, whose rate of growth depends exponentially on the square of Vm. The stimulating current Io, 0.05-20 A/m, is delivered through a pair of electrodes placed 2 cm apart for stimulation along fibers and 1 cm apart for stimulation across fibers. Computer simulations reveal three categories of response to Io: (1) Weak Io, below 0.2 A/m, cause essentially no electroporation, and Vm increases proportionally to Io. (2) Strong Io, between 0.2 and 2.5 A/m, electroporate tissue under the physical electrode. Vm is no longer proportional to Io; in the electroporated region, the growth of Vm is halted and in the region of reversed polarity (virtual electrode), the growth of Vm is accelerated. (3) Very strong Io, above 2.5 A/m, electroporate tissue under the physical and the virtual electrodes. The growth of Vm in all electroporated regions is halted, and a further increase of Io increases both the extent of the electroporated regions and the electroporation conductance G. CONCLUSION These results indicate that electroporation of the cardiac membrane plays an important role in the distribution of Vm induced by defibrillation strength shocks.
Collapse
Affiliation(s)
- F Aguel
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
15
|
Zivin A, Souza J, Pelosi F, Flemming M, Knight BP, Goyal R, Morady F, Strickberger SA. Relationship between shock energy and postdefibrillation ventricular arrhythmias in patients with implantable defibrillators. J Cardiovasc Electrophysiol 1999; 10:370-7. [PMID: 10210500 DOI: 10.1111/j.1540-8167.1999.tb00685.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The relationship between postdefibrillation ventricular arrhythmias and shock strength is poorly understood in patients with implantable defibrillators. The purpose of this study was to characterize the relationship between postdefibrillation ventricular arrhythmias and shock strength. METHODS AND RESULTS Forty-three patients with an implanted defibrillator underwent six separate inductions of ventricular fibrillation (VF) after a step-down defibrillation energy requirement (7.3 +/- 4.6 J) was determined. For each of the first three inductions of VF, the first two shocks were low energy and equal to approximately 75% of the defibrillation energy requirement (5.4 +/- 3.3 J), or to the defibrillation energy requirement plus 10 J (17.5 +/- 4.3 J). After the first two shocks, subsequent shocks were programmed to the maximum available energy (29.0 +/- 2.5 J). The alternate technique was used for the subsequent three inductions of VF. Postdefibrillation ventricular arrhythmias were noted. Postdefibrillation ventricular arrhythmias with a cycle length < or = 300 msec were more frequent after a low-energy shock (19%), than after a high-energy shock (1.5%; P = 0.005). Postdefibrillation ventricular arrhythmias with a cycle length < or = 300 msec were more frequent after a high-energy shock (32%), than after a low-energy shock (7.1%; P = 0.002). A relationship between the cycle length of the postdefibrillation ventricular arrhythmias and the absolute defibrillation energy was observed (P < 0.001; r = 0.6), and ventricular arrhythmias with a cycle length > 300 msec were uncommon after shocks < or = 10 J (P = 0.001). The characteristics of ventricular arrhythmias after maximum-energy shocks were similar to those that occurred after high-energy shocks. CONCLUSIONS Postdefibrillation ventricular arrhythmias with a cycle length < or = 300 msec are more common after shocks of strength associated with a low probability of successful defibrillation. Postdefibrillation ventricular arrhythmias with a cycle length of > 300 msec are more common after high- and maximum-energy shocks, and are directly related to the absolute defibrillation energy.
Collapse
Affiliation(s)
- A Zivin
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109-0022, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu J, Biermann M, Rubart M, Zipes DP. Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. J Cardiovasc Electrophysiol 1998; 9:1336-47. [PMID: 9869533 DOI: 10.1111/j.1540-8167.1998.tb00109.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Cytochalasin D in tissue bath superfusate inhibits the contraction of isolated thin trabeculae from canine right ventricle without affecting the intracellular action potential recorded with glass microelectrode. The purpose of this study was to test whether cytochalasin D could also be used to immobilize perfused wedges of ventricular muscle without affecting the action potential duration or propagation, and also to determine the optimal concentration and time duration of drug in the perfusate. METHODS AND RESULTS Using a membrane potential sensitive dye, di-4-ANEPPS, and a high-resolution photodiode optical mapping system at a rate of 1,000 frames/sec, we recorded action potentials on the transmural surface of arterially perfused wedges of muscle from the canine left ventricular free wall. We also recorded arterial pulse pressure as a surrogate for tissue contraction. Cytochalasin D at > or = 20 micromol/L in the perfusate for > or = 6 minutes reduced the arterial pulse pressure to approximately one tenth of its initial value and significantly reduced or eliminated motion artifacts in the action potentials. A sustained concentration of 10 micromol/L cytochalasin D in the perfusate prevented contraction from recurring after the tissue was immobilized with an initial concentration of 25 micromol/L. Cytochalasin D had little effect on the action potential duration and on its transmural gradient, and did not slow the transmural velocity of excitation propagation. CONCLUSION Cytochalasin D can be used to uncouple excitation and contraction in perfused canine cardiac muscle for the fluorescent-optical mapping of action potentials without affecting action potential duration or slowing transmural propagation.
Collapse
Affiliation(s)
- J Wu
- Krannert Institute of Cardiology, Indiana University Medical School, Indianapolis, USA.
| | | | | | | |
Collapse
|
17
|
Sobie EA, Tung L. Postshock potential gradients and dispersion of repolarization in cells stimulated with monophasic and biphasic waveforms. J Cardiovasc Electrophysiol 1998; 9:743-56. [PMID: 9684722 DOI: 10.1111/j.1540-8167.1998.tb00961.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Even though the clinical advantage of biphasic defibrillation waveforms is well documented, the mechanisms that underlie this greater efficacy remain incompletely understood. It is established, though, that the response of relatively refractory cells to the shock is important in determining defibrillation success or failure. We used two computer models of an isolated ventricular cell to test the hypothesis that biphasic stimuli cause a more uniform response than the equivalent monophasic shocks, decreasing the likelihood that fibrillation will be reinduced. METHODS AND RESULTS Models of reciprocally polarized and uniformly polarized cells were used. Rapid pacing and elevated [K]o were simulated, and either 10-msec rectangular monophasic or 5-msec/5-msec symmetric biphasic stimuli were delivered in the relative refractory period. The effects of stimulus intensity and coupling interval on response duration and postshock transmembrane potential (Vm) were quantified for each waveform. With reciprocal polarization, biphasic stimuli caused a more uniform response than monophasic stimuli, resulting in fewer large gradients of Vm (only for shock strengths < or = 1.25x threshold vs < or = 2.125x threshold) and a smaller dispersion of repolarization (1611 msec2 vs 1835 msec2). The reverse was observed with uniform polarization: monophasic pulses caused a more uniform response than did biphasic stimuli. CONCLUSION These results show that the response of relatively refractory cardiac cells to biphasic stimuli is less dependent on the coupling interval and stimulus strength than the response to monophasic stimuli under conditions of reciprocal polarization. Because this may lead to fewer and smaller spatial gradients in Vm, these data support the hypothesis that biphasic defibrillation waveforms will be less likely to reinduce fibrillation. Further, published experimental results correlate to a greater degree with conditions of reciprocal polarization than of uniform polarization, providing indirect evidence that interactions between depolarized and hyperpolarized regions play a role in determining the effects of defibrillation shocks on cardiac tissue.
Collapse
Affiliation(s)
- E A Sobie
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
18
|
Roth BJ, Krassowska W. The induction of reentry in cardiac tissue. The missing link: How electric fields alter transmembrane potential. CHAOS (WOODBURY, N.Y.) 1998; 8:204-220. [PMID: 12779722 DOI: 10.1063/1.166298] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This review examines the initiation of reentry in cardiac muscle by strong electric shocks. Specifically, it concentrates on the mechanisms by which electric shocks change the transmembrane potential of the cardiac membrane and create the physiological substrate required by the critical point theory for the initiation of rotors. The mechanisms examined include (1) direct polarization of the tissue by the stimulating current, as described by the one-dimensional cable model and its two- and three-dimensional extensions, (2) the presence of virtual anodes and cathodes, as described by the bidomain model with unequal anisotropy ratios of the intra- and extracellular spaces, (3) polarization of the tissue due to changing orientation of cardiac fibers, and (4) polarization of individual cells or groups of cells by the electric field ("sawtooth potential"). The importance of these mechanisms in the initiation of reentry is examined in two case studies: the induction of rotors using successive stimulation with a unipolar electrode, and the induction of rotors using cross-field stimulation. These cases reveal that the mechanism by which a unipolar stimulation induces arrhythmias can be explained in the framework of the bidomain model with unequal anisotropy ratios. In contrast, none of the examined mechanisms provide an adequate explanation for the induction of rotors by cross-field stimulation. Hence, this study emphasizes the need for further experimental and theoretical work directed toward explaining the mechanism of field stimulation. (c) 1998 American Institute of Physics.
Collapse
Affiliation(s)
- Bradley J. Roth
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|
19
|
The role of spatial interactions in creating the dispersion of transmembrane potential by premature electric shocks. Ann Biomed Eng 1997. [DOI: 10.1007/bf02684131] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Trayanova NA. Effects of the tissue-bath interface on the induced transmembrane potential: a modeling study in cardiac stimulation. Ann Biomed Eng 1997; 25:783-92. [PMID: 9300102 DOI: 10.1007/bf02684162] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During the initial stages of cardiac stimulation or defibrillation, the distribution of transmembrane potential generated in the myocardium by the external stimulus is determined by the local interactions between fibrous tissue organization and applied electric field. We hypothesize that the pattern of induced transmembrane potential is different, depending on whether the tissue is in insulator, such as air, or in contact with a low-resistance volume conductor, such as blood or perfuseate. The goal of this study is to evaluate the impact of the volume conductor bordering the myocardium on the pattern of stimulus-induced transmembrane potential. Presented here are computer simulations of the steady-state response of model tissue-bath preparations to extracellular current stimuli. Transmembrane potential distributions for various tissue and bath sizes, as well as locations of the stimulation electrodes, are examined. The results indicate that when the external stimuli are located in close proximity to or at the tissue-bath interface, both the magnitude and the distribution of transmembrane potential are significantly altered, compared with the case of an insulated preparation. Thus, the volume conductor seems to be another possible factor contributing to the pattern of membrane hyper- and depolarization in the myocardium. Its influence is, however, modulated by the promixity of the stimuli sites to the tissue-bath interface.
Collapse
Affiliation(s)
- N A Trayanova
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
21
|
Abstract
The mechanism of ventricular defibrillation can be considered at many different levels. The highest level is considered at strength of the shock given through the defibrillation electrodes. At the next level, the mechanism of defibrillation can be examined in terms of the electrical field that the shock produces throughout the ventricles. Other levels include the effects this electric field has on the activation sequences and on the cellular action potentials that either initiate or inhibit the early sites of activation following the shock. Yet another level considers the mechanism by which the shock field initiates new action potentials or prolongs the action potential by changing the transmembrane potential during the shock. Finally, the subcellular level is considered, which involves the response of the individual ion channels to the shock. This review gives a brief overview of some salient features of defibrillation at each of these mechanistic levels.
Collapse
Affiliation(s)
- G P Walcott
- Department of Medicine, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
22
|
Fishler MG, Sobie EA, Tung L, Thakor NV. Modeling the interaction between propagating cardiac waves and monophasic and biphasic field stimuli: the importance of the induced spatial excitatory response. J Cardiovasc Electrophysiol 1996; 7:1183-96. [PMID: 8985807 DOI: 10.1111/j.1540-8167.1996.tb00497.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Biphasic (BP) defibrillation waveforms have been shown to be significantly more efficacious than equivalent monophasic (MP) waveforms. However, when defibrillation fails, it tends to do so first in distal regions of the heart where induced field gradient magnitudes are lowest. We tested the hypothesis that the improved efficacy of BP waveforms results from their enhanced ability to prevent the initiation of new postshock activation fronts behind preexisting wavetails, rather than from any significantly improved ability to terminate preexisting wavefronts. METHODS AND RESULTS An idealized computer model of a one-dimensional cardiac strand was used to investigate the spatial and temporal interactions between an underlying propagation front (or tail) and uniform MP or BP field stimuli of various intensities. Axial discontinuities from intercellular junctions induced sawtooth patterns of polarization during such field stimuli, enabling the shocks to interact directly with all cells. MP and BP diastolic thresholds were essentially equal. All suprathreshold MP and BP field stimuli successfully terminated preexisting wavefronts by directly depolarizing tissue ahead of those fronts, thus blocking their continued progression. However, the postshock response at the wavetail was significantly dependent on the shape and strength of the administered field. Low-strength MP stimuli induced an all-or-none excitation response across the wavetail, producing a sharp spatial transmembrane voltage gradient from which a new sustained anterogradely propagating wavefront was initiated. In contrast, low-strength BP field stimuli induced a spatially graded excitatory response whose voltage gradient was insufficient to initiate such a wavefront. Higher-strength MP and BP stimuli both produced graded excitatory responses with no subsequent propagation. CONCLUSIONS Shock-induced spatial "all-or-none" excitatory responses facilitate, and graded excitatory responses prevent, the postshock initiation of new propagating wavefronts. Moreover, BP field stimuli can induce such graded excitatory responses at significantly lower stimulus strengths than otherwise equivalent MP stimuli. Therefore, these results support an alternative "graded excitatory response" mechanism for the improved efficacy of BP over MP field stimuli in low gradient regions.
Collapse
Affiliation(s)
- M G Fishler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
23
|
Ujhelyi MR, Schur M, Frede T, Bottorff MB, Gabel M, Markel ML. Mechanism of antiarrhythmic drug-induced changes in defibrillation threshold: role of potassium and sodium channel conductance. J Am Coll Cardiol 1996; 27:1534-42. [PMID: 8626970 DOI: 10.1016/0735-1097(96)00027-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES We sought to determine which ion current predominantly affects defibrillation outcomes by using specific pharmacologic probes (lidocaine [a sodium channel blocking agent] and cesium [an outward potassium channel blocking agent]) in 26 swine. BACKGROUND The effect of a drug on sodium or potassium channel conductance, or both, may affect defibrillation threshold values. However, it is unknown which ion channel predominates. METHODS Each pig was randomly assigned to one of four treatment groups with two treatment phases: group 1 = placebo (D5W) in treatment phase I followed by placebo plus cesium in treatment phase II (n = 6); group 2 = lidocaine followed by lidocaine plus placebo (n = 7); group 3 = lidocaine followed by lidocaine plus cesium (n = 7); group 4 = placebo followed by placebo plus placebo (n = 6). Defibrillation threshold values and electrocardiographic measurements were obtained at baseline and at treatment phases I and II. RESULTS Lidocaine increased defibrillation threshold values from baseline by 71% in group 2 (p = 0.02) and by 92% in group 3 (p < 0.01). There were no changes in defibrillation threshold values from baseline to D5W in groups 1 and 4. When D5W was added to lidocaine in group 2 and D5W in group 4, there were no significant changes in defibrillation threshold values. However, when cesium was added to lidocaine in group 3, the elevated defibrillation threshold values (mean +/- SD) returned to baseline values (from 15.7 +/- 3.46 to 7.55 +/- 3.19 J, p < 0.01). Cesium added to D5W in group 1 also significantly reduced defibrillation threshold values from 7.10 +/- 1.27 to 4.14 +/- 1.75 J (p < 0.01). The effect of cesium on defibrillation threshold values was similar between groups 1 and 3, regardless of lidocaine, such that these values were reduced by 40 +/- 14% and 51 +/- 18%, respectively (p = 0.28). CONCLUSIONS Cesium, through potassium blockade, reverses lidocaine-induced elevation in defibrillation threshold values. The magnitude of defibrillation threshold reduction when cesium was added to lidocaine was similar to the defibrillation threshold reduction when cesium was added to placebo. Thus, inhibiting outward potassium conductance and prolonging repolarization decreases defibrillation threshold values independent of sodium channel blockade.
Collapse
Affiliation(s)
- M R Ujhelyi
- University of Georgia College of Pharmacy and Medical College of Georgia School of Medicine, Augusta 30912-2390, USA
| | | | | | | | | | | |
Collapse
|
24
|
Fishler MG, Sobie EA, Thakor NV, Tung L. Mechanisms of cardiac cell excitation with premature monophasic and biphasic field stimuli: a model study. Biophys J 1996; 70:1347-62. [PMID: 8785290 PMCID: PMC1225060 DOI: 10.1016/s0006-3495(96)79692-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms by which extracellular electric field stimuli induce the (re)excitation of cardiac cells in various stages of refractoriness are still not well understood. We modeled the interactions between an isolated cardiac cell and imposed extracellular electric fields to determine the mechanisms by which relatively low-strength uniform monophasic and biphasic field stimuli induce premature reexcitations. An idealized ventricular cell was simulated with 11 subcellular membrane patches, each of which obeyed Luo-Rudy (phase 1) kinetics. Implementing a standard S1-S2 pulse protocol, strength-interval maps of the cellular excitatory responses were generated for rectangular monophasic and symmetric biphasic field stimuli of 2, 5, 10, and 20 ms total duration. In contrast to previously documented current injection studies, our results demonstrate that a cardiac cell exhibits a significantly nonmonotonic excitatory response to premature monophasic and, to a much lesser degree, biphasic field stimuli. Furthermore, for monophasic stimuli at low field strengths, the cell is exquisitely sensitive to the timing of the shock, demonstrating a classic all-or-none depolarizing response. However, at higher field strengths this all-or-none sensitivity reverts to a more gradual transition of excitatory responses with respect to stimulus prematurity. In contrast, biphasic stimuli produce such graded responses at all suprathreshold stimulus strengths. Similar behaviors are demonstrated at all S2 stimulus durations tested. The generation of depolarizing (sodium) currents is triggered by one or more of the sharp field gradient changes produced at the stimulus edges-i.e., make, break, and transphasic (for biphasic stimuli)-with the magnitude of these edge-induced current contributions dependent on both the prematurity and the strength of the applied field. In all cases, however, depolarizing current arises from the partial removal of sodium inactivation from at least part of the cell, because of either the natural process of repolarization or a localized acceleration of this process by the impressed field.
Collapse
Affiliation(s)
- M G Fishler
- Johns Hopkins University School of Medicine, Department of Biomedical Engineering, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
25
|
Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR. Myocardial vulnerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol 1996; 7:231-42. [PMID: 8867297 DOI: 10.1111/j.1540-8167.1996.tb00520.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Induction of ventricular fibrillation (VF) by T wave shocks is of clinical interest due to the correlation between the upper limit of vulnerability (ULV) and the defibrillation threshold (DFT). However, the ULV has not yet been defined precisely in reference to the entire "area of vulnerability" (AOV), which is defined bifunctionally by both shock strengths and shock coupling intervals, nor has it been related to the dispersion of ventricular repolarization, considered to be an important determinant of vulnerability. METHODS AND RESULTS In 11 isolated perfused rabbit hearts immersed in a tissue bath containing a 3-lead ECG recording system and two opposite plate electrodes for field shock administration, 7 monophasic action potentials (MAPs) were recorded simultaneously from different epicardial and endocardial regions of the right and left ventricles. An average of 90 +/- 25 monophasic waveform shocks of varying shock strengths and coupling intervals were delivered to each heart to determine the horizontal and vertical boundaries of the AOV. The AOV approximated a rhomboid with homogenous VF inducibility. The ULV and lower limit of vulnerability (LLV) represented discrete corners of the AOV with significant changes in VF inducibility if either shock coupling intervals or shock strength were changed by only 10 msec or 10 V, respectively (P < 0.001). The ULV occurred at 7 +/- 10 msec shorter coupling intervals than the LLV (P < 0.05), and VF-inducing shock strengths at the left corner of the AOV were 50 +/- 67 V higher as compared to the right corner (P < 0.01). The maximal range of VF-inducing coupling intervals coincided (within < 2 msec) with the dispersion of MAPs at 70% repolarization, and the ULV coupling interval coincided (within < 4 msec) with the longest repolarization at 50%. CONCLUSIONS (1) VF vulnerability to monophasic T wave shocks is defined by an AOV that has the shape of a leftward tilted rhomboid. (2) Both the ULV and LLV are sharply defined upper and lower corners of the AOV rhomboid. (3) The width of the AOV corresponds to the dispersion of ventricular repolarization at the 70% level. (4) Considering the dispersion of ventricular repolarization may yield more precise ULV determinations and a better understanding of the correlation between the ULV and DFT.
Collapse
Affiliation(s)
- C L Fabritz
- Cardiology Division, Veterans Administration and Georgetown University Medical Centers, Washington, DC, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
This study tested the prediction of bidomain models that unipolar stimulation of anisotropic myocardium produces transmembrane voltage changes (delta VmS) of opposite signs away from the electrode on perpendicular axes. Stimulation with a strength of 0.1 to 40 mA was applied from a point electrode on the left or right ventricle of isolated perfused rabbit hearts at 37 degrees C to 38 degrees C stained with the potentiometric dye di-4-ANEPPS. A laser scanner system recorded Vm-sensitive fluorescence at 63 spots in an 8 x 8-mm region around the electrode. Cathodal stimulation in the refractory period produced regions of -delta Vm 1 to 5 mm away from the electrode on an axis oriented parallel to the fast propagation axis to within 1.8 +/- 11 degrees (P > or = .7 for difference versus zero, n = 7). Recording spots in these regions underwent + delta Vm when anodal stimulation was used. At recording spots on the slow propagation axis, cathodal stimulation produced + delta Vm and anodal stimulation produced -delta Vm. During diastolic stimulation, early excitation occurred near the electrode for cathodal stimulation or on the fast propagation axis as fas as 2.8 +/- 1 mm away from the electrode for anodal stimulation. A "dog-bone" region of + delta Vm that included tissue near and away from the electrode on the slow propagation axis occurred when cathodal stimulation was given in diastole. Regions of + delta Vm occurred away from the electrode on the fast propagation axis when anodal stimulation was given in diastole. Thus, delta Vm differs in regions along and across myocardial fibers, indicating that delta Vm depends on anisotropic bidomain properties. Sites of early excitation are those where + delta Vm occurs, indicating that membrane channel excitation depends on the distribution of delta Vm.
Collapse
Affiliation(s)
- S B Knisley
- Division of Cardiovascular Disease, School of Medicine, University of Alabama, Birmingham
| |
Collapse
|
27
|
KenKnight BH, Eyüboğlu BM, Ideker RE. Impedance to defibrillation countershock: does an optimal impedance exist? Pacing Clin Electrophysiol 1995; 18:2068-87. [PMID: 8552522 DOI: 10.1111/j.1540-8159.1995.tb03869.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Defibrillation is thought to occur because of changes in the transmembrane potential that are caused by current flow through the heart tissue. Impedance to electric countershock is an important parameter because it is determined by the magnitude and distribution of the current that flows for a specific shock voltage. The impedance is comprised of resistive contributions from: (1) extra-tissue sources, which include the defibrillator, leads, and electrodes; (2) tissue sources, which include intracardiac and extra-cardiac tissue; and (3) the interface between electrode and tissue. Tissue sources dominate the impedance and probably contribute to the wide range of impedance values presented to the defibrillation pulse. Because impedance is not constant within or between subjects, defibrillators must be designed to accommodate these differences without compromising patient safety or therapeutic efficacy. Experimental investigations in animals and humans suggest that impedance changes at several different time scales ranging from milliseconds to years. These alterations are believed to be a result of both electrochemical and physiological mechanisms. It is commonly thought that impedance is optimized when it has been decreased to a minimum, since this allows the most current flow for a given voltage shock. However, if the impedance is lowered by changing the location or size of the electrodes in such a way that current flow is decreased in part of the heart even though current flow is increased elsewhere, then the total voltage, current, and energy needed for defibrillation may increase, not decrease, even though impedance is decreased. A simple boundary element computer model suggests that the most even distribution of current flow through the heart is achieved for those electrode locations in which the impedance across the heart is at or near the maximum cardiac impedance for any location of these particular electrodes. Thus, the optimum shock impedance is achieved when impedance is minimized for extra-tissue and extra-cardiac tissue sources and is at or near a maximum for intracardiac tissue sources.
Collapse
Affiliation(s)
- B H KenKnight
- Department of Therapy Research, Cardiac Pacemakers, Inc., St. Paul, Minnesota, USA
| | | | | |
Collapse
|
28
|
Knisley SB, Hill BC. Effects of bipolar point and line stimulation in anisotropic rabbit epicardium: assessment of the critical radius of curvature for longitudinal block. IEEE Trans Biomed Eng 1995; 42:957-66. [PMID: 8582725 DOI: 10.1109/10.464369] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Excitation front shape and velocity were studied in anisotropic perfused rabbit epicardium stained with potentiometric fluorescent dye. In the combined results from all experiments, convex excitation fronts produced by stimulation with a single electrode propagated longitudinally 13.3% slower than flat excitation fronts produced by stimulation with a line of electrodes. For transverse propagation, the two stimulation methods produced similar flat excitation fronts and velocities. The critical excitation front radius of curvature for longitudinal block (Rcr), calculated from excitable media theory, was 92 microns in control hearts. In hearts exposed to diacetyl monoxime (20 mmol/L), which decreases inward sodium current, Rcr was 175 microns. The slower longitudinal propagation velocity of convex fronts versus flat fronts and the theoretically predicted critical radius of curvature may be important for propagation and block of ectopic depolarizations in the heart.
Collapse
Affiliation(s)
- S B Knisley
- Division of Cardiovascular Disease, School of Medicine, University of Alabama, Birmingham 35294-0019, USA
| | | |
Collapse
|
29
|
Knisley SB, Holley LK. Characterization of shock-induced action potential extension during acute regional ischemia in rabbit hearts. J Cardiovasc Electrophysiol 1995; 6:775-85. [PMID: 8542074 DOI: 10.1111/j.1540-8167.1995.tb00354.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Defibrillation shocks produce extension of the myocardial action potential repolarization time (AP extension) in nonischemic myocardium. AP extension may synchronize repolarization in the heart because the extension increases when shock timing is increased. We tested whether AP extension occurs and whether it increases when shock timing is increased in regionally ischemic isolated perfused rabbit hearts stained with the transmembrane voltage sensitive fluorescent dye, di-4-ANEPPS and given diacetyl monoxime to eliminate motion artifacts. METHODS AND RESULTS Before and after left anterior descending (LAD) coronary artery occlusion, APs were recorded on the anterior left ventricular epicardium with an epifluorescence measurement system. Hearts were paced with a train of 10 stimuli (S1) and then during the 10th AP were given a defibrillation shock (S2) from epicardial electrodes on either side of the recording region. Before LAD occlusion, duration of the 9th S1-induced AP measured at full repolarization was 171 +/- 11 msec (mean +/- SD). Within 15 minutes after LAD occlusion, the AP duration became shorter (P < 0.05) and more variable (137 +/- 47 msec), and APs with negligible plateaus were observed. Extension of the 10th AP by S2 was significant both before (mean extension of 59 to 65 msec for three S2 waveforms tested) and after LAD occlusion (mean extension of 35 to 41 msec). Unlike the results before LAD occlusion, AP extension after occlusion was independent of absolute shock timing expressed in msec. When timing was expressed as a fraction of individual AP durations, AP extension after occlusion increased with increases in shock timing. CONCLUSIONS Shocks extend APs during ischemia; however, absolute time dependence of AP extension is not constant among cells that have different AP durations during ischemia. This may influence postshock repolarization synchrony when different AP durations exist in different parts of regionally ischemic hearts.
Collapse
Affiliation(s)
- S B Knisley
- Division of Cardiovascular Disease of the School of Medicine, University of Alabama, Birmingham
| | | |
Collapse
|
30
|
Ujhelyi MR, Schur M, Frede T, Gabel M, Markel ML. Differential effects of lidocaine on defibrillation threshold with monophasic versus biphasic shock waveforms. Circulation 1995; 92:1644-50. [PMID: 7664452 DOI: 10.1161/01.cir.92.6.1644] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Defibrillation waveforms and antiarrhythmic drugs have disparate effects on myocardial excitability and refractoriness, making it likely that antiarrhythmic drugs will interact with one waveform differently than with another. The aim of the present study was to determine if the increase in defibrillation threshold (DFT) induced by lidocaine is similar for electrical shocks with monophasic and biphasic waveforms. METHODS AND RESULTS Twenty-six pentobarbital-anesthetized farm-raised pigs were instrumented with pacing catheters and epicardial defibrillation electrodes. Each pig was assigned to one of four groups: (1) monophasic shock waveform and placebo (5% dextrose in water [D5W]) (n = 7), (2) monophasic shock waveform and lidocaine (n = 7), (3) biphasic shock waveform and placebo (D5W) (n = 5), or (4) biphasic shock waveform and lidocaine (n = 7). DFT was measured at baseline and subsequently during treatment (D5W or lidocaine). In the monophasic waveform groups, DFT increased from baseline in response to lidocaine by 92% (P < .0001), whereas DFT values in response to D5W did not change. In the biphasic waveform groups, DFT values did not change from baseline in response to lidocaine (P = NS), whereas DFT values from baseline in response to D5W significantly decreased by 29% (P = .04). In the monophasic waveform groups, the change in DFT from baseline in response to lidocaine was significantly different than the change from baseline in response to D5W (92 +/- 29% versus -0.5 +/- 29%, respectively) (P < .0002). In the biphasic waveform groups, however, the change in DFT from baseline in response to lidocaine was similar to the change from baseline in response to D5W (-5.66 +/- 15% versus -29 +/- 17%, respectively) (P = .48). Furthermore, the change in DFT from baseline in response to lidocaine differed significantly between monophasic and biphasic waveform groups (92 +/- 29% versus -5.66 +/- 15%) (P < .0002), whereas the change from baseline in response to D5W did not differ between monophasic and biphasic waveforms (-0.5 +/- 29% versus -29 +/- 17%) (P = .34). CONCLUSIONS Compared with placebo groups, DFT values increased during lidocaine treatment to a much greater degree in the monophasic waveform group than in the biphasic waveform group receiving lidocaine. These data support our hypothesis that antiarrhythmic drugs can affect the defibrillation efficacy of monophasic waveforms differently than that of biphasic waveforms.
Collapse
Affiliation(s)
- M R Ujhelyi
- University of Georgia College of Pharmacy, Augusta, USA
| | | | | | | | | |
Collapse
|
31
|
Rohr S. Determination of impulse conduction characteristics at a microscopic scale in patterned growth heart cell cultures using multiple site optical recording of transmembrane voltage. J Cardiovasc Electrophysiol 1995; 6:551-68. [PMID: 8528490 DOI: 10.1111/j.1540-8167.1995.tb00428.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It is well established that impulse propagation in cardiac tissue is determined by the interaction between active membrane properties and the passive electrical characteristics of the network formed by individual myocytes. In the past, the intricate microarchitecture of intact cardiac tissue and the limited spatial resolution of available recording techniques had rendered a systematic evaluation of the influence of the cellular microarchitecture on impulse propagation difficult. Recently, however, successful efforts have been undertaken to: (1) simplify the cellular arrangement by designing cardiac structures with defined two-dimensional geometries; and (2) measure impulse propagation in these preparations at the cellular/subcellular scale using optical techniques. This short review considers both of these developments, i.e., patterned growth of heart cells in culture and multiple site optical recording of transmembrane voltage (MSORTV), and summarizes first results obtained with the combination of both techniques.
Collapse
Affiliation(s)
- S Rohr
- Department of Physiology, University of Bern, Switzerland
| |
Collapse
|
32
|
Schaffer P, Ahammer H, Müller W, Koidl B, Windisch H. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflugers Arch 1994; 426:548-51. [PMID: 8052525 DOI: 10.1007/bf00378533] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Action potential recordings from isolated guinea pig ventricular cells in the whole-cell recording mode were used to study the toxic and photodynamic properties of the voltage-sensitive fluorescent dye di-4-ANEPPS. Staining of the cardiomyocytes with di-4-ANEPPS (30 or 60 microM; 10 min) did not alter the action potential shape. When the stained cells were illuminated (1W/cm2) severe effects on the action potential were observed. There was a prolongation of the action potential duration, occurrence of early afterdepolarizations, reduction of the membrane resting potential and eventually inexcitability. Addition of the antioxidant catalase (100 IU/ml) to the extracellular solution delayed the onset of these effects, suggesting that reactive-oxygen-intermediates take part in di-4-ANEPPS induced photodynamic damage. Since di-4-ANEPPS is a very important tool for optical membrane potential recordings in heart tissue and single cardiomyocytes catalase might be useful in suppressing photodynamic damage during optical potential recordings.
Collapse
Affiliation(s)
- P Schaffer
- Institut für Medizinische Physik und Biophysik, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | |
Collapse
|