1
|
Afolabi JM, Kanthakumar P, Williams JD, Kumar R, Soni H, Adebiyi A. Post-injury Inhibition of Endothelin-1 Dependent Renal Vasoregulation Mitigates Rhabdomyolysis-Induced Acute Kidney Injury. FUNCTION 2023; 4:zqad022. [PMID: 37342410 PMCID: PMC10278989 DOI: 10.1093/function/zqad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 06/22/2023] Open
Abstract
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
Collapse
Affiliation(s)
- Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jada D Williams
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Kumar R, Soni H, Afolabi JM, Kanthakumar P, Mankuzhy PD, Iwhiwhu SA, Adebiyi A. Induction of reactive oxygen species by mechanical stretch drives endothelin production in neonatal pig renal epithelial cells. Redox Biol 2022; 55:102394. [PMID: 35841629 PMCID: PMC9289874 DOI: 10.1016/j.redox.2022.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vasoactive endothelin (ET) is generated by ET converting enzyme (ECE)-induced proteolytic processing of pro-molecule big ET to biologically active peptides. H2O2 has been shown to increase the expression of ECE1 via transactivation of its promoter. The present study demonstrates that H2O2 triggered ECE1-dependent ET1-3 production in neonatal pig proximal tubule (PT) epithelial cells. A uniaxial stretch of PT cells decreased catalase, increased NADPH oxidase (NOX)2 and NOX4, and increased H2O2 levels. Stretch also increased cellular ECE1, an effect reversed by EUK-134 (a synthetic superoxide dismutase/catalase mimetic), NOX inhibitor apocynin, and siRNA-mediated knockdown of NOX2 and NOX4. Short-term unilateral ureteral obstruction (UUO), an inducer of renal tubular cell stretch and oxidative stress, increased renal ET1-3 generation and vascular resistance (RVR) in neonatal pigs. Despite removing the obstruction, UUO-induced increase in RVR persisted, resulting in early acute kidney injury (AKI). ET receptor (ETR)-operated Ca2+ entry in renal microvascular smooth muscle (SM) via transient receptor potential channel 3 (TRPC3) channels reduced renal blood flow and increased RVR. Although acute reversible UUO (rUUO) did not change protein expression levels of ETR and TRPC3 in renal microvessels, inhibition of ECE1, ETR, and TRPC3 protected against renal hypoperfusion, RVR increase, and early AKI. These data suggest that mechanical stretch-driven oxyradical generation stimulates ET production in neonatal pig renal epithelial cells. ET activates renal microvascular SM TRPC3, leading to persistent vasoconstriction and reduction in renal blood flow. These mechanisms may underlie rUUO-induced renal insufficiency in infants.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pratheesh D Mankuzhy
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Samson A Iwhiwhu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
AlSiraj Y, Thatcher SE, Liang CL, Ali H, Ensor M, Cassis LA. Therapeutic Assessment of Combination Therapy with a Neprilysin Inhibitor and Angiotensin Type 1 Receptor Antagonist on Angiotensin II-Induced Atherosclerosis, Abdominal Aortic Aneurysms, and Hypertension. J Pharmacol Exp Ther 2021; 377:326-335. [PMID: 33707301 PMCID: PMC8140395 DOI: 10.1124/jpet.121.000525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Combined neprilysin (NEP) inhibition (sacubitril) and angiotensin type 1 receptor (AT1R) antagonism (valsartan) is used in the treatment of congestive heart failure and is gaining interest for other angiotensin II (AngII)-related cardiovascular diseases. In addition to heart failure, AngII promotes hypertension, atherosclerosis, and abdominal aortic aneurysms (AAAs). Similarly, NEP substrates or products have broad effects on the cardiovascular system. In this study, we examined NEP inhibition (with sacubitril) and AT1R antagonism (with valsartan) alone or in combination on AngII-induced hypertension, atherosclerosis, or AAAs in male low-density lipoprotein receptor-deficient mice. Preliminary studies assessed drug delivery via osmotic minipumps for simultaneous release of sacubitril and/or valsartan with AngII over 28 days. Mice were infused with AngII (1000 ng/kg per minute) in the absence (vehicle) or presence of sacubitril (1, 6, or 9 mg/kg per day), valsartan (0.3, 0.5, 1, 6, or 20 mg/kg per day), or the combination thereof (1 and 0.3, or 9 or 0.5 mg/kg per day of sacubitril and valsartan, respectively). Plasma AngII and renin concentrations increased 4-fold at higher valsartan doses, indicative of removal of AngII negative feedback on renin. Sacubitril doubled plasma AngII concentrations at lower doses (1 mg/kg per day). Valsartan dose-dependently decreased systolic blood pressure, aortic atherosclerosis, and AAAs of AngII-infused mice, whereas sacubitril had no effect on atherosclerosis or AAAs but reduced blood pressure of AngII-infused mice. Combination therapy with sacubitril and valsartan did not provide additive benefits. These results suggest limited effects of combination therapy with NEP inhibition and AT1R antagonism against AngII-induced hypertension, atherosclerosis, or AAAs. SIGNIFICANCE STATEMENT: The combination of valsartan (angiotensin type 1 receptor antagonist) and sacubitril (neprilysin inhibitor) did not provide benefit above valsartan alone on AngII-induced hypertension, atherosclerosis, or abdominal aortic aneurysms in low-density lipoprotein receptor-deficient male mice. These results do not support this drug combination in therapy of these AngII-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yasir AlSiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Ching Ling Liang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Heba Ali
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Mark Ensor
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
4
|
El Tabaa MM, El Tabaa MM. New putative insights into neprilysin (NEP)-dependent pharmacotherapeutic role of roflumilast in treating COVID-19. Eur J Pharmacol 2020; 889:173615. [PMID: 33011243 PMCID: PMC7527794 DOI: 10.1016/j.ejphar.2020.173615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, coronavirus disease 2019 (COVID-19) represents the most serious inflammatory respiratory disease worldwide. Despite many proposed therapies, no effective medication has yet been approved. Neutrophils appear to be the key mediator for COVID-19-associated inflammatory immunopathologic, thromboembolic and fibrotic complications. Thus, for any therapeutic agent to be effective, it should greatly block the neutrophilic component of COVID-19. One of the effective therapeutic approaches investigated to reduce neutrophil-associated inflammatory lung diseases with few adverse effects was roflumilast. Being a highly selective phosphodiesterase-4 inhibitors (PDE4i), roflumilast acts by enhancing the level of cyclic adenosine monophosphate (cAMP), that probably potentiates its anti-inflammatory action via increasing neprilysin (NEP) activity. Because activating NEP was previously reported to mitigate several airway inflammatory ailments; this review thoroughly discusses the proposed NEP-based therapeutic properties of roflumilast, which may be of great importance in curing COVID-19. However, further clinical studies are required to confirm this strategy and to evaluate its in vivo preventive and therapeutic efficacy against COVID-19.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
5
|
The Controversy of Renin-Angiotensin-System Blocker Facilitation Versus Countering COVID-19 Infection. J Cardiovasc Pharmacol 2020; 76:397-406. [PMID: 32769760 DOI: 10.1097/fjc.0000000000000894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic has produced serious turmoil world-wide. Lung injury causing acute respiratory distress syndrome seems to be a most dreaded complication occurring in ∼30%. Older patients with cardiovascular comorbidities and acute respiratory distress syndrome have an increased mortality. Although the precise mechanisms involved in the development of lung injury have not been fully elucidated, the role of the extended renin-angiotensin system seems to be pivotal. In this context, angiotensin-converting enzyme 2 (ACE2), an angiotensin-converting enzyme homologue, has been recognized as a facilitator of viral entry into the host, albeit its involvement in other counter-regulatory effects, such as converting angiotensin (Ang) II into Ang 1-7 with its known protective actions. Thus, concern was raised that the use of renin-angiotensin system inhibitors by increasing ACE2 expression may enhance patient susceptibility to the COVID-19 virus. However, current data have appeased such concerns because there has been no clinical evidence of a harmful effect of these agents as based on observational studies. However, properly designed future studies will be needed to further confirm or refute current evidence. Furthermore, other pathways may also play important roles in COVID-19 transmission and pathogenesis; spike (S) protein proteases facilitate viral transmission by cleaving S protein that promotes viral entry into the host; neprilysin (NEP), a neutral endopeptidase known to cleave natriuretic peptides, degrades Ang I into Ang 1-7; NEP can also catabolize bradykinin and thus mitigate bradykinin's role in inflammation, whereas, in the same context, specific bradykinin inhibitors may also negate bradykinin's harmful effects. Based on these intricate mechanisms, various preventive and therapeutic strategies may be devised, such as upregulating ACE2 and/or using recombinant ACE2, and exploiting the NEP, bradykinin and serine protease pathways, in addition to anti-inflammatory and antiviral therapies. These issues are herein reviewed, available studies are tabulated and pathogenetic mechanisms are pictorially illustrated.
Collapse
|
6
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
7
|
Effects of Low-Dose Sacubitril/Valsartan on Different Stages of Cardiac Hypertrophy in Salt-Loaded Hypertensive Rats. J Cardiovasc Pharmacol 2020; 73:282-289. [PMID: 30829732 DOI: 10.1097/fjc.0000000000000662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sacubitril/valsartan was shown to attenuate the development of cardiac hypertrophy with enhanced blood pressure reduction compared with valsartan alone in animal models. We investigated whether a low-dose sacubitril/valsartan has blood pressure-independent effects on cardiac hypertrophy and pulmonary edema using a rat model of hypertension and obesity. METHODS AND RESULTS In plan 1, male SHR/NDmcr-cp rats fed normal or phase-increased high salt were treated with vehicle, 6-mg/kg sacubitril/valsartan or 3-mg/kg valsartan, for 6 months. In plan 2, after high-salt loading for 6 months, drugs were administered for 4 months. Antihypertensive effects of the 2 drugs were similar during all study periods. In plan 1 with normal salt, there were no differences between treatments in the left ventricle weight/body weight (BW), or lung weight/BW as an index of cardiac hypertrophy or pulmonary edema, respectively. These indexes were smaller in high-salt-fed rats with sacubitril/valsartan than vehicle. In plan 2, both indexes did not differ between vehicle and sacubitril/valsartan. Ventricle weight/BW was lower in valsartan than sacubitril/valsartan. In plan 2, gene markers of cardiac dysfunction were upregulated by sacubitril/valsartan compared with the other groups. CONCLUSIONS Low-dose sacubitril/valsartan may have different effects depending on the stage of cardiac hypertrophy in rats.
Collapse
|
8
|
Leipziger J, Praetorius H. Renal Autocrine and Paracrine Signaling: A Story of Self-protection. Physiol Rev 2020; 100:1229-1289. [PMID: 31999508 DOI: 10.1152/physrev.00014.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autocrine and paracrine signaling in the kidney adds an extra level of diversity and complexity to renal physiology. The extensive scientific production on the topic precludes easy understanding of the fundamental purpose of the vast number of molecules and systems that influence the renal function. This systematic review provides the broader pen strokes for a collected image of renal paracrine signaling. First, we recapitulate the essence of each paracrine system one by one. Thereafter the single components are merged into an overarching physiological concept. The presented survey shows that despite the diversity in the web of paracrine factors, the collected effect on renal function may not be complicated after all. In essence, paracrine activation provides an intelligent system that perceives minor perturbations and reacts with a coordinated and integrated tissue response that relieves the work load from the renal epithelia and favors diuresis and natriuresis. We suggest that the overall function of paracrine signaling is reno-protection and argue that renal paracrine signaling and self-regulation are two sides of the same coin. Thus local paracrine signaling is an intrinsic function of the kidney, and the overall renal effect of changes in blood pressure, volume load, and systemic hormones will always be tinted by its paracrine status.
Collapse
Affiliation(s)
- Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Helle Praetorius
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; and Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Turbeville HR, Taylor EB, Garrett MR, Didion SP, Ryan MJ, Sasser JM. Superimposed Preeclampsia Exacerbates Postpartum Renal Injury Despite Lack of Long-Term Blood Pressure Difference in the Dahl Salt-Sensitive Rat. Hypertension 2019; 73:650-658. [PMID: 30612494 PMCID: PMC6374193 DOI: 10.1161/hypertensionaha.118.12097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Preeclampsia results in increased susceptibility to hypertension and chronic kidney disease postpartum; however, the mechanisms responsible for disease progression in these women remain unknown. The purpose of this study was to test the hypothesis that 2 mechanisms contribute to the link between the maternal syndrome of preeclampsia and the increased postpartum risk of cardiovascular and renal disease: (1) increased T cells in the kidney and (2) a decreased NO:ET-1 (endothelin-1) ratio. Dahl S rats (a previously characterized model of preeclampsia superimposed on chronic hypertension) who experienced 2 pregnancies and virgin littermate controls were studied at 6 months of age. Mean arterial pressure was measured via telemetry, and renal injury was assessed through both histological analysis and measurement of urinary markers including nephrin, podocalyxin, and KIM-1 (kidney injury marker 1). Contributing mechanisms were assessed through flow cytometric analysis of renal T cells, quantification of plasma TNF-α (tumor necrosis factor-α) and IL-10 (interleukin-10), and quantification of urinary concentrations of NO metabolites and ET-1. Although prior pregnancy did not exacerbate the hypertension at 6 months, this group showed greater renal injury compared with virgin littermates. Flow cytometric analyses revealed an increase in renal T cells after pregnancy, and cytokine analysis revealed a systemic proinflammatory shift. Finally, the NO:ET-1 ratio was reduced. These results demonstrate that the link between the maternal syndrome of superimposed preeclampsia and postpartum risk of chronic kidney disease could involve both immune system activation and dysregulation of the NO:ET-1 balance.
Collapse
Affiliation(s)
- Hannah R. Turbeville
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B. Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J. Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M. Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
10
|
Roksnoer LCW, Uijl E, de Vries R, Garrelds IM, Jan Danser AH. Neprilysin inhibition and endothelin-1 elevation: Focus on the kidney. Eur J Pharmacol 2018; 824:128-132. [PMID: 29432709 DOI: 10.1016/j.ejphar.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/23/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Increasing the degree of renin-angiotensin system (RAS) blockade by combining ≥2 RAS blockers marginally increases efficacy, but results in more side effects. Hence, interference with other systems is currently being investigated, like potentiation of natriuretic peptides with neprilysin inhibitors. However, the neprilysin inhibitor thiorphan was recently found to increase endothelin-1 when administered to TGR(mREN2)27 (Ren2) rats on top of RAS blockade. Here we investigated whether this effect is thiorphan-specific, by comparing the neprilysin inhibitors thiorphan and sacubitril, administered by osmotic minipumps at a low or high dose for 7 days, in Ren2 rats. Plasma and urinary levels of endothelin-1, atrial and brain natriuretic peptide (ANP, BNP) and their second messenger cyclic guanosine 3'5' monophosphate (cGMP) were monitored. No significant differences were found in the plasma concentrations of endothelin-1, cGMP, ANP and BNP after treatment, although plasma ANP tended to be higher in the high-dose thiorphan treatment group and the low- and high-dose sacubitril treatment groups, compared with vehicle. Urinary endothelin-1 increased in the low-dose thiorphan and high-dose sacubitril groups, compared with baseline, although significance was reached for the former only. Urinary cGMP rose significantly in the high-dose sacubitril treatment group compared with baseline. Both urinary endothelin-1 and cGMP were significantly higher in the high-dose sacubitril group compared with the low-dose sacubitril group. In conclusion, endothelin-1 upregulation occurs with both thiorphan and sacubitril, and is particularly apparent in neprilysin-rich organs like the kidney. High renal neprilysin levels most likely also explain why sacubitril increased cGMP in urine only.
Collapse
Affiliation(s)
- Lodi C W Roksnoer
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Estrellita Uijl
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - René de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, room EE1418b, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Characterisation of preproendothelin-1 derived peptides identifies Endothelin-Like Domain Peptide as a modulator of Endothelin-1. Sci Rep 2017; 7:4956. [PMID: 28694457 PMCID: PMC5503984 DOI: 10.1038/s41598-017-05365-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelin-1 (ET-1) is involved in the pathogenesis of cardiac and renal diseases, and in the progression of tumour growth in cancer, but current diagnosis and treatment remain inadequate. Peptides derived from the 212 amino acid precursor preproendothelin-1 (ppET-1) may have utility as biomarkers, or cause biological effects that are unaffected by endothelin receptor antagonists. Here, we used specific immunoassays and LC-MS/MS to identify NT-proET-1 (ppET-1[18–50]), Endothelin-Like Domain Peptide (ELDP, ppET-1[93–166]) and CT-proET-1 (ppET-1[169–212]) in conditioned media from cultured endothelial cells. Synthesis of these peptides correlated with ET-1, and plasma ELDP and CT-proET-1 were elevated in patients with chronic heart failure. Clearance rates of NT-proET-1, ELDP and CT-proET-1 were determined after i.v. injection in anaesthetised rats. CT-proET-1 had the slowest systemic clearance, hence providing a biological basis for it being a better biomarker of ET-1 synthesis. ELDP contains the evolutionary conserved endothelin-like domain sequence, which potentially confers biological activity. On isolated arteries ELDP lacked direct vasoconstrictor effects. However, it enhanced ET-1 vasoconstriction and prolonged the increase in blood pressure in anaesthetised rats. ELDP may therefore contribute to disease pathogenesis by augmenting ET-1 responses.
Collapse
|
12
|
Abstract
The endothelin (ET) system includes 3 small peptide hormones and a pair of G-protein-coupled receptors. This review first outlines the ET signaling pathway and ET metabolism. Next, it summarizes the role of ET1 signaling in craniofacial development. Then, it discusses observations relating ET signaling to osteoblastic and other osteosclerotic processes in cancer. Finally, it describes recent work in our laboratory that points to endothelin signaling as an upstream mediator of WNT signaling, promoting bone matrix synthesis and mineralization. It concludes with a statement of some remaining gaps in knowledge and proposals for future research.
Collapse
Affiliation(s)
- Jasmin Kristianto
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Michael G Johnson
- Department of Medicine, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Stadium Road, Karachi 74800, Pakistan
| | - Robert D Blank
- Divisions of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA; Medical Service, Clement J. Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA.
| |
Collapse
|
13
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Kristianto J, Johnson MG, Afzal R, Blank RD. WITHDRAWN: Endothelin signaling in bone. Transl Res 2016:S1931-5244(16)30366-8. [PMID: 27893988 DOI: 10.1016/j.trsl.2016.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Jasmin Kristianto
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis
| | - Michael G Johnson
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Department of Medicine, University of Wisconsin, Madison, Wis
| | - Rafia Afzal
- Department of Anesthesiology, Aga Khan University Hospital, Karachi, Pakistan
| | - Robert D Blank
- Endocrine and Reproductive Physiology Program, University of Wisconsin, Madison, Wis; Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, Wis; Division of Endocrinology, Metabolism, and Clinical Nutrition, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Medical Service, Clement J. Zablocki VAMC, Milwaukee, Wis
| |
Collapse
|
15
|
Bayes-Genis A, Barallat J, Richards AM. A Test in Context: Neprilysin. J Am Coll Cardiol 2016; 68:639-653. [DOI: 10.1016/j.jacc.2016.04.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/27/2022]
|
16
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
17
|
Affiliation(s)
- Donald E Kohan
- Division of Nephrology University of Utah Health Sciences Center Salt Lake City, UT
| |
Collapse
|
18
|
Current role of neprilysin inhibitors in hypertension and heart failure. Pharmacol Ther 2014; 144:41-9. [DOI: 10.1016/j.pharmthera.2014.05.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/14/2023]
|
19
|
Sherwi N, Pellicori P, Joseph AC, Buga L. Old and newer biomarkers in heart failure: from pathophysiology to clinical significance. J Cardiovasc Med (Hagerstown) 2014; 14:690-7. [PMID: 23846675 DOI: 10.2459/jcm.0b013e328361d1ef] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heart failure is a complex disease in which a careful clinical examination and the measurement of cardiac function may not always be sufficient for making a correct diagnosis. Measuring plasma levels of natriuretic peptides may assist in this process, also offering a good tool for accurate risk stratification. Other alternative biomarkers may give insight into the different pathways of heart failure genesis and pathophysiology, and may help to identify those patients with overt heart failure and a more adverse outcome, or distinguish between those at risk of developing heart failure. Despite a high number of potentially useful biomarkers, only a few will likely be introduced routinely into clinical practice. However, a multi-marker approach might increase the diagnostic accuracy and it might identify different phenotypes of heart failure patients who might benefit from individualized therapy in the future.
Collapse
Affiliation(s)
- Nasser Sherwi
- Department of Academic Cardiology, Hull and East Yorkshire Medical Research and Teaching Centre, Castle Hill Hospital, Cottingham, Kingston upon Hull, UK
| | | | | | | |
Collapse
|
20
|
Khalil RA. Modulators of the vascular endothelin receptor in blood pressure regulation and hypertension. Curr Mol Pharmacol 2012; 4:176-86. [PMID: 21222646 DOI: 10.2174/1874467211104030176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/19/2010] [Accepted: 09/03/2010] [Indexed: 12/14/2022]
Abstract
Endothelin (ET) is one of the most investigated molecules in vascular biology. Since its discovery two decades ago, several ET isoforms, receptors, signaling pathways, agonists and antagonists have been identified. ET functions as a potent endothelium-derived vasoconstrictor, but could also play a role in vascular relaxation. In endothelial cells, preproET and big ET are cleaved by ET converting enzymes into ET-1, -2, -3 and -4. These ET isoforms bind with different affinities to ET(A) and ET(B) receptors in vascular smooth muscle (VSM), and in turn increase [Ca(2+)](i), protein kinase C and mitogen-activated protein kinase and other signaling pathways of VSM contraction and cell proliferation. ET also binds to endothelial ET(B) receptors and stimulates the release of nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor. ET, via endothelial ET(B) receptor, could also promote ET re-uptake and clearance. While the effects of ET on vascular reactivity and growth have been thoroughly examined, its role in the regulation of blood pressure and the pathogenesis of hypertension is not clearly established. Elevated plasma and vascular tissue levels of ET have been identified in salt-sensitive hypertension and in moderate to severe hypertension, and ET receptor antagonists have been shown to reduce blood pressure to variable extents in these forms of hypertension. The development of new pharmacological and genetic tools could lead to more effective and specific modulators of the vascular ET system for treatment of hypertension and related cardiovascular disease.
Collapse
Affiliation(s)
- Raouf A Khalil
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women’s Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
21
|
Kittikulsuth W, Pollock JS, Pollock DM. Loss of renal medullary endothelin B receptor function during salt deprivation is regulated by angiotensin II. Am J Physiol Renal Physiol 2012; 303:F659-66. [PMID: 22674027 DOI: 10.1152/ajprenal.00213.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have recently demonstrated that chronic infusion of exogenous ANG II, which induces blood pressure elevation, attenuates renal medullary endothelin B (ET(B)) receptor function in rats. Moreover, this was associated with a reduction of ET(B) receptor expression in the renal inner medulla. The aim of this present work was to investigate the effect of a physiological increase in endogenous ANG II (low-salt diet) on the renal ET system, including ET(B) receptor function. We hypothesized that endogenous ANG II reduces renal medullary ET(B) receptor function during low-salt intake. Rats were placed on a low-salt diet (0.01-0.02% NaCl) for 2 wk to allow an increase in endogenous ANG II. In rats on normal-salt chow, the stimulation of renal medullary ET(B) receptor by ET(B) receptor agonist sarafotoxin 6c (S6c) causes an increase in water (3.6 ± 0.4 from baseline vs. 10.5 ± 1.3 μl/min following S6c infusion; P < 0.05) and sodium excretion (0.38 ± 0.06 vs. 1.23 ± 0.17 μmol/min; P < 0.05). The low-salt diet reduced the ET(B)-dependent diuresis (4.5 ± 0.5 vs. 6.1 ± 0.9 μl/min) and natriuresis (0.40 ± 0.11 vs. 0.46 ± 0.12 μmol/min) in response to acute intramedullary infusion of S6c. Chronic treatment with candesartan restored renal medullary ET(B) receptor function; urine flow was 7.1 ± 0.9 vs. 15.9 ± 1.7 μl/min (P < 0.05), and sodium excretion was 0.4 ± 0.1 vs. 1.1 ± 0.1 μmol/min (P < 0.05) before and after intramedullary S6c infusion, respectively. Receptor binding assays determined that the sodium-depleted diet resulted in a similar level of ET(B) receptor binding in renal inner medulla compared with rats on a normal-salt diet. Candesartan reduced renal inner medullary ET(B) receptor binding (1,414 ± 95 vs. 862 ± 50 fmol/mg; P < 0.05). We conclude that endogenous ANG II attenuates renal medullary ET(B) receptor function to conserve sodium during salt deprivation independently of receptor expression.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Section of Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
22
|
Bagnato A, Loizidou M, Pflug BR, Curwen J, Growcott J. Role of the endothelin axis and its antagonists in the treatment of cancer. Br J Pharmacol 2011; 163:220-33. [PMID: 21232046 DOI: 10.1111/j.1476-5381.2011.01217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endothelins (ET) are a group of proteins that act through G-protein coupled receptors. Endothelin-1 (ET-1) was initially identified as a potent vasoconstrictor and dysregulation of the ET axis contributes to pathological processes responsible for cardiovascular disease states. More recently, the ET axis, in particular ET-1 acting through the endothelin A receptor (ET(A) ), has been implicated in the development of several cancers through activation of pathways involved in cell proliferation, migration, invasion, epithelial-mesenchymal transition, osteogenesis and angiogenesis. The endothelin B receptor (ET(B) ) may counter tumour progression by promoting apoptosis and clearing ET-1; however, it has recently been implicated in the development of some tumour types including melanomas and oligodendrogliomas. Here, we review emerging preclinical and clinical data outlining the role of the ET axis in cancer, and its antagonism as an attractive and challenging approach to improve clinical cancer management. Clinical data of ET(A) antagonists in patients with prostate cancer are encouraging and provide promise for new ET(A) antagonist-based treatment strategies. Given the unexpected opportunities to affect pleiotrophic tumorigenic signals by targeting ET(A)-mediated pathways in a number of cancers, the evaluation of ET-targeted therapy in cancer warrants further investigation.
Collapse
Affiliation(s)
- A Bagnato
- Molecular Pathology Laboratory 'A', Regina Elena National Cancer Institute, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Abstract
Since its discovery in 1988 as an endothelial cell-derived peptide that exerts the most potent vasoconstriction of any known endogenous compound, endothelin (ET) has emerged as an important regulator of renal physiology and pathophysiology. This review focuses on how the ET system impacts renal function in health; it is apparent that ET regulates multiple aspects of kidney function. These include modulation of glomerular filtration rate and renal blood flow, control of renin release, and regulation of transport of sodium, water, protons, and bicarbonate. These effects are exerted through ET interactions with almost every cell type in the kidney, including mesangial cells, podocytes, endothelium, vascular smooth muscle, every section of the nephron, and renal nerves. In addition, while not the subject of the current review, ET can also indirectly affect renal function through modulation of extrarenal systems, including the vasculature, nervous system, adrenal gland, circulating hormones, and the heart. As will become apparent, these pleiotropic effects of ET are of fundamental physiologic importance in the control of renal function in health. In addition, to help put these effects into perspective, we will also discuss, albeit to a relatively limited extent, how alterations in the ET system can contribute to hypertension and kidney disease.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
24
|
Endothelin-1 role in human eye: a review. J Ophthalmol 2011; 2010:354645. [PMID: 21461356 PMCID: PMC3065050 DOI: 10.1155/2010/354645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 11/14/2010] [Accepted: 12/13/2010] [Indexed: 12/05/2022] Open
Abstract
Endothelin is a potent vasoactive peptide occurring in three isotypes, ET-1, ET-2, and ET-3. Through its two main receptors, endothelin A and endothelin B, it is responsible for a variety of physiological functions, primarily blood flow control. Recent evidence from both human and animal models shows involvement of endothelin in diabetes, retinal circulation, and optic neuropathies. Increased circulating levels of endothelin-1 (ET-1) have been found in patients with diabetes, and a positive correlation between plasma ET-1 levels and microangiopathy in patients with type-2 diabetes has been demonstrated. In addition to its direct vasoconstrictor effects, enhanced levels of ET-1 may contribute to endothelial dysfunction through inhibitory effects on nitric oxide (NO) production. Experimental studies have shown that chronic ET-1 administration to the optic nerve immediately behind the globe causes neuronal damage, activation of astrocytes, the major glial cell in the anterior optic nerve, and upregulation of endothelin B receptors. This paper outlines the ubiquitous role of endothelin and its potential involvement in ophthalmology.
Collapse
|
25
|
Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 2011; 91:1-77. [PMID: 21248162 DOI: 10.1152/physrev.00060.2009] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension.
Collapse
Affiliation(s)
- Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA.
| | | | | | | |
Collapse
|
26
|
Kelland NF, Kuc RE, McLean DL, Azfer A, Bagnall AJ, Gray GA, Gulliver-Sloan FH, Maguire JJ, Davenport AP, Kotelevtsev YV, Webb DJ. Endothelial cell-specific ETB receptor knockout: autoradiographic and histological characterisation and crucial role in the clearance of endothelin-1. Can J Physiol Pharmacol 2011; 88:644-51. [PMID: 20628430 DOI: 10.1139/y10-041] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inactivation of endothelin B receptors (ETB), either through selective pharmacological antagonism or genetic mutation, increases the circulating concentration of endothelin-1 (ET-1), suggesting ETB plays an important role in clearance of this peptide. However, the cellular site of ETB-mediated clearance has not yet been determined. We have used a novel mouse model of endothelial cell-specific knockout (KO) of ETB (EC ETB(-/-)) to evaluate the relative contribution of EC-ETB to the clearance of ET-1. Phenotypic evidence of EC-specific ETB KO was confirmed by immunocytochemistry and autoradiography. Binding of the radiolabelled selective ETB ligand BQ3020 was significantly and selectively decreased in EC-rich tissues of EC ETB(-/-) mice, including the lung, liver, and kidney. By contrast, ETA binding was unaltered. RT-PCR confirmed equal expression of ET-1 in tissue from EC ETB(-/-) mice and controls, despite increased concentration of plasma ET-1 in EC ETB(-/-). Clearance of an intravenous bolus of [(125)I]ET-1 was impaired in EC ETB(-/-) mice. Pretreatment with the selective ETB antagonist A192621 impaired [(125)I]ET-1 clearance in control animals to a similar extent, but did not further impair clearance in EC ETB(-/-) mice. These studies suggest that EC-ETB are largely responsible for the clearance of ET-1 from the circulation.
Collapse
Affiliation(s)
- N F Kelland
- Clinical Pharmacology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Boesen EI, Pollock DM. Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion. Am J Physiol Renal Physiol 2010; 299:F1424-32. [PMID: 20844020 DOI: 10.1152/ajprenal.00015.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute intramedullary infusion of hyperosmotic NaCl, used to simulate a high-salt diet-induced increase of medullary osmolality, increases urine production and endothelin release from the kidney. To determine whether endothelin mediates this diuretic and natriuretic response, urine flow and Na(+) excretion rate were measured during acute intramedullary infusion of hyperosmotic NaCl in anesthetized rats, with or without endothelin receptor antagonism. Isosmotic NaCl was infused into the left renal medulla during an equilibration period and 30-min baseline period, followed by hyperosmotic NaCl for two additional 30-min periods. Hyperosmotic NaCl infusion significantly increased urine flow of vehicle-treated rats (from 5.9 ± 0.9 to 11.1 ± 1.8 μl/min). Systemic ET(B) receptor blockade enhanced this effect (A-192621; from 7.7 ± 1.1 to 18.7 ± 2.9 μl/min; P < 0.05), ET(A) receptor blockade (ABT-627) had no significant effect alone, but the diuresis was markedly attenuated by combined ABT-627 and A-192621 administration (from 4.4 ± 0.7 to 5.4 ± 0.9 μl/min). Mean arterial pressures overall were not significantly different between groups. Surprisingly, the natriuretic response to hyperosmotic NaCl infusion was not significantly altered by systemic endothelin receptor blockade, and furthermore, intramedullary ET(B) receptor blockade enhanced the diuretic and natriuretic response to hyperosmotic NaCl infusion. ET(A) receptor blockade significantly attenuated both the diuretic and natriuretic responses to hyperosmotic NaCl infusion in ET(B) receptor-deficient sl/sl rats. These results demonstrate an important role of endothelin in mediating diuretic responses to intramedullary infusion of hyperosmotic NaCl. Moreover, these data suggest ET(A) and ET(B) receptors are both required for the full diuretic and natriuretic actions of endothelin.
Collapse
Affiliation(s)
- Erika I Boesen
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta, GA 30912, USA.
| | | |
Collapse
|
28
|
D'Amours M, Chbinou N, Beaudoin J, Lebel M, Larivière R. Increased ET-1 and Reduced ETBReceptor Expression in Uremic Hypertensive Rats. Clin Exp Hypertens 2010; 32:61-9. [DOI: 10.3109/10641960902993095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Andoh T, Akira A, Saiki I, Kuraishi Y. Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 2010; 31:238-41. [PMID: 19969036 DOI: 10.1016/j.peptides.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
The present study was conducted to determine whether bradykinin would affect the secretion and expression of endothelin-1 (ET-1) in B16-BL6 melanoma cells. Bradykinin administered to cultured melanoma cells increased preproET-1 mRNA level and the secretion of ET-1. Although kinin B(1) and B(2) receptor mRNAs are expressed in the melanoma cells, the increase of preproET-1 mRNA expression and the secretion of ET-1 were inhibited by kinin B(2), but not by B(1), receptor antagonist. These results suggest that bradykinin regulates the secretion and biosynthesis of ET-1 through kinin B(2) receptor in tumor cells, especially melanoma cells.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
30
|
Xie C, Wang DH. Ablation of transient receptor potential vanilloid 1 abolishes endothelin-induced increases in afferent renal nerve activity: mechanisms and functional significance. Hypertension 2009; 54:1298-305. [PMID: 19858408 DOI: 10.1161/hypertensionaha.109.132167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin 1 (ET-1) and its receptors, ETA and ETB, play important roles in regulating renal function and blood pressure, and these components are expressed in sensory nerves. Activation of transient receptor potential vanilloid (TRPV) 1 channels expressed in sensory nerves innervating the renal pelvis enhances afferent renal nerve activity (ARNA), diuresis, and natriuresis. We tested the hypothesis that ET-1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in wild-type (WT) but not TRPV1-null mutant mice. ET-1 alone or with BQ123, an ETA antagonist, perfused into the left renal pelvis increased ipsilateral ARNA in WT but not in TRPV1-null mutant mice, and ARNA increases were greater in the latter. [Ala1, 3,11,15]-endothelin 1, an ETB agonist, increased ARNA that was greater than that induced by ET-1 in WT mice only. [Ala1, 3,11,15]-endothelin 1-induced increases in ARNA were abolished by chelerythrine, a protein kinase C inhibitor, but not by H89, a protein kinase A inhibitor. Chelerythrine, H89, and BQ788, an ETB antagonist, did not affect ARNA triggered by capsaicin in WT mice. Substance P release from the renal pelvis was increased by [Ala1, 3,11,15]-endothelin 1 in WT mice only, and the increase was abolished by chelerythrine but not by H89. Chelerythrine, H89, and BQ788 did not affect capsaicin-induced substance P release. Our data show that ET1 increases ARNA via activation of ETB, whereas ETA counterbalances ETB in WT but not in TRPV1-null mutant mice, suggesting that TRPV1 mediates ETB-dependent increases in ARNA, diuresis, and natriuresis possibly via the protein kinase C pathway.
Collapse
Affiliation(s)
- Chaoqin Xie
- Department of Medicine, Michigan State University, B338 Clinical Center, East Lansing, MI 48823, USA
| | | |
Collapse
|
31
|
Gross P, Renn C, Waldherr R, Seifert M, Von Baehr R, Hocher B. Potential Role of Endothelin in the Physiological and Pathological Regulation of Kidney Function. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329309102313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
|
33
|
Abstract
Most of the late diabetic complications such as retinopathy, nephropathy, and neuropathy, have their basis in disturbed microvascular function. Structural and functional changes in the micro-circulation are present in diabetes mellitus irrespective of the organ studied, and the pathogenesis is complex. Endothelial dysfunction, characterized by an imbalance between endothelium-derived vasodilator and vasoconstrictor substances, plays an important role in the pathogenesis of diabetic microangiopathy. Increased circulating levels of endothelin-1 (ET-1), a potent vasoconstrictor peptide, has been found in patients with diabetes, and a positive correlation between plasma ET-1 levels and microangiopathy in patients with type 2 diabetes has been demonstrated. In addition to its direct vasoconstrictor effects, enhanced levels of ET-1 may contribute to endothelial dysfunction through inhibitory effects on nitric oxide (NO) production. Vascular endothelial dysfunction may precede insulin resistance, although the feature of insulin resistance syndrome includes factors that have negative effects on endothelial function. Furthermore, ET-1 induces a reduction in insulin sensitivity and may take part in the development of the metabolic syndrome. In the following, the mechanisms by which ET-1 contributes to the development of diabetic microangiopathy and the potentially beneficial effect of selective ETA receptor antagonists are discussed.
Collapse
Affiliation(s)
- Majid Kalani
- Department of Clinical Sciences, Karolinska Institutet, Dept of Cardiology, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
34
|
Mikulić I, Petrik J, Galesić K, Romić Z, Cepelak I, Zeljko-Tomić M. Endothelin-1, big endothelin-1, and nitric oxide in patients with chronic renal disease and hypertension. J Clin Lab Anal 2009; 23:347-56. [PMID: 19927348 PMCID: PMC6648951 DOI: 10.1002/jcla.20324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 04/15/2009] [Indexed: 11/07/2022] Open
Abstract
The complex pathogenesis of chronic renal disease (CRD) depends on endothelin (ET) axis (ETs and ET receptors) and nitric oxide (NO) because of their vasoactive effects and their role in general modulation of vascular homeostasis. Various renal cells synthesize ETs and NO that play a significant role in renal hemodynamics as well as in water and salt excretion via urine. ET-1 is a strong vasoconstrictor. Besides its vasoactive effects, ET-1 modulates mitosis and apoptosis in a cell type-dependent manner, and may play an important role in CRD pathogenesis. The aims of this study were to emphasize the role and interactions of ET-1, Big ET-1, and NO in CRD. Concentrations of these vasoactive molecules were measured in plasma/serum and/or urine of 57 patients with diabetic nephropathy (subgroup 1), arterial hypertension (subgroup 2) or CRD with chronic renal insufficiency (subgroup 3), and in healthy control subjects (n=18). In comparison with control group, urine concentration of Big ET-1 was significantly increased (13.13 pmol/L vs. 11.34 pmol/L; P<0.001) in CRD patients, whereas plasma and urine concentrations of ET-1 did not differ significantly. NO concentrations were also significantly increased in CRD patients (serum, 72.55 micromol/L; P<0.001, and urine 141.74 micromol/L; P<0.05) as compared to control group. Study results indicated that Big ET-1 and NO could be useful diagnostic parameters in CRD for their diagnostic sensitivity and diagnostic specificity (Big ET-1 in urine: 56.1 and 88.9%, and NO in serum: 66.7 and 83.3%, respectively). In addition, Big ET-1 may prove useful in the differential diagnosis of diabetic nephropathy (78.6% diagnostic sensitivity and 88.9% diagnostic specificity).
Collapse
Affiliation(s)
- Ivanka Mikulić
- Mostar University Hospital, Mostar, Bosnia and Herzegovina.
| | | | | | | | | | | |
Collapse
|
35
|
Smollich M, Wülfing P. Targeting the endothelin system: novel therapeutic options in gynecological, urological and breast cancers. Expert Rev Anticancer Ther 2008; 8:1481-93. [PMID: 18759699 DOI: 10.1586/14737140.8.9.1481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The endothelin system comprises the three peptide hormones endothelin (ET)-1, -2, -3, their G protein-coupled receptors, endothelin-A-receptor (ET(A)R) and endothelin-B-receptor (ET(B)R), and the enzymes of endothelin biosynthesis and degradation. In the past two decades, an impressive amount of data has been accumulated investigating the role of the endothelin system in a variety of malignancies. In many cancers, ET-1/ET(A)R interaction induces proliferation, angiogenesis, antiapoptosis and resistance to chemotherapy. Data indicate a pivotal role of the endothelin system in tumorigenesis, local progression and metastasis. Subsequently, novel drugs have been designed inhibiting ET-1 biosynthesis or ET(A)R interaction. A wide range of preclinical data is available on the role of ET(A)R antagonists in gynecological, urological and breast cancers providing evidence for their antiangiogenic, proapoptotic and growth inhibitory effects. Of particular interest is the anti-invasive and antimetastatic efficacy of ET(A)R antagonists and synergism when co-administered with established cancer therapies. Data indicate a future role of ET(A)R antagonists in oncologic therapies.
Collapse
Affiliation(s)
- Martin Smollich
- University of Münster, Department of Obstetrics & Gynecology, Albert-Schweitzer-Str. 33, 48129, Münster, Germany.
| | | |
Collapse
|
36
|
Endothelin 1 levels in relation to clinical presentation and outcome of Henoch Schonlein purpura. BMC Pediatr 2008; 8:33. [PMID: 18764935 PMCID: PMC2542358 DOI: 10.1186/1471-2431-8-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022] Open
Abstract
Background Henoch Schonlein purpura (HSP) is a common vasculitis of small vessels whereas endothelin-1 (ET-1) is usually reported elevated in vasculities and systematic inflammation. The aim of the present study was to investigate whether ET-1 levels are correlated with the clinical presentation and the outcome of HSP. Methods The study sample consisted of thirty consecutive patients with HSP. An equal number of healthy patients of similar age and the same gender were served as controls. The patients' age range was 2–12.6 years with a mean ± SD = 6.3 ± 3 years. All patients had a physical examination with a renal, and an overall clinical score. Blood and urinary biochemistry, immunology investigation, a skin biopsy and ET-1 measurements in blood and urine samples were made at presentation, 1 month later and 1 year after the appearance of HSP. The controls underwent the same investigation with the exception of skin biopsy. Results ET-1 levels in plasma and urine did not differ between patients and controls at three distinct time points. Furthermore the ET-1 were not correlated with the clinical score and renal involvement was independent from the ET-1 measurements. However, the urinary ET-1 levels were a significant predictor of the duration of the acute phase of HSP (HR = 0.98, p = 0.032, CI0.96–0.99). The ET-1 levels did not correlate with the duration of renal involvement. Conclusion Urinary ET-1 levels are a useful marker for the duration of the acute phase of HSP but not for the length of renal involvement.
Collapse
|
37
|
D'Orléans-Juste P, Houde M, Rae G, Bkaily G, Carrier E, Simard E. Endothelin-1 (1–31): From chymase-dependent synthesis to cardiovascular pathologies. Vascul Pharmacol 2008; 49:51-62. [DOI: 10.1016/j.vph.2008.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/30/2008] [Indexed: 12/11/2022]
|
38
|
Takeuchi Y, Uetsuka K, Murayama M, Kikuta F, Takashima A, Doi K, Nakayama H. Complementary Distributions of Amyloid-β and Neprilysin in the Brains of Dogs and Cats. Vet Pathol 2008; 45:455-66. [DOI: 10.1354/vp.45-4-455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neprilysin is an amyloid-β-degrading enzyme localized in the brain parenchyma. The involvement of neprilysin in the pathogenesis of Alzheimer's disease has recently received much attention. We examined the localization of neprilysin and amyloid-β, as well as the activity of neprilysin, in the brains of dogs and cats of various ages to clarify the relationship between neprilysin activity and amyloid-β deposition. The distribution of neprilysin was almost identical in dogs and cats, being high in the striatum, globus pallidus, and substantia nigra, but very low in the cerebral cortex. The white matter and hippocampus were negative. Neprilysin activity in the brain regions in dogs and cats was ranked from high to low as follows: thalamus/striatum > cerebral cortex > hippocampus > white matter. Amyloid-β deposition was first detected at 7 and 10 years of age in dogs and cats, respectively, and both the quantity and frequency of deposition increased with age. In both species, amyloid-β deposition appeared in the cerebral cortex and the hippocampus. In summary, the localization of neprilysin and neprilysin activity, and that of amyloid-β, were complementary in the brains of dogs and cats.
Collapse
Affiliation(s)
- Y. Takeuchi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - K. Uetsuka
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - M. Murayama
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - F. Kikuta
- St. Luke's College of Nursing, Chuou-ku, Tokyo, Japan
| | - A. Takashima
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | - K. Doi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo ku, Tokyo, Japan
| |
Collapse
|
39
|
Boesen EI, Sasser JM, Saleh MA, Potter WA, Woods M, Warner TD, Pollock JS, Pollock DM. Interleukin-1beta, but not interleukin-6, enhances renal and systemic endothelin production in vivo. Am J Physiol Renal Physiol 2008; 295:F446-53. [PMID: 18524861 DOI: 10.1152/ajprenal.00095.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inflammatory cytokines IL-1beta and IL-6 have been shown to stimulate production of endothelin-1 (ET-1) by several cell types in vitro, but their effects on renal ET-1 production in vivo are not known. To test whether IL-1beta and IL-6 stimulate renal ET-1 production and release in vivo, urine was collected from male C57BL/6 mice over 24-h periods at baseline and on days 7 and 14 of a 14-day subcutaneous infusion of IL-1beta (10 ng/h), IL-6 (16 ng/h), or vehicle. By day 14, plasma ET-1 was significantly increased by IL-1beta infusion (1.7 +/- 0.1 vs. 0.8 +/- 0.1 pg/ml for vehicle, P < 0.001). Compared with vehicle infusion, IL-1beta infusion induced significant increases in urinary ET-1 excretion rate and urine flow but did not affect conscious mean arterial pressure (telemetry). IL-1beta infusion significantly increased renal cortical and medullary IL-1beta content (ELISA) and prepro-ET-1 mRNA expression (quantitative real-time PCR). In contrast, 14 days of IL-6 infusion had no significant effect on plasma ET-1 or urinary ET-1 excretion rate. To determine whether IL-1beta stimulates ET-1 release via activation of NF-kappaB, inner medullary collecting duct (IMCD-3) cells were incubated for 24 h with IL-1beta, and ET-1 release and NF-kappaB activation were measured (ELISA). IL-1beta activated NF-kappaB and increased ET-1 release in a concentration-dependent manner. The effect of IL-1beta on ET-1 release could be partially inhibited by pretreatment of IMCD-3 cells with an inhibitor of NF-kappaB activation (BAY 11-7082). These results indicate that IL-1beta stimulates renal and systemic ET-1 production in vivo, providing further evidence that ET-1 participates in inflammatory responses.
Collapse
Affiliation(s)
- Erika I Boesen
- Department of Pharmacology and Vascular Biology Center, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 2008; 51:1605-10. [PMID: 18391099 DOI: 10.1161/hypertensionaha.107.108126] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mice with a collecting duct-specific deletion of endothelin-1 are hypertensive and have impaired Na excretion. Because endothelin-1 activates NO synthase (NOS) in the collecting duct, we hypothesized that impaired renal NO production in knockout mice exacerbates the hypertensive state. Control and knockout mice were treated chronically with N(G)-nitro-l-arginine methyl ester, and blood pressure (BP) and urinary nitrate/nitrite excretion were assessed. On a normal Na diet, knockout systolic BP was 18 mm Hg greater than in controls. N(G)-nitro-l-arginine methyl ester increased BP in control mice by 30 mm Hg and 10 mm Hg in collecting duct-specific deletion of endothelin-1 knockout mice, thereby abolishing the difference in systolic BP between the groups. A high-Na diet increased BP similarly in both groups. Urinary nitrate/nitrite excretion was lower in knockout mice than in controls on normal or high Na intake. In separate experiments, renal perfusion pressure was adjusted in anesthetized mice, and urinary nitrate/nitrite and Na excretion were determined. Similar elevations of BP increased urinary Na and nitrate/nitrite excretion in control mice but to a significantly lesser extent in knockout mice. Isoform-specific NOS activity and expression were determined in renal inner medulla homogenates from control and knockout mice. NOS1 and NOS3 activities were lower in knockout than in control mice given normal or high-Na diets. However, NOS1 or NOS3 protein expressions were similar in both groups on normal or high-Na intake. These data demonstrate that collecting duct-derived endothelin-1 is important in the following: (1) chronic N(G)-nitro-l-arginine methyl ester-induced hypertension; (2) full expression of pressure-dependent changes in sodium excretion; and (3) control of inner medullary NOS1 and NOS3 activity.
Collapse
|
41
|
Seyrantepe V, Hinek A, Peng J, Fedjaev M, Ernest S, Kadota Y, Canuel M, Itoh K, Morales CR, Lavoie J, Tremblay J, Pshezhetsky AV. Enzymatic activity of lysosomal carboxypeptidase (cathepsin) A is required for proper elastic fiber formation and inactivation of endothelin-1. Circulation 2008; 117:1973-81. [PMID: 18391110 DOI: 10.1161/circulationaha.107.733212] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lysosomal carboxypeptidase, cathepsin A (protective protein, CathA), is a component of the lysosomal multienzyme complex along with beta-galactosidase (GAL) and sialidase Neu1, where it activates Neu1 and protects GAL and Neu1 against the rapid proteolytic degradation. On the cell surface, CathA, Neu1, and the enzymatically inactive splice variant of GAL form the elastin-binding protein complex. In humans, genetic defects of CathA cause galactosialidosis, a metabolic disease characterized by combined deficiency of CathA, GAL, and Neu1 and a lysosomal storage of sialylated glycoconjugates. However, several phenotypic features of galactosialidosis patients, including hypertension and cardiomyopathies, cannot be explained by the lysosomal storage. These observations suggest that CathA may be involved in hemodynamic functions that go beyond its protective activity in the lysosome. METHODS AND RESULTS We generated a gene-targeted mouse in which the active CathA was replaced with a mutant enzyme carrying a Ser190Ala substitution in the active site. These animals expressed physiological amounts of catalytically inactive CathA protein, capable of forming lysosomal multienzyme complex, and did not develop secondary deficiency of Neu1 and GAL. Conversely, the mice showed a reduced degradation rate of the vasoconstrictor peptide, endothelin-1, and significantly increased arterial blood pressure. CathA-deficient mice also displayed scarcity of elastic fibers in lungs, aortic adventitia, and skin. CONCLUSIONS Our results provide the first evidence that CathA acts in vivo as an endothelin-1-inactivating enzyme and strongly confirm a crucial role of this enzyme in effective elastic fiber formation.
Collapse
Affiliation(s)
- Volkan Seyrantepe
- Department of Medical Genetics, CHU Sainte Justine Research Center, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The endothelin system as a therapeutic target in cardiovascular disease: great expectations or bleak house? Br J Pharmacol 2007; 153:1105-19. [PMID: 17965745 DOI: 10.1038/sj.bjp.0707516] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
There is considerable evidence that the potent vasoconstrictor endothelin-1 (ET-1) contributes to the pathogenesis of a variety of cardiovascular diseases. As such, pharmacological manipulation of the ET system might represent a promising therapeutic goal. Many clinical trials have assessed the potential of ET receptor antagonists in cardiovascular disease, the most positive of which have resulted in the licensing of the mixed ET receptor antagonist bosentan, and the selective ET(A) receptor antagonists, sitaxsentan and ambrisentan, for the treatment of pulmonary arterial hypertension (PAH). In contrast, despite encouraging data from in vitro and animal studies, outcomes in human heart failure have been disappointing, perhaps illustrating the risk of extrapolating preclinical work to man. Many further potential applications of these compounds, including resistant hypertension, chronic kidney disease, connective tissue disease and sub-arachnoid haemorrhage are currently being investigated in the clinic. Furthermore, experience from previous studies should enable improved trial design and scope remains for development of improved compounds and alternative therapeutic strategies. Although ET-converting enzyme inhibitors may represent one such alternative, there have been relatively few suitable compounds developed, and consequently, clinical experience with these agents remains extremely limited. Recent advances, together with an increased understanding of the biology of the ET system provided by improved experimental tools (including cell-specific transgenic deletion of ET receptors), should allow further targeting of clinical trials to diseases in which ET is involved and allow the therapeutic potential for targeting the ET system in cardiovascular disease to be fully realized.
Collapse
|
43
|
Tamilselvan S, Raju SN, Loganathan D, Kamatchiammal S, Abraham G, Suresh R. Endothelin-1 and its receptors ET(A) and ET(B) in drug-induced gingival overgrowth. J Periodontol 2007; 78:290-5. [PMID: 17274718 DOI: 10.1902/jop.2007.060172] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND The purpose of this study was to study the expression of endothelin-1 (ET-1) and its receptors ETA and ETB in normal human gingiva and cyclosporin-induced gingival fibroblasts. METHODS Gingival samples were collected from eight normal healthy individuals, eight patients with periodontitis, and eight patients with cyclosporin A (CsA)-induced gingival overgrowth. Total RNA was extracted from tissue samples, and reverse transcriptase-polymerase chain reaction was performed for ET-1, ETA, and ETB. ET-1 protein was estimated from the tissues by enzyme-linked immunosorbent assay. The expression of ET-1 and its receptors was also examined in gingival fibroblast cells treated with CsA. RESULTS ET-1 mRNA expression was significantly higher in patients with CsA-induced gingival overgrowth (P <0.001) than in patients with periodontitis and the controls. ETA mRNA was expressed more than the ETB in all examined samples. In human gingival fibroblasts, ET-1 expression was increased with CsA incorporation compared to controls (P <0.001). CONCLUSION These results suggest that CsA can modulate the expression of ET-1 in gingival fibroblasts and CsA-induced gingival overgrowth.
Collapse
Affiliation(s)
- S Tamilselvan
- Department of Periodontics, Sri Ramachandra Dental College and Hospital, Sri Ramachandra Medical College and Research Institute, Deemed University, Porur, Chennai, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
44
|
Hedrich O, Finley J, Konstam MA, Udelson JE. Novel neurohormonal antagonist strategies: vasopressin antagonism, anticytokine therapy, and endothelin antagonism in patients who have heart failure. Heart Fail Clin 2007; 1:103-27. [PMID: 17386838 DOI: 10.1016/j.hfc.2004.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Olaf Hedrich
- Tufts-New England Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Endothelin is a potent vasoconstrictor that recent studies show modulates transport in kidney tubules, including that related to acidification. The data support a physiologic role for endothelin in mediating enhanced kidney tubule acidification in response to an acid challenge to systemic acid-base balance status. The data to date do not support an endothelin role in maintaining kidney tubule acidification in control, nonacid-challenged states. Endothelin also contributes to the enhanced acidification of some pathophysiologic states and might have a role in some of the untoward outcomes associated with these conditions. This reviews supports continuation of studies into the physiologic and possibly pathophysiologic role of endothelin in settings of increased tubule acidification.
Collapse
Affiliation(s)
- Donald E Wesson
- Division of Nephrology and Hypertension, Texas Tech University Health Sciences Center, Texas Tech University School of Medicine, 3601 Fourth Street, Lubbock, TX 79430, USA.
| |
Collapse
|
46
|
Boesen EI, Pollock DM. Acute increases of renal medullary osmolality stimulate endothelin release from the kidney. Am J Physiol Renal Physiol 2007; 292:F185-91. [PMID: 16912066 DOI: 10.1152/ajprenal.00021.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments conducted in vitro suggest that high osmolality stimulates endothelin production and release by renal tubular epithelial cells. Whether hyperosmotic solutions exert similar effects in vivo is unknown. Therefore, we tested the hypothesis that increasing renal medullary osmolality enhances urinary excretion of endothelin in anesthetized rats. Isosmotic NaCl (284 mosmol/kgH2O) was infused either intravenously (1.5 ml/h) or into the renal medullary interstitium (0.5 ml/h) during a 1-h equilibration period and 30-min baseline urine collection period, followed by either isosmotic or hyperosmotic NaCl (921 or 1,664 mosmol/kgH2O iv; 1,714 mosmol/kgH2O into renal medulla) for two further 30-min periods. Compared with isosmotic NaCl, infusion of hyperosmotic NaCl into the renal medulla significantly increased the endothelin excretion rate ( P < 0.05; from 0.30 ± 0.02 to 0.49 ± 0.03 fmol/min). Intravenous infusion of hyperosmotic NaCl also significantly increased endothelin excretion rate in a concentration-dependent manner (from 0.79 ± 0.07 to 1.77 ± 0.16 fmol/min and 0.59 ± 0.04 to 1.11 ± 0.08 fmol/min for 1,664 and 921 mosmol/kgH2O, respectively). To differentiate between effects of osmolality and NaCl, similar experiments were performed using mannitol solutions. Compared with isosmotic mannitol, medullary interstitial infusion of hyperosmotic mannitol (1,820 mosmol/kgH2O) significantly increased endothelin excretion rate ( P < 0.05; from 0.54 ± 0.03 to 0.94 ± 0.12 fmol/min). Thus exposing the renal medulla to hyperosmotic concentrations of either NaCl or mannitol stimulates endothelin release in vivo, consistent with medullary osmolality being an important regulator of renal endothelin synthesis.
Collapse
Affiliation(s)
- Erika I Boesen
- Vascular Biology Center, Medical College of Georgia, 1459 Laney Walker Blvd, Augusta, GA 30912, USA
| | | |
Collapse
|
47
|
Abstract
Endothelin (ET) is a potent vasoconstrictor that is now known to modulate kidney tubule transport, including kidney tubule acidification. Animals undergoing an acid challenge to systemic acid-base status and with some models of chronic metabolic acidosis have increased kidney ET production. Increased ET production/activity contributes to enhanced kidney tubule acidification that facilitates kidney acid excretion in response to an acid challenge to systemic acid-base status. The data to date support a physiologic role for ET in mediating enhanced kidney acidification in response to acid challenges, but do not support an ET role in maintaining kidney tubule acidification in control, non-acid-challenged states. ET increases acidification in both the proximal and distal nephron and appears to exert its effects both directly and indirectly, the latter through modulating the levels and/or activity or other mediators of kidney tubule acidification. ET also contributes to enhanced kidney acidification in some pathophysiologic states and might contribute to some untoward outcomes associated with these conditions. Whether ET should be a therapeutic target in treating and/or preventing some of these untoward outcomes remains an open question. This review supports continued research into the physiologic and possibly pathophysiologic role of ET in settings of increased kidney tubule acidification.
Collapse
Affiliation(s)
- D E Wesson
- Division of Nephrology and Hypertension, Departments of Internal Medicine and Physiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
48
|
Abstract
The vascular endothelium plays a fundamental role in the basal and dynamic regulation of the circulation. Thus, it has a crucial role in the pathogenesis of hypertension. A spectrum of vasoactive substances is synthesised in the endothelium; of these, nitric oxide (NO), prostacyclin (PGI2) and endothelin (ET)-1 are the most important. There is a continuous basal release of NO determining the tone of peripheral blood vessels. Systemic inhibition of NO synthesis or scavenging of NO through oxidative stress causes an increase in arterial blood pressure. Also, the renin-angiotensin-aldosterone system has a major role in hypertension as it has a direct vasoconstrictor effect and important interactions with oxygen free radicals and NO. Prostacyclin, in contrast to NO, does not contribute to the maintenance of basal vascular tone of conduit arteries, but its effect on platelets is most important. ET acts as the natural counterpart to endothelium-derived NO and has an arterial blood pressure-raising effect in man. Anti-hypertensive therapy lowers blood pressure and may influence these different mediators, thus influencing endothelial function. In summary, due to its position between the blood pressure and smooth muscle cells responsible for peripheral resistance, the endothelium is thought to be both victim and offender in arterial hypertension. The delicate balance of endothelium-derived factors is disturbed in hypertension. Specific anti-hypertensive and anti-oxidant treatment is able to restore this balance.
Collapse
Affiliation(s)
- L E Spieker
- Cardiovascular Centre, Cardiology, Dep. of Internal Medicine, University Hospital, 8091 Zürich, Switzerland
| | | | | |
Collapse
|
49
|
Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG. Decreased Expression and Activity of Neprilysin in Alzheimer Disease Are Associated With Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2006; 65:1012-21. [PMID: 17021406 DOI: 10.1097/01.jnen.0000240463.87886.9a] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Neprilysin (NEP) degrades amyloid-beta (Abeta) and is thought to contribute to its clearance from the brain. In Alzheimer disease (AD), downregulation of NEP has been suggested to contribute to the development of cerebral amyloid angiopathy (CAA). We examined the relationship among NEP, CAA, and APOE status in AD and elderly control cases. NEP was most abundant in the tunica media of cerebrocortical blood vessels and in pyramidal neurons. In homogenates of the frontal cortex, NEP protein levels were reduced in AD but not significantly; NEP enzymatic activity was significantly reduced in AD. Immunohistochemistry revealed a reduction of both vascular and parenchymal NEP. The loss of vessel-associated NEP in AD was inversely related to the severity of CAA, and analysis of cases with severe CAA showed that levels of vascular NEP were reduced to the same extent in Abeta-free and Abeta-laden vessels, strongly suggesting that the reduction in NEP is not simply secondary to CAA. Possession of APOE epsilon4 was associated with significantly lower levels of both parenchymal and vascular NEP. Colinearity of epsilon4 with the presence of moderate to severe CAA precluded assessment of the independence of this association from NEP levels. However, logistic regression analysis showed low NEP levels to be a significant independent predictor of moderate to severe CAA.
Collapse
Affiliation(s)
- James Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, Clinical Science at North Bristol, University of Bristol, Frenchay Hospital, Frenchay, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Vorobiof G, Blaxall BC, Bisognano JD. The future of endothelin-receptor antagonism as treatment for systemic hypertension. Curr Hypertens Rep 2006; 8:35-44. [PMID: 16600158 DOI: 10.1007/s11906-006-0039-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endothelin (ET) is an endogenous peptide secreted predominantly by endothelial cells that mediates its effects via vasoconstriction and hypertrophy of vascular smooth muscle. Because the role of ET has been described in multiple pathologic processes in cardiovascular disease, including hypertension, there has been a strong interest in the development of therapeutic agents that inhibit ET receptors. ET receptor antagonists have shown much promise in disease states such as pulmonary arterial hypertension, essential hypertension, and various forms of secondary hypertension. This review serves to summarize the current role of ET and ET receptor antagonists in both the pathophysiology and the treatment of hypertension.
Collapse
Affiliation(s)
- Gabriel Vorobiof
- Program in Heart Failure and Transplantation, University of Rochester, Cardiology Division, 601 Elmwood Avenue, Box 679T, Rochester, NY 14642-8679, USA
| | | | | |
Collapse
|