1
|
Sadowski J, Bądzyńska B. Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure? Clin Exp Pharmacol Physiol 2020; 47:1323-1332. [PMID: 32163610 DOI: 10.1111/1440-1681.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
Abstract
In the context of the ongoing debate on the mechanism of blood pressure (BP) regulation and pathophysiology of arterial hypertension ("renocentric" vs "neural" concepts), attention is focused on the putative regulatory role of changes in renal medullary blood flow (MBF). Experimental evidence is analysed with regard to the question whether an elevation of BP and renal perfusion pressure (RPP) is likely to increase MBF due to its impaired autoregulation. It is concluded that such increases have been clearly documented only in rats with extracellular fluid volume expansion. A possible translation of this finding to BP regulation in health and hypertension in humans may only be a matter of speculation. Within the "renocentric" theory, the key event leading to restoration of initial BP level is pressure natriuresis. Its relation to elevation of renal interstitial hydrostatic pressure and to the phenomenon of "wash-out" of renal medullary solutes by increasing MBF is discussed. We also assessed the validity of data supporting the putative mechanism of short-term restoration of elevated BP owing to the release of a vasodilator lipid (medullipin) by the medulla. The structure of the proposed medullary lipid is still undefined, and there is no sound evidence on its mediatory role in lowering elevated BP level. In conclusion, MBF change can hardly be regarded as a crucial event in the regulation of BP: it can be involved in the control of sodium excretion and BP only in some circumstances, although its contributory role cannot be excluded.
Collapse
Affiliation(s)
- Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
3
|
|
4
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Pallone TL, Zhang Z, Rhinehart K. Physiology of the renal medullary microcirculation. Am J Physiol Renal Physiol 2003; 284:F253-66. [PMID: 12529271 DOI: 10.1152/ajprenal.00304.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl(-) conductance that secondarily gates voltage-activated Ca(2+) entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K(+) constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca(2+) is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca(2+) signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla.
Collapse
Affiliation(s)
- Thomas L Pallone
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland 21201-1595, USA.
| | | | | |
Collapse
|
7
|
Nishiyama A, Kimura S, Fukui T, Rahman M, Yoneyama H, Kosaka H, Abe Y. Blood flow-dependent changes in renal interstitial guanosine 3',5'-cyclic monophosphate in rabbits. Am J Physiol Renal Physiol 2002; 282:F238-44. [PMID: 11788437 DOI: 10.1152/ajprenal.00087.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined responses of renal interstitial guanosine 3',5'-cyclic monophosphate (cGMP) to changes in renal perfusion pressure (RPP) within and below the range of renal blood flow (RBF) autoregulation. A microdialysis method was used to monitor renal cortical and medullary interstitial cGMP levels in anesthetized rabbits. RPP was reduced in two steps: from ambient pressure (89 +/- 3 mmHg) to 70 +/- 2 mmHg (step 1) and then to 48 +/- 3 mmHg (step 2). RBF was maintained in step 1 but was significantly decreased in step 2 from 2.94 +/- 0.23 to 1.47 +/- 0.08 ml x min(-1) x g(-1). Basal interstitial concentrations of cGMP were significantly lower in the cortex than in the medulla (12.1 +/- 1.4 and 19.9 +/- 0.4 nmol/l, respectively). Cortical and medullary cGMP did not change in step 1 but were significantly decreased in step 2, with significantly less reduction in cGMP concentrations in the medulla than in the cortex (-25 +/- 3 and -44 +/- 3%, respectively). Over this pressure range, changes in cortical and medullary cGMP were highly correlated with changes in RBF (r = 0.94, P < 0.005 for cortex; r = 0.82, P < 0.01 for medulla). Renal interstitial nitrate/nitrite was not changed in step 1 but was significantly decreased in step 2 (-38 +/- 2% in cortex and -20 +/- 2% in medulla). Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester (L-NAME, 30 mg/kg bolus, 50 mg x kg(-1) x h(-1) i.v. infusion) significantly decreased RBF (by -46 +/- 4%) and interstitial concentrations of cGMP (-27 +/- 4% in cortex and -22 +/- 4% in medulla, respectively). During L-NAME treatment, renal interstitial concentrations of cGMP in the cortex and medulla were similarly not altered in step 1. However, L-NAME significantly attenuated cGMP responses to a reduction in RPP in step 2. These results indicate that acute changes in RBF result in alterations in nitric oxide-dependent renal interstitial cGMP levels, with differential effects in the medulla compared with the cortex.
Collapse
Affiliation(s)
- Akira Nishiyama
- Department of Pharmacology, Kagawa Medical University, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Pallone TL, Mattson DL. Role of nitric oxide in regulation of the renal medulla in normal and hypertensive kidneys. Curr Opin Nephrol Hypertens 2002; 11:93-8. [PMID: 11753093 DOI: 10.1097/00041552-200201000-00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulating evidence favors the notion that perfusion of the medulla of the kidney is regulated through the effects of nitric oxide. Reduction of nitric oxide production in the medulla by local tissue infusion of nitric oxide synthase blockers leads to reduction of medullary blood flow, salt retention and hypertension. Conversely, infusion of L-arginine to increase nitric oxide abrogates hypertension and enhances medullary blood flow in animal models. Nitric oxide levels can also be controlled through its consumption by reactive oxygen species. Thus, medullary oxidative stress might influence blood pressure and sodium balance through changes in nitric oxide. Nitric oxide inhibits sodium chloride reabsorption by the thick ascending limb and collecting duct. The likelihood that some forms of hypertension result directly from pathological alteration of transporters, channels, regulatory elements or enzymes that affect medullary nitric oxide seems high.
Collapse
Affiliation(s)
- Thomas L Pallone
- Department of Medicine, Nephrology Division, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
9
|
Majid DS, Said KE, Omoro SA. Responses to acute changes in arterial pressure on renal medullary nitric oxide activity in dogs. Hypertension 1999; 34:832-6. [PMID: 10523369 DOI: 10.1161/01.hyp.34.4.832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A direct relationship between renal arterial pressure (RAP) and cortical tissue nitric oxide (NO) activity in the canine kidney was reported earlier. We have conducted further experiments to evaluate medullary NO responses to alterations in RAP with the use of a NO-selective microelectrode inserted into the renal medulla of 6 anesthetized, sodium-replete dogs. Graded reductions in RAP (from 140 to 80 mm Hg) elicited decreases in medullary tissue NO concentration, with a slope of 10.2+/-4.5 nmol x L(-1) x mm Hg(-1). These changes in NO levels were associated with decreases in urinary excretion rate of nitrate and nitrite (U(NOx)V; control value, 1.7+/-0.03 nmol x min(-1) x g(-1); slope, 0.02+/-0.004 nmol x min(-1) x g(-1) x mm Hg(-1)) and sodium excretion (U(Na)V; control, 3.2+/-0.7 micromol x min(-1) x g(-1); slope, 0.06+/-0.02 micromol x min(-1) x g(-1) x mm Hg(-1)) without changes in glomerular filtration rate control (0.84+/-0.06 mL x min(-1) x g(-1)). Intra-arterial administration of the NO synthase inhibitor N(omega)-nitro-L-arginine (NLA; 50 microg x kg(-1) x min(-1)) decreased medullary NO concentration by 218+/-55 nmol x L(-1) (n=5) and attenuated the relationship between RAP and NO concentration (slope, 2.7+/-2.2 nmol x L(-1) x mm Hg(-1)). NLA infusion decreased U(NOx)V (0.8+/-0.06 nmol x min(-1) x g(-1)) and U(Na)V (1.1+/-0.2 micromol x min(-1) x g(-1)) without changes in glomerular filtration rate and attenuated RAP versus U(Nox)V and U(Na)V relationships. Total and regional blood flows, as measured by electromagnetic and laser Doppler needle flow probes, respectively, remained autoregulated both before and during NLA infusion. These data support the hypothesis that acute changes in RAP elicit changes in intrarenal NO production, which may participate in the mediation of pressure natriuresis.
Collapse
Affiliation(s)
- D S Majid
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
10
|
Correia AG, Bergström G, Lawrence AJ, Evans RG. Renal medullary interstitial infusion of norepinephrine in anesthetized rabbits: methodological considerations. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R112-22. [PMID: 10409264 DOI: 10.1152/ajpregu.1999.277.1.r112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested methods for delivery of drugs to the renal medulla of anesthetized rabbits. Outer medullary infusion (OMI) of norepinephrine (300 ng. kg(-1). min(-1)), using acutely or chronically positioned catheters, reduced both cortical (CBF; 15%) and medullary perfusion (MBF; 23-31%). Inner medullary infusion (IMI) did not affect renal hemodynamics, whereas intravenous infusion reduced CBF (15%) without changes in MBF. During OMI of [(3)H]norepinephrine, much of the radiolabel (approximately 40% with chronically positioned catheters) spilled over systemically. Nevertheless, autoradiographic analysis showed the concentration of radiolabel was about fourfold greater in the infused medulla than the cortex. In contrast, during IMI, only approximately 5% of the infused radiolabel spilled over into the systemic circulation and approximately 64% was excreted by the infused kidney. The resultant intrarenal levels of radiolabel were considerably less with IMI compared with OMI. In rabbits, OMI therefore provides a useful method for targeting agents to the renal medulla, but given the considerable systemic spillover with OMI, its utility is probably limited to substances that are rapidly degraded in vivo.
Collapse
Affiliation(s)
- A G Correia
- Department of Physiology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
11
|
Pallone TL, Silldorff EP, Turner MR. Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 1998; 25:383-92. [PMID: 9673811 DOI: 10.1111/j.1440-1681.1998.tb02220.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The microcirculation of the kidney is arranged in a manner that facilitates separation of blood flow to the cortex, outer medulla and inner medulla. 2. Resistance vessels in the renal vascular circuit include arcuate and interlobular arteries, glomerular afferent and efferent arterioles and descending vasa recta. 3. Vasoactive hormones that regulate smooth muscle cells of the renal circulation can originate outside the kidney (e.g. vasopressin), can be generated from nearby regions within the kidney (e.g. kinins, endothelins, adenosine) or they can be synthesized by adjacent endothelial cells (e.g. nitric oxide, prostacyclin, endothelins). 4. Vasoactive hormones released into the renal inner medullary microcirculation may be trapped by countercurrent exchange to act upon descending vasa recta within outer medullary vascular bundles. 5. Countercurrent blood flow within the renal medulla creates a hypoxic environment. Relative control of inner versus outer medullary blood flow may play a role to abrogate the hypoxia that arises from O2 consumption by the thick ascending limb of Henle. 6. Cortical blood flow is autoregulated. In contrast, the extent of autoregulation of medullary blood flow appears to be influenced by the volume status of the animal. Lack of medullary autoregulation during volume expansion may be part of fundamental processes that regulate salt and water excretion.
Collapse
Affiliation(s)
- T L Pallone
- Division of Nephrology, University of Maryland at Baltimore, USA.
| | | | | |
Collapse
|